Optimal and Near-Optimal Allocation of Precedence-Constrained Tasks to Parallel
Processors: Defying the High Complexity Using Effective Search Techniques

ISHFAQ AHMAD L AND Y U-KWONG KWOK?

IDepartment of Computer Science
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

parallel Processing Laboratory, School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285, USA

AbstractT addition, in the absence of optimal solutions as a reference, the
Obtaining an optimal schedule for a set of precedence@verage performance deviation of these heuristics is unknown.

constrained tasks with arbitrary costs is a well-known NP- On the other hand, there are many advantages of having
complete problem. However, optimal solutions are desired imptimal schedules: Optimal schedules may be required for
many situations. In this paper we propose search-basegfitical applications in which performance is the primary
algorithms for determining optimal schedules for moderatelyobjective. Also, optimal solutions for a set of benchmarks
large problem sizes. The first algorithm which is based on th@roblems can serve as a reference to assess the performance of
A* search technique uses a computationally efficient cosvarious scheduling heuristics. Moreover, once an optimal
function for guiding the search with reduced complexity. Weschedule for a given problem is determined, it can be re-used
propose a number of state-pruning techniques to reduce the sigg efficient execution of the problem. For obtaining optimal

of the search space. For further lowering the complexity, w&chedules, techniques such as integer programming, state-
parallelize the search. The parallel version is based on reducegace search, and branch-and-bound methods can be used [6],
interprocessor communication and is guided by static angg], [10], [11], [15], [17]. However, the solution space of the
dynamic load-balancing schemes to evenly distribute theyroblem can be very large (for example, to schedule a DAG
search states to the processors. We also propose &ith v nodes tqp processors, more thant possible solutions
approximate algorithm that guarantees a bounded deviatiogxist). Furthermore, the solution space in general does not
from the optimal solution but takes considerably shorter timemaintain a regular structure to allow state pruning. Thus, a need
Based on an extensive experimental evaluation of thexists to explore search-based algorithms with efficient state
algorithms, we conclude that the parallel algorithm with pruning techniques to produce optimal solutions in a short
pruning techniques is an efficient scheme for generatingurnaround time.

optimal solutions for medium to moderately large problems
while the approximate algorithm is a useful alternative if
slightly degraded solutions are acceptable.

Kasahara and Narita [9] pioneered the research in using
branch-and-bound algorithms for multiprocessor scheduling.
However, inter-task communication delays were not

Keywords: Optimal Scheduling, Task Graphs, Parallel considered in the design of their algorithm and such

; * i ; ssumption renders the algorithm not useful in more realistic
'\PAFL(J)l;EfOSg;gS,SOTSBLFa||e| A", State-Space Search TeChmque%odels. Recently, a few other branch-and-bound algorithms

i for solving the scheduling problem have been reported in the
1 Introduction literature [2], [3], [4]. These algorithms also possess one
rawback or the other, making them impracticable except for
: . ; ery special cases. For example, some algorithms can handle
for effectively hamessing the computing power of aonly restricted DAGS, such as those with unit computation cost

mﬁmﬁgg (tai?:%rvegﬁt:gcuﬁons Errheg gptnhge arlg Orrgrwl]) alrncgsertlo"’lnd no communication [2], [4]. Some algorithms use more
/ . : prog Y prop ycomplicated cost functions but their evaluation of a search state
allocating and arranging the execution order of the tasks on tr@

