
Abstract†
Obtaining an optimal schedule for a set of precedence-

constrained tasks with arbitrary costs is a well-known NP-
complete problem. However, optimal solutions are desired in
many situations. In this paper we propose search-based
algorithms for determining optimal schedules for moderately
large problem sizes. The first algorithm which is based on the
A* search technique uses a computationally efficient cost
function for guiding the search with reduced complexity. We
propose a number of state-pruning techniques to reduce the size
of the search space. For further lowering the complexity, we
parallelize the search. The parallel version is based on reduced
interprocessor communication and is guided by static and
dynamic load-balancing schemes to evenly distribute the
search states to the processors. We also propose an
approximate algorithm that guarantees a bounded deviation
from the optimal solution but takes considerably shorter time.
Based on an extensive experimental evaluation of the
algorithms, we conclude that the parallel algorithm with
pruning techniques is an efficient scheme for generating
optimal solutions for medium to moderately large problems
while the approximate algorithm is a useful alternative if
slightly degraded solutions are acceptable.

Keywords: Optimal Scheduling, Task Graphs, Parallel
Processing, Parallel A*, State-Space Search Techniques,
Multiprocessors.

1 Introduction
Scheduling a parallel program to the processors is crucial

for effectively harnessing the computing power of a
multiprocessor system. A scheduling algorithm aims to
minimize the overall execution time of the program by properly
allocating and arranging the execution order of the tasks on the
processors such that the precedence constraints among the
tasks are preserved. If the characteristics of a parallel program,
including task processing times, data dependency and
synchronizations, are knowna priori, the program can be
modeled by a node- and edge-weighteddirected acyclic graph
(DAG). The problem of static scheduling of a DAG is in
general NP-complete. Hitherto, the problem can be solved in a
polynomial-time for only a few highly simplified cases [1], [5],
[7]. If the simplifying assumptions of these cases are relaxed,
the problem becomes NP-hard in the strong sense. Thus, it is
unlikely that the problem in its general form can be solved in a
polynomial-time, unless .

In view of the intractability of the scheduling problem,
many polynomial-time heuristics are reported to tackle the
problem under more pragmatic situations [12], [18]. While
these heuristics are shown to be effective in experimental
studies, they usually cannot generate optimal solutions, and
there is no guarantee in their performance in general. In

†. This research was supported by the Hong Kong Research
Grants Council under contract number HKUST 734/96E.

addition, in the absence of optimal solutions as a reference, the
average performance deviation of these heuristics is unknown.

On the other hand, there are many advantages of having
optimal schedules: Optimal schedules may be required for
critical applications in which performance is the primary
objective. Also, optimal solutions for a set of benchmarks
problems can serve as a reference to assess the performance of
various scheduling heuristics. Moreover, once an optimal
schedule for a given problem is determined, it can be re-used
for efficient execution of the problem. For obtaining optimal
schedules, techniques such as integer programming, state-
space search, and branch-and-bound methods can be used [6],
[8], [10], [11], [15], [17]. However, the solution space of the
problem can be very large (for example, to schedule a DAG
with v nodes top processors, more than possible solutions
exist). Furthermore, the solution space in general does not
maintain a regular structure to allow state pruning. Thus, a need
exists to explore search-based algorithms with efficient state
pruning techniques to produce optimal solutions in a short
turnaround time.

Kasahara and Narita [9] pioneered the research in using
branch-and-bound algorithms for multiprocessor scheduling.
However, inter-task communication delays were not
considered in the design of their algorithm and such
assumption renders the algorithm not useful in more realistic
models. Recently, a few other branch-and-bound algorithms
for solving the scheduling problem have been reported in the
literature [2], [3], [4]. These algorithms also possess one
drawback or the other, making them impracticable except for
very special cases. For example, some algorithms can handle
only restricted DAGs, such as those with unit computation cost
and no communication [2], [4]. Some algorithms use more
complicated cost functions but their evaluation of a search state
computationally is expensive [3]. A huge memory requirement
to store the search states is also another common problem.

Our objective in this paper is to propose optimal scheduling
schemes that are fast and can be used for problems with
practical sizes and without simplifying assumptions. We
propose an algorithm based on the A* search technique with an
effective yet computationally efficient cost function. The
proposed A* algorithm is also equipped with several highly
effective state-space pruning techniques, which can
dramatically reduce the required scheduling time. The
effectiveness of these pruning techniques are analyzed
experimentally. We also propose an efficient parallelization
methodology for our proposed algorithm. Since a parallel
program is executed on multiple processors, it is natural to
utilize the same processors to speedup the scheduling of the
program. Indeed, using multiple processors to search for an
optimal solution not only shortens the computation time but
also reduces the memory requirement and allows for a larger
problem size. Surprisingly, very little amount of work has been
done in parallelizing scheduling algorithms [13]. We also
propose a variation of our algorithm which does not provide an
optimal solution but guarantees a bounded degradation of the

P NP=

pv

Optimal and Near-Optimal Allocation of Precedence-Constrained Tasks to Parallel
Processors: Defying the High Complexity Using Effective Search Techniques

ISHFAQAHMAD1 AND YU-KWONG KWOK2

1Department of Computer Science
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

2Parallel Processing Laboratory, School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285, USA

solution quality and is much faster. This algorithm can be
useful if efficiency, but not an optimal solution, is the primary
goal.

The remainder of the paper is organized as follows. Section
2 provides the problem statement. Section 2 contains some of
the previous work on generating optimal solutions for
scheduling. Section 3 presents the proposed serial, parallel, and
approximate algorithms. Section 4 contains the details of our
experimental study as well as the experimental results. The last
section concludes the paper by providing final remarks.

2 Problem Statement
In static scheduling, a parallel program is modeled by DAG

, whereV is a set ofv nodes andE is a set ofe
directed edges. A node in the DAG represents a task which in
turn is a set of instructions that must be executed sequentially
without preemption in the same processor. The weight
associated with a node, which represents the amount of time
needed for a processor to execute the task, is called the
computation costof a node and is denoted by . An
edge in the DAG, denoted by , corresponds to the
communication messages and precedence constraints among
the nodes. The weight associated with an edge, which
represents the amount of time needed to communicate the data,
is called thecommunication costof the edge and is denoted by

. Thecommunication-to-computation-ratio (CCR)of
a DAG is defined as its average communication cost divided by
its average computation cost on a given system.

The source node of an edge directed to a node is called a
parent of that node. Likewise, the destination node directed
from a node is called achild of that node. A node with no parent
is called anentry node and a node with no child is called anexit
node. The precedence constraints of a DAG dictate that a node
cannot start execution before it gathers all of the messages from
its parent nodes. The communication cost among two nodes
assigned to the same processor is assumed to be zero. If node

 is scheduled, and denote the start time and
finish time of , respectively. After all nodes have been
scheduled, theschedule length is defined as
across all nodes. The objective of scheduling is to assign the
nodes to the processors and arrange the execution order of the
nodes such that the schedule length is minimized and the
precedence constraints are preserved.

An example DAG, shown in Figure 1(a), will be used in
our discussion. We assume that the processors orprocessing
elements(PEs) in the target system do not share memory so that
communication solely relies on message-passing. The
processors may be heterogeneous or homogeneous.
Heterogeneity of processors means the processors have
different speeds or processing capabilities. However, we
assume every module of a parallel program can be executed on
any processor though the computation time needed on different
processors may be different. The processors are connected by
an interconnection network based on a certain topology. The
topology may be fully-connected or of a particular structure
such as a hypercube or mesh. Although processors may be
heterogeneous, we assume the communication links are
homogeneous. That is, a message is transmitted with the same
speed on all links. An example processor graph is shown in
Figure 1(b).

The arbitrary DAG scheduling problem is an NP-complete
problem [7]. However, a few attempts for optimal scheduling
of DAGs under more relaxed assumptions have been reported.
Chou and Chung [4] proposed an algorithm for optimal unit-
computation DAG scheduling on multiprocessors. However,
communication among tasks is ignored. Chang and Jiang [2]

proposed several state-space search approaches for scheduling
DAGs with arbitrary precedence relations. Although the
algorithm assumes arbitrary computation costs,
communication among tasks is also ignored. Chen and Yu [3]
proposed a branch-and-bound algorithm for optimal
scheduling of arbitrary structured DAG with arbitrary node-
and edge-weights. Their algorithm uses a complicated
underestimate cost function to prune the solution space. For
generating a new state, the function is computed by first
determining all of the complete execution paths extended from
the node to be scheduled. To take into consideration inter-
processor communication, an exhaustive matching of the
execution paths and the processor graph is then performed to
determine the minimum communication required. Finally, the
finish time of the last exit node is taken as the value of the
underestimate cost function. Since the problem considered in
that study is the closest to our problem, we will compare our
approach with Chen and Yu’s algorithm.

3 The Proposed Algorithms
In this section, we first formulate the scheduling problem

in terms of a state-space search, and then define a cost function
used for guiding the search. We also describe a number of
effective search space pruning techniques to enhance the
efficiency of our algorithm. Subsequently, we present the
proposed parallel optimal scheduling algorithm. Finally an
approximate algorithm for obtaining solutions with a bounded
solution quality is presented.

3.1 State-Space Search Formulation
Formulation of a problem in a state-space search

framework requires four basic components:state
representation, initial state, expansion operator, and goal
state.

In the context of the scheduling problem, we define these
components as follows:

• State Representation. State representation describes how a
search state represents a partial solution. A state in the
search space for the scheduling problem is a partial
schedule in which a sub-graph of the DAG is assigned to a
certain number of processors.

• Initial State. The initial state is the starting state. In the
case of scheduling, it is an empty partial schedule.

• Expansion Operator. An expansion operator dictates a
scheme for constructing larger partial solutions from an
existing partial solution. For expanding a search-state, the
first node from the list ofready nodes (the nodes whose
predecessors have been scheduled) is selected. The
selected node is considered for assignment to each of the
available processors. Each possible assignment generates
one new state. The next node from the list is then selected,

G V E,()=

ni w ni()
ni nj,()

c ni nj,()

ni ST ni() FT ni()
ni

maxi FT ni(){ }

n1

2

n2

3

n5

5

n3

3
n4

4

1

1 21

1

5

5
n6

2

PE 0

PE 2PE 1

Figure 1: (a) An example DAG; (b)
A 3-processor ring target system.

(a)

(b)

and state expansion continues in a similar fashion. The
state expansion stops when all of the ready nodes have
been considered for assignment.

• Goal State. A goal state is a solution state and hence the
terminating point of a search. In the case of the scheduling
problem, it is a complete schedule.
The above components only outline the search scheme for

obtaining a solution. To obtain an optimal solution we need an
“intelligent” algorithm to navigate the search space using
effective exploration techniques. We use the A* algorithm
from the area of artificial intelligence [16] to find an optimal
solution for the scheduling problem. In the A* algorithm, a cost
function is attached to each state,s, in the search-space,
and the algorithm always chooses the state with the minimum
value of for expansion. The cost function is a
lower-bound estimate of the exact minimum cost of the search
path from the initial state through states to the goal state,
denoted by . The function is usually defined by
using problem-dependent heuristic information, and is
considered to beadmissible (or consistent) if it satisfies

 for any states. With an admissible function, the
A* algorithm guarantees to find an optimal solution.

The function can be decomposed into two
components and such that ,
where is the cost from the initial state to states, and
(which is also called theheuristic function) is the estimated cost
from states to a goal state. Since represents the actual
cost of reaching a state, it is where the problem-
dependent heuristic information is captured. Indeed, is
only an estimate of the actual cost from states to a goal state,
denoted by . An is called admissible if it satisfies

 which in turn implies . A properly
defined and tightly bounded (hence) is, therefore,
crucial to enhance the search efficiency. One trivial definition
of is to make it zero for anys; the search, however, then
degenerates to an exhaustive enumeration of states, incurring
an exponential time.

For the DAG scheduling problem, our definition of is
aimed at making the computation of the function efficient,
since the time required to expand can be very costly. We first
define to be the maximum finish time of all the scheduled
nodes. That is, . Obviously is
well-defined in that it essentially represents the length of the
partial schedule.

The function is defined as:
, where is the node

corresponding to the value of . Thus, , which can also
be easily computed, represents an estimate of the “remaining”
schedule length.

Theorem 1: is admissible.
Proof: Observe that the function is less than or equal to
the time period between the finish time of the exit node, which
is lying on the same path as , and . Thus, we have

 for any states, and hence is admissible.
(Q.E.D.)

It should be noted that the simple definition of the heuristic
function permits very efficient implementation of the
states expansion process which is critical to enhance the
efficiency of the A* algorithm. This issue will be illustrated
again later when we describe our experimental results.
Furthermore, notice that both and are monotone
functions.

The algorithm, conforming to the convention, uses two
lists: a list called OPEN for keeping the un-expanded states,
and a list called CLOSED for keeping the expanded states.

THE SERIAL A* SCHEDULING ALGORITHM :
(1) Put the initial state in the OPEN list and set

.
(2) Remove from OPEN the search states with the

smallestf, and put it on the list CLOSED.
(3) If s is the goal state, a complete and optimal

schedule is found and the algorithm stops;
otherwise, go to the next step.

(4) Expand the states by exhaustively matching all the
ready nodes to the processors. Each matching
produces a new state s’. Compute

 for each new states’. Put all
the new states in OPEN. Go to step (2).

In the worst case, the A* algorithm can require an
exponential time and a large memory space to determine the
optimal solution. However, with a properly defined admissible
under-estimate function , the algorithm is reasonably
efficient on average.

3.2 State-Space Pruning
To enhance the search efficiency we propose to augment

the A* algorithm by incorporating a number of state-space
pruning techniques outlined below:

Processor Isomorphism:If the target system is composed
of homogeneous processors connected by a regular network,
generation of equivalent state can be avoided (for a ready node
with different processors). To identify isomorphic processors,
we need the following definitions.

Definition 1: The ready time of PE i, denoted by , is
defined as the finish time of the last node scheduled to PE i.
Definition 2: Two processors PE i and PE j are isomorphic if:
(i) , and
(ii) .

The first condition in Definition 2 requires that the two PEs
have the same node-degree in the processor-graph and have the
same set of neighboring PEs. According to the second
condition, two isomorphic PEs have to be empty. This is a
strong requirement. A weaker condition could be:
andthe node currently under consideration for scheduling does
not have any predecessor and successor scheduled to eitherPE
i andPE j. However, verifying this weaker condition increases
the time-complexity of scheduling because every nodes
scheduled to both processors have to be checked. Thus, we
assume the stronger condition for the sake of reducing the time-
complexity in state-space pruning.

For example, consider the task graph and processor
network shown in Figure 1. Suppose we want to generate new
search states by scheduling to the processors. It is obvious
that we need to generate only one search state by assigning
to PE 0. Exhaustively matching to all three processors is not
needed since PE 1 and PE 2 are equivalent to PE 0 at this search
step.

Priority Assignment:When more than one nodes are ready
for scheduling for generating a new state, not all them need to
be considered. Instead, only the node with a higher priority will
be examined for scheduling before a node with a lower priority.
The rationale is that less important nodes (those with less
impact on the final schedule length) should be considered later
in the search process so as to avoid regenerating some of the
already explored states. If more than one node has the same
priority, ties are broken randomly.

Node priorities can be assigned using various attributes.
Two common attributes for assigning priority are thet-level
(top level) andb-level (bottom level). Thet-level of a node
is the length of the longest path from an entry node to
(excluding). Here, the length of a path is the sum of all the
node and edge weights along the path. Thet-level of highly

f s()

f s() f s()

f ∗ s() f s()

f s() f ∗ s()≤

f s()
g s() h s() f s() g s() h s()+=

g s() h s()

g s()
h s()

h s()

h∗ s() h s()
h s() h∗ s()≤ f s() f ∗ s()≤

h s() f s()

h s()

f s()

g s()
g s() maxi FT ni(){ }= g s()

h s()
h s() maxnj succ nmax()∈ sl nj(){ }= nmax

g s() h s()

h s()
h s()

nmax FT ni()
h s() h∗ s()≤ h s()

h s()

g s() f s()

Φ
f Φ() 0=

f s′() g s′() h s′()+=

f s()

RTi

neighborsi neighborsj=
RTi RTj 0= =

RTi RTj=

n1
n1

n1

ni
ni

ni
ni

correlates with ’sstart time which is determined after is
scheduled to a processor. Theb-level of a node is the length
of the longest path from node to an exit node. Theb-level of
a node is bounded by the length of thecritical path. A critical
path (CP) of a DAG is a path with the longest length; clearly, a
DAG can have more than one CP. Both thet-levelandb-level
can be computed in time using standard graph traversal
procedures like depth-first search. Theb-level of a node
without the edge costs is called thestatic b-level or simply
static level (sl). The t-levels, b-levels, andsl’s of the DAG
depicted in Figure 1(a) are shown in Figure 2.

In the proposed scheduling algorithms, the ready nodes for
scheduling while generating a new state are considered in a
decreasing order ofb-level+ t-level. That is, the node with the
largest value ofb-level+ t-level will be chosen for generating a
new state.

Node Equivalence: By considering the equivalence
relation among the nodes, states leading to the same schedule
length can be avoided. By equivalence we mean the two states
will lead to schedules with the same schedule length. By using
b-level and t-level, we can define the equivalence relation
between two nodes in the DAG.

Definition 3: Two nodes and areequivalent if:
(i) ,
(ii) , and
(iii) .

Notice that conditions (i) and (iii) together imply thatt-
level() = t-level(), and b-level() = b-level(). With this
definition, if two nodes are equivalent, they have the same
relationships with the predecessors and successors in that they
incur the same amount of communication with the predecessors
and successors. Furthermore, they will beready
simultaneously and the schedule length will be the same no
matter which node is selected first. Thus, only one of the two
corresponding new states needs to be stored while the other can
be safely discarded. For example, in the task graph shown in
Figure 1(a), and are equivalent. This is obvious with
reference to the values ofb-levels and t-levels shown in
Figure 2.

Upper-Bound Solution Cost: In this method, we use an
upper bound costU to eliminate a newly generated state. That
is, if the states has its greater thanU, we can safely
discard such a state because it can never lead to an optimal
schedule since is a monotonic increasing function. We
use a fast heuristic to determineU. The heuristic runs in a linear
time and consists of two steps [14]:

(1) Construct a list of tasks ordered in decreasing
priorities for the DAG.

(2) Schedule the nodes on the list one by one to the
processor that allows the earliest start time.

As both steps take time, the upper bound cost can be
determined in a linear time.

To illustrate how the proposed A* algorithm and the state-
space pruning techniques work, we apply the algorithm to
schedule the example task graph shown in Figure 1(a) to the 3-
processor ring shown in Figure 1(b). The search tree depicting
the scheduling steps is shown in Figure 3. Each state in the

search tree contains the node chosen for scheduling and the
processor to which the node is scheduled. The cost of the state,
decomposed into two and , is also shown. The
numbers shown next to some of the states in the search tree
indicate the order of state expansion. For this example 26 states
are generated and 9 states are expanded. The effectiveness of
the proposed A* algorithm is clear when we compare this
search tree size with the size of an exhaustive search tree,
which contains more than states.

At the beginning of the search, only is ready for
scheduling and is therefore expanded. Only one state is
generated as a result of this expansion. This is because we used
the processor isomorphism criterion to avoid generating two
equivalent states as initially there is no difference between PE
0, PE 1, and PE 2. This pruning is important since it eliminates
a large part of the search space by avoiding the expansion of
states situated at a higher level of the search tree. In the next
step, this newly generated state is then expanded because it is
the only state in the OPEN list. Now four states are generated
by scheduling and to PE 0 and PE 1. Only two
processors are considered because PE 1 and PE 2 satisfy the
processor isomorphism criterion at this stage. Note that we
could have generated two more states by scheduling to PE
0 and PE 1. However, since and are equivalent nodes by
Definition 3, only one of them is chosen for scheduling. Again
a large part of the search space is disregarded. In the next step,
the state representing the scheduling of to PE 0 is chosen for
expansion because of its least cost. Two states are generated by
scheduling to PE 0 and PE 1. Again we used the
equivalence relation between and to avoid generating
two more states. Since the costs of the two newly generated
states are higher than that of a previously generated state,
namely the state representing the scheduling of to PE 1, the
latter is chosen for expansion. Next three states are generated
because the empty processor PE 2 is different from PE 1, to
which is scheduled, so that processor isomorphism cannot
be used. Once again the equivalence relation is used to avoid
generating three redundant states. One of the newly generated
states, which represents the scheduling of to PE 0, has the
minimum cost, and therefore, is chosen for expansion. As a
result of this expansion, only two new states are generated
since is the only ready node and processor PE 2 is not
considered due to processor isomorphism. As higher costs
states are generated, the search reverts to expanding the left-
most state on the second level of the search tree (note that we
do not count the initial state as one level).

The state representing the scheduling of to PE 1 is not
generated because it has been visited before on the right-most
branch of the search tree. The search then proceeds in a similar
fashion and eventually reaching a goal state with a final cost of
14 time units. The path of the search tree representing the
optimal scheduling is shown in thick edges in the tree of
Figure 3. The final optimal schedule is shown in Figure 4.

3.3 The Parallel A* Algorithm for Scheduling
An efficient parallelization of the above algorithm is non-

trivial and requires several design considerations, which will be
elaborated below. First, to avoid ambiguity, we will hereafter
call the processors executing the parallel A* algorithm as
physical processing elements (PPEs). The PPEs should be
distinguished from thetarget processing elements(TPEs), to
which the DAG is to be scheduled. The PPEs are connected by
a certain network topology; for instance, the PPEs in the Intel
Paragon are connected by a mesh topology.

The initial load distribution phase of the parallel algorithm
involves all the PPEs in the system. Every PPE initializes the
OPEN list by expanding the initial empty state. Suppose there

ni ni
ni

ni

O e()

n1
n2
n3
n4
n5
n6

12 19 0
10 16 3
10 16 3
6 10 4
7 12 7
2 2 17

sl b-level t-level

Figure 2: Thesl’s (static levels),b-levels, and
t-levels of the DAG shown in Figure 1(a).

ni nj
pred ni() pred nj()=
w ni() w nj()=
succ ni() succ nj()=

ni nj ni nj

n2 n3

g s()

g s()

O e()

g s() h s()

36 729=

n1

n2 n4

n3
n2 n3

n4

n2
n2 n3

n4

n4

n2

n3

n4

areq PPEs in the parallel machine and each PPE hasd neighbor
PPEs; for instance, in the case of the Intel Paragon, the value of
d is 4. Moreover let there bek states in OPEN. For distributing
k states toq PPEs, there are three cases to consider:

Case 1 (): Each PPE expands only the initial empty
state which results ink new states. Every PPE then gets one
state while the extra states are distributed in a round-robin (RR)
manner.

Case 2 (): Each PPE expands the initial empty state
and then gets exactly one state.

Case 3(): Each PPE keeps on expanding states in
OPEN starting from the initial empty state until the number of
states in OPEN is greater than or equal toq. The list OPEN is
then sorted in an increasing order of cost values. Each PPE then
gets one state from OPEN in an interleaved manner. That is, the
first state in OPEN will go to PE 0, the second state to PE

, the third state to PE 1, the fourth state to PE , and
so on. The extra states, if any, will be distributed in a RR
fashion. Although there is no guarantee that a best state at the
initial level of the search tree will lead to a promising state after
some expansions, the algorithm tries to distribute the good
states as evenly as possible among all PPEs.

Following the distribution, the PPEs start searching by

expanding the states. In the absence of communication among
the PPEs, some of the PPEs may work on more promising parts
of the search space while others may expand unnecessary
states, which are the ones the serial algorithm would not
expand. This will inevitably result in a poor speedup since the
parallel algorithm would be quite inefficient. To avoid this, the
PPEs must periodically communicate with each other to
exchange information about the costs of the nodes in the OPEN
list. In our scheme, each PPE only communicates with its
neighboring PPEs to execute the following local load-
balancing algorithm:

ROUND-ROBIN LOAD SHARING :
(1) Determine the average number of un-expanded

states in all the OPEN lists.
(2) Every PPE which has the number of local un-

expanded states is more than , distribute the
surplus states to the deficit PPEs in a round-robin
fashion.

The duration of the communication period is set to beT
number of expansions, whereT is initially , then ,

, and so on, until it reaches 2 which is the minimum we
used. The periods are exponentially decreasing because at the
beginning of the search, the costs of the search states differ by
a small margin. At such early stages, exploration is more
important than exploitation and, therefore, the PPEs should
work independently for a longer period of time. When the
search reaches the later stages of the search tree, the best cost
state tends to have a much smaller cost than the locally best
ones.

To avoid excessive overhead, communication is performed
only among the neighboring PPEs instead of globally involving
all the PPEs. During communication, the neighboring PPEs
vote and elect the best cost state, which is then expanded by all
the participating PPEs. The resulting new states then go to each
neighboring PPE in a RR fashion. Once a goal state is found by
any one PPE, it is sent to all the PPEs in the system so that the
search can terminate.

Using the above mentioned partitioning, communication,
and load balancing schemes, we outline the algorithm as
follows.

n1 → PE 0
f = 2 + 10

Initial State

n2 → PE 0
f = 5 + 7

n2 → PE 1
f = 6 + 7

n4 → PE 0
f = 6 + 2

n4 → PE 1
f = 8 + 2

n3 → PE 0
f = 8 + 7

n3 → PE 1
f = 6 + 7

n4 → PE 0
f = 9 + 2

n2 → PE 0
f = 9 + 7

n2 → PE 1
f = 6 + 7

n2 → PE 0
f = 5 + 7

n2 → PE 1
f = 11 + 7

n2 → PE 2
f = 6 + 7

n3 → PE 0
f = 12 + 7

n3 → PE 1
f = 6 + 7

n3 → PE 0
f = 9 + 7

n3 → PE 1
f = 9 + 7

n3 → PE 2
f = 6 + 7

n3 → PE 0
f = 8 + 7

n3 → PE 1
f = 11 + 7

n5 → PE 0
f = 12 + 2

n5 → PE 1
f = 12 + 2

n5 → PE 2
f = 12 + 2

n6 → PE 0
f = 14 + 0

n6 → PE 1
f = 17 + 0

n6 → PE 2
f = 17 + 0

1

2 3

4

5

6 7

8

9

Goal

Figure 3: The search tree for scheduling the example task graph shown in Figure 1(a) to the 3-processor ring shown in Figure 1(b).

n1

2

n2

3

n5

5

n3

3

n4

4

n6

2

0

5

10

15

PE 0 PE 1 PE 2

Figure 4: The optimal schedule generated by the
A* algorithm (schedule length = 14 time units).

k q>

k q=

k q<

q 1– q 2–

Navg

Navg

v 2⁄ v 4⁄
v 8⁄

PARALLEL A* SCHEDULING ALGORITHM :
(1) Expand the initial (empty) state and generate a

number of new states;
(2) Eliminate redundant equivalent states;
(3) Every PPE participates in the initial RR load sharing

phase;
(4) Set ;
(5) repeat

(6) Set ;

(7) repeat /* search */
(8) Run A* to expand the local states;
(9) until the number of expanded states is equal toT;
(10) Globally exchange cost information and import

the best cost state;
(11) Expand the imported best cost state and perform

RR load sharing of the generated states;
(12) Set ;
(13) until a complete schedule is found;
It should be mentioned that in our implementation, each

PPE only checks for redundant states in its own CLOSED list
before adding newly generated states. Although a globally
maintained CLOSED list can guarantee no states will be ever
re-visited, the communication and synchronization overhead of
maintaining the list in a distributed manner can severely limit
the scalability of the algorithm. Furthermore, we believe that
the states pruning techniques incorporated in the algorithm can
effectively discard any redundant states.

When the parallel A* algorithm is applied to schedule the
example task graph shown in Figure 1(a) to the 3-processor
ring shown in Figure 1(b) using 2 PPEs, the search tree
generated, shown in Figure 5, is slightly different. Three more
states are generated on the left-most branch of the root in the
search tree. This phenomenon can be explained as follows.
According to the parallel A* algorithm, both PPEs generate the
first two levels of the search tree (note that we do not count the
empty initial state as one level) at the beginning as there are not
enough states for distribution. One PPE (call it PPE 0) then gets
the first and the fourth states, while the other gets the second
and the third ones. Initially the period of communication is set
to be . Thus, both PPEs work independently until
they have expanded 3 states (see Figure 5 for the order of state
expansions).

At the time of communication, PPE 0 has fully expanded
the right-most branch of the root as shown in Figure 5 (after
expansions 1 and 2). For the left-most branch, the states at level
3 (corresponding to assigning and) are generated. Thus,
the best local cost of PPE 0 is 11, corresponding to the state of
assigning to PE 0. On the other hand, PPE 1 has expanded
the branch, which contains the goal state, up to the 4th level
(corresponding to the states of assigning to PE 0, 1 and 2).
Thus, the best local cost of PPE 1 is 13 (corresponding to
assigning to PE 2).

During the communication, therefore, PPE 0 transfers its
best cost state to PPE 1, which is the state of assigning to
PE 0. After the communication, both PPEs expand the best
state. However, as a result of the expansion, two states with
costs higher than 13 are generated. Therefore, PPE 0 continues
to expand the descendant of the best state. On the other hand,
PPE 1 reverts to expand its locally best state, the one
corresponding to assigning to PE 2. This expansion leads to
generating the parent state of the goal state. Consequently, the
goal state is found and PPE 1 broadcasts the result to PPE 0 and
the algorithm terminates.

We tested this example on the Intel Paragon using two
processors and obtained a speedup of 1.7. Linear speedup is not

possible because of the communication overhead and the
computation load incurred due to the extra processing in
generating more states.

3.4 The Approximate A* Algorithm
According to Pearlet al. [16], if a solution with cost

bounded by (1+) of the optimal cost is good enough, the A*
algorithm can be modified to generate such a solution
efficiently. We adopt their notations and call the modified A*
algorithm, which is in fact an approximate algorithm, as the

 algorithm. One more list called FOCAL is needed for
. This list contains a subset of states currently on the

OPEN list. Specifically, we put only the statess’ with
. That is, the costs of the

states in FOCAL are no greater than the minimum cost in
OPEN by a factor (1+). Thus only expands states from
FOCAL. Furthermore, always finds a solution with cost
not exceeding the optimal cost by more than a factor of (1+).
This is formalized by the following theorem.

Theorem 2: [16] is -admissible.
Proof: By definition of FOCAL, the cost of the goal state
is within a factor of (1+) from the minimum cost in
FOCAL. Since is admissible by Theorem 1, we also have

. Thus: [16].
(Q.E.D.)

4 Performance Results
In this section we present the performance results of the

proposed serial and parallel A* algorithms. We first compare
the results generated by the serial A* algorithm with that of the
branch-and-bound algorithm proposed by Chen and Yu [3]. We
then describe the speedup achieved with the parallel A*
algorithm implemented on the Intel Paragon, over the proposed
serial algorithm. Finally, we also compare the results generated
by using the parallel algorithm with those of the exact
algorithm.

4.1 Workload
As no widely accepted benchmark graphs exist for the

DAG scheduling problem, we believe using random graphs
with diverse parameters is appropriate for testing the
performance of the algorithms. In our experiments we used
three sets of random task graphs, each with a different value of
CCR (0.1, 1.0, and 10.0). Each set consists of graphs in which
the number of nodes vary from 10 to 32 (with an increment of
2); thus, each set contains 12 graphs. The graphs were
randomly generated as follow. First the computation cost of
each node in the graph was randomly selected from a uniform
distribution with mean equal to 40. Beginning from the first
node, a random number indicating the number of children was
chosen from a uniform distribution with mean equal to .
Thus, the connectivity of the graph increases with the size of
the graph. The communication cost of an edge was also
randomly selected from a uniform distribution with mean equal
to 40 times the specified value of CCR. Notice that as we were
also interested in the minimum TPEs required for each optimal
schedule, we let the algorithms use TPEs. However, in
practice, the algorithms used far less thanv TPEs during the
search process because redundant states were generated when
the algorithms tried to use a new TPE.

4.2 Results of the Serial A* Algorithm
In our first experiment, we ran the serial A* algorithm

using a single processor on the Intel Paragon. We also
implemented the branch-and-bound algorithm proposed by
Chenet al. on the same platform. We measured the running
times (in seconds) of both algorithms. The results are shown in
Table 1. To assess the effectiveness of the pruning techniques,

i 2=

T v
i
--=

i i 2×=

6 2⁄ 3=

n3 n4

n4

n3

n3

n4

n3

ε

Aε∗
Aε∗

f s′() 1 ε+()mins OPEN∈ f s(){ }≤

ε Aε∗
Aε∗

ε

Aε∗ ε
f goal

ε f min
f

f min f opt≤ f goal 1 ε+() f min 1 ε+() f opt≤≤

Aε∗

v 10⁄

O v()

the running times of the A* algorithm without state-space
pruning are also shown in the middle column of the table.

As can be observed from the values in the first two columns
of the table in Table 1 (results for CCR equal to 0.1) the
proposed A* algorithm consistently used much less time than
the branch-and-bound algorithm, even without the state-space
pruning strategies. This is primarily due to the our algorithm’s
lower time-complexity for computing the cost of each state.
This observation reveals that reducing the complexity of the
cost function evaluation method itself can reduce the
algorithm’s running time. The result for a graph size with 32
nodes was not available for the algorithm by Chenet al.
because the running time exceeded the limit.

Similar observations can be made about the results with
CCR equal to 1.0 and 10.0. There is one major difference,
though. The running times spent by both algorithms increased
with the value of CCR. This is because with a larger value of
CCR, the costs of the intermediate states vary more vigorously
and, thus, the search has to explore a wider scope in the search-
space.

Comparing the data on the second and third column of
Table 1, we can see that the pruning techniques reduce the
running times consistently by about 20%. One plausible
explanation is that for general graph structures, the proposed
A* algorithm behaves more conservatively in that it does not
prune many search-states by the solution cost bounding
strategy. This is because thef costs of some search-states
(where some nodes are sub-optimally scheduled) are less than
the upper bound solution cost.

4.3 Results of the Parallel A* Algorithm
In the second experiment, we ran the parallel A* algorithm

on the Intel Paragon using 2, 4, 8, and 16 PPEs. The running
times used were compared with the serial A* algorithm. The
results are presented as speedup plots shown in Figure 6. As
can be noticed from the three plots, the speedup of the parallel
A* algorithm is moderately less than linear, which is very
encouraging. An explanation for the good speedups is that
during the communication phases, only neighboring PPEs
exchange information on the locally best states. Furthermore,
the Intel Paragon has a very fast communication network which
permits the PPEs exchange small messages (i.e., the partial
nodes assignment and cost) in a short time compared with the
processing time for states expansion.

We also observe that the speedup dropped slightly with
increasing graph sizes. This is because the parallel A*
algorithm tends to generate slightly more search states, which
are not generated by the serial algorithm. Another reason is that
the communication overhead becomes more significant for
larger graph sizes. Comparing the three plots, we find that the
speedup curves become more irregular when the value of CCR
is higher. This is because as CCR gets higher, the parallel
algorithm uses more diverged search directions which are then
regulated by the inter-PPE communication.

4.4 Results of the Parallel Aε* Algorithm
In the last experiment, we ran the parallel algorithm

using 16 PPEs on the Intel Paragon with approximation factor
ε equal to 0.2 and 0.5. The percentage deviations from optimal

n1 → PE 0
f = 2 + 10

Initial State

n2 → PE 0
f = 5 + 7

n2 → PE 1
f = 6 + 7

n4 → PE 0
f = 6 + 2

n4 → PE 1
f = 8 + 2

n3 → PE 0
f = 8 + 7

n3 → PE 1
f = 6 + 7

n4 → PE 0
f = 9 + 2

n2 → PE 0
f = 9 + 7

n2 → PE 1
f = 6 + 7

n2 → PE 0
f = 5 + 7

n2 → PE 1
f = 11 + 7

n2 → PE 2
f = 6 + 7

n3 → PE 0
f = 12 + 7

n3 → PE 1
f = 6 + 7

n3 → PE 0
f = 9 + 7

n3 → PE 1
f = 9 + 7

n3 → PE 2
f = 6 + 7

n3 → PE 0
f = 8 + 7

n3 → PE 1
f = 11 + 7

n5 → PE 0
f = 12 + 2

n5 → PE 1
f = 12 + 2

n5 → PE 2
f = 12 + 2

n6 → PE 0
f = 14 + 0

n6 → PE 1
f = 17 + 0

n6 → PE 2
f = 17 + 0

PPE 0 and
PPE 1,

Expansion 4
PPE 0,

Expansion 2

Goal

Figure 5: Using the parallel A* algorithm, the search tree for scheduling the example
task graph shown in Figure 1(a) to the 3-processor ring shown in Figure 1(b).

PPE 0,
Expansion 3

PPE 1,
Expansion 2

PPE 0,
Expansion 1

PPE 0 and
PPE 1,

Expansion 0

PPE 1,
Expansion 5

PPE 0,
Expansion 5

n5 → PE 0
f = 12 + 2

n5 → PE 1
f = 12 + 2

n5 → PE 2
f = 12 + 2

States handled by PPE 0

States handled by PPE 1

States handled by both PPEs

Extra States not generated in serial A*

PPE 1,
Expansion 3

PPE 1,
Expansion 1

10
12
14
16
18
20
22
24
26
28
30
32

202 150 120
458 295 245
1043 675 567
2781 1523 1209
5231 3109 2465
13492 7128 5667
29484 15680 12098
60129 32045 25688
139852 74570 59809
289092 153473 125687
593412 305673 256892
— 652489 525788

Chen A*full A*Size

Table 1: The running times (in seconds) of the Chenet al.’s
branch-and-bound algorithm and the proposed A* algorithm,
with and without pruning, using a single processor on the Intel
Paragon for task graphs with CCR equal to 0.1, 1.0, and 10.0.

CCR = 0.1

289 260 191
558 410 312
1349 867 682
3218 2098 1543
6345 3568 2863
16112 9546 6751
32367 15785 13257
68492 35689 28462
142725 80234 63125
309356 179835 142568
620605 357923 276581
— 687924 563284

Chen. A* full A*

CCR = 1.0

367 256 204
703 537 428
1873 903 735
3965 2014 1689
7624 3731 3025
17872 9043 7365
34650 19754 15324
70326 35789 30257
153247 89964 68532
324687 180053 152371
687001 347900 302674
— 701235 598352

Chen A*full A*

CCR = 10.0

Aε∗

schedule lengths were measured and the scheduling time ratios
of the parallel algorithm to the parallel A* algorithm were
noted. The results are plotted in Figure 7, indicating that the
actual percentage deviations from optimal are not as great as
the approximation factor in both cases. This is particularly true
for smaller graphs, and is due to the fact that the FOCAL list
does not exclude the states leading to an optimal goal for a
reasonably effective cost function. Regarding the scheduling
time ratios, we find that the computation time saved for each
case is of considerable margin—ranges from 10 to 40% forε
equal to 0.2 and from 50 to 70% forε equal to 0.5. Thus, the
parallel algorithm is an attractive choice if slightly inferior
to optimal solutions are acceptable.

5 Conclusions
In this paper, we have presented algorithms for optimal

static scheduling of an arbitrary DAG to an arbitrary number of
processors. The proposed algorithms are based on the A*
search technique with a computationally efficient cost function
as well as a number of effective state-space pruning techniques.
The serial A* algorithm is found to outperform a previously
proposed branch-and-bound algorithm by using considerably
less time to generate a solution. The parallel A* algorithm,
using a dynamic load balancing strategy, yields a close-to-
linear speedup. Based on experimental evaluation, the parallel

 algorithm has shown high capability to prune the search-
space; thereby reducing the running time dramatically. The

 algorithm is scalable and an attractive choice if slightly
inferior to optimal solutions are acceptable.

References
[1] H.H. Ali and H. El-Rewini, “The Time Complexity of Scheduling

Interval Orders with Communication is Polynomial,”Parallel
Processing Letters, vol. 3, no. 1, 1993, pp. 53-58.

[2] P.C. Chang and Y.S. Jiang, “A State-Space Search Approach for
Parallel Processor Scheduling Problems with Arbitrary
Precedence Relations,”European Journal of Operational
Research, 77, 1994, pp. 208-223.

[3] G.-H. Chen and J.-S. Yu, “A Branch-And-Bound-With-
Underestimates Algorithm for the Task Assignment Problem
with Precedence Constraint,” Proc.Int’l Conf. Distributed
Computing Systems, 1990, pp. 494-501.

[4] H.-C. Chou and C.-P. Chung, “Optimal Multiprocessor Task
Scheduling Using Dominance and Equivalence Relations,”
Computers Operations Research, 21 (4), 1994, pp. 463-475.

[5] E.G. Coffman, Computer and Job-Shop Scheduling Theory,
Wiley, New York, 1976.

[6] R. Correa and A. Ferreira, “On the Effectiveness of Synchronous
Parallel Branch-and-Bound Algorithms,”Parallel Processing
Letters, vol. 5, no. 3, 1995, pp. 375-386.

[7] M.R. Garey and D.S. Johnson,Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman and
Company, 1979.

[8] R.M. Karp and Y. Zhang, “Randomized Parallel Algorithms for
Backtrack Search and Branch-and-Bound Computation,”Journal
of the ACM, vol. 40, no. 3, July 1993, pp. 765-789.

[9] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing,”IEEE Trans.
Computers, vol. C-33, Nov. 1984, pp. 1023-1029.

[10] W.H. Kohler and K. Steiglitz, “Characterization and Theoretical
Comparison of Branch-and-Bound Algorithms for Permutation
Problems,”J. ACM,vol. 21, Jan. 1974, pp. 140-156.

[11] V. Kumar, K. Ramesh, and V.N. Rao, “Parallel Best-First Search
of State-Space Graphs: A Summary of Results,” Proc.7th Int’l
Conf. Art. Intell. (AAAI’88), Aug. 1988, vol. 1, pp. 122-127.

[12] Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs onto
Multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 5, May 1996, pp. 506-521.

[13] —, “Efficient Scheduling of Arbitrary Task Graphs Using A
Parallel Genetic Algorithm,”Journal of Parallel and Distributed
Computing,vol. 47, no. 1, Nov. 1997, pp. 58-77.

[14] Y.-K. Kwok, I. Ahmad, and J. Gu, “FAST: A Low-Complexity
Algorithm for Efficient Scheduling of DAGs on Parallel
Processors,” Proc.25th Int’l Conf. on Parallel Processing, Aug.
1996, vol. II, pp. 150-157.

[15] N.R. Mahapatra and S. Dutt, “Scalable Global and Local Hashing
Strategies for Duplicate Pruning in Parallel A* Graph Search,”
IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 7, July
1997, pp. 738-756.

[16] J. Pearl and J.H. Kim, “Studies in Semi-Admissible Heuristics,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
PAMI-4, no. 4, July 1982, pp. 392-399.

[17] D.R. Smith, “Random Trees and the Analysis of Branch-and-
Bound Procedures,”Journal of the ACM, vol. 31, no. 1, Jan.
1984, pp. 163-188.

[18] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on
an Unbounded Number of Processors,”IEEE Trans. on Parallel
and Distributed Systems,vol. 5, no. 9, Sep. 1994, pp. 951-967.

10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

10

12

14

2 PPEs
4 PPEs
8 PPEs
16 PPEs

10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

10

12

14

2 PPEs
4 PPEs
8 PPEs
16 PPEs

10 12 14 16 18 20 22 24 26 28 30 32
0

2

4

6

8

10

12

14

2 PPEs
4 PPEs
8 PPEs
16 PPEs

(a) CCR = 0.1 (b) CCR = 1.0

(c) CCR = 10.0

Figure 6: Speedups of the parallel A* algorithm using
2, 4, 8, and 16 PPEs on the Intel Paragon for task
graphs with CCR equal to (a) 0.1; (b) 1.0; and (c) 10.0.

Aε∗

Aε∗

10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

CCR = 0.1
CCR = 1.0
CCR = 10.0

10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

CCR = 0.1
CCR = 1.0
CCR = 10.0

10 12 14 16 18 20 22 24 26 28 30 32
0

0.2

0.4

0.6

0.8

1

CCR = 0.1
CCR = 1.0
CCR = 10.0

10 12 14 16 18 20 22 24 26 28 30 32
0

0.2

0.4

0.6

0.8

1

CCR = 0.1
CCR = 1.0
CCR = 10.0

Figure 7: The deviation from optimal schedule length (plots (a) and
(c)) of the schedules generated by the parallel Aε* algorithm using 16
PPEs on the Intel Paragon and the scheduling time ratio (plots (b) and
(d)) of the Aε* algorithm to the A* algorithm withε = 0.2 and 0.5.

(a) 16 PPEs,ε 0.2=

(c) 16 PPEs,ε 0.5= (d) 16 PPEs,ε 0.5=

(b) 16 PPEs,ε 0.2=

Aε∗

Aε∗