) ionally is expensive [3]. A huge memory requirement
processors such that the precedence constraints among mputationa -
tasks are preserved. If the characteristics of a parallel program, store the search states is also another common problem.
including task processing times, data dependency and Our objective in this paper is to propose optimal scheduling
synchronizations, are knowa priori, the program can be schemes that are fast and can be used for problems with
modeled by a node- and edge-weighl@dcted acyclic graph practical sizes and without simplifying assumptions. We
(DAG). The problem of static scheduling of a DAG is in propose an algorithm based on the A* search technique with an
general NP-complete. Hitherto, the problem can be solved in &ffective yet computationally efficient cost function. The
polynomial-time for only a few highly simplified cases [1], [5], Proposed A* algorithm is also equipped with several highly
[7]. If the simplifying assumptions of these cases are relaxedsffective state-space pruning techniques, which can
the problem becomes NP-hard in the strong sense. Thus, it §amatically reduce the required scheduling time. The
unlikely that the problem in its general form can be solved in #ffectiveness of these pruning techniques are analyzed
polynomial-time, unles® = NP . experimentally. We also propose an efficient parallelization
methodology for our proposed algorithm. Since a parallel
eﬁrogram is executed on multiple processors, it is natural to
tilize the same processors to speedup the scheduling of the
rogram. Indeed, using multiple processors to search for an
ptimal solution not only shortens the computation time but
Iso reduces the memory requirement and allows for a larger
roblem size. Surprisingly, very little amount of work has been
done in parallelizing scheduling algorithms [13]. We also
t. This research was supported by the Hong Kong Research propose a variation of our algorithm which does not provide an
Grants Council under contract number HKUST 734/96E. optimal solution but guarantees a bounded degradation of the

Scheduling a parallel program to the processors is crucia\\?

In view of the intractability of the scheduling problem,
many polynomial-time heuristics are reported to tackle th
problem under more pragmatic situations [12], [18]. While
these heuristics are shown to be effective in experiment
studies, they usually cannot generate optimal solutions, an
there is no guarantee in their performance in general. |

solution quality and is much faster. This algorithm can be
useful if efficiency, but not an optimal solution, is the primary
goal.

The remainder of the paper is organized as follows. Section
2 provides the problem statement. Section 2 contains some of
the previous work on generating optimal solutions for
scheduling. Section 3 presents the proposed serial, parallel, and
approximate algorithms. Section 4 contains the details of our
experimental study as well as the experimental results. The last
section concludes the paper by providing final remarks.

2 Problem Statement

In static scheduling, a parallel program is modeled by DAG
G = (V, E), whereV is a set ofv nodes ancE is a set ofe
directed edges. A node in the DAG represents a task which in
turn is a set of instructions that must be executed sequentially

(b)

Figure 1: (a) An example DAG; (b)
A 3-processor ring target system.

without preemption in the same processor. The weighproposed several state-space search approaches for scheduling
associated with a node, which represents the amount of imgaGs with arbitrary precedence relations. Although the

needed for a processor to execute the task, is called thg@gorithm

computation cosof a noden; and is denoted lwy(r;)
edge in the DAG, denoted bfn;, n;)

assumes arbitrary ~ computation costs,

- AN communication among tasks is also ignored. Chen and Yu [3]
, corresponds to theyroposed a branch-and-bound algorithm for optimal

communication messages and precedence constraints amog§gheduling of arbitrary structured DAG with arbitrary node-

the nodes. The weight associated with an edge, whicBng edge-weights. Their algorithm uses a complicated
represents the amount of time needed to communicate the dafgderestimate cost function to prune the solution space. For
is called thecommunication cosif the edge and is denoted by generating a new state, the function is computed by first

c(m, n;) . Thecommunication-to-computation-ratio (CCBf)

determining all of the complete execution paths extended from

a DAG is defined as its average communication cost divided byhe node to be scheduled. To take into consideration inter-

its average computation cost on a given system.

processor communication, an exhaustive matching of the

The source node of an edge directed to a node is calledexecution paths and the processor graph is then performed to
parent of that node. Likewise, the destination node directeddetermine the minimum communication required. Finally, the
from a node is calledchild of that node. A node with no parent finish time of the last exit node is taken as the value of the

is called arentrynode and a node with no child is calleceait

underestimate cost function. Since the problem considered in

node. The precedence constraints of a DAG dictate that a nodleat study is the closest to our problem, we will compare our
cannot start execution before it gathers all of the messages fro@pproach with Chen and Yu's algorithm.

its parent nodes. The communication cost among two nod

assigned to the same processor is assumed to be zero. If node

n, is scheduledST(nR) anBT(n) denote the start time and

The Proposed Algorithms

In this section, we first formulate the scheduling problem

finish time of n, , respectively. After all nodes have beenin terms of a state-space search, and then define a cost function

scheduled, thechedule lengtlis defined asmax{FT(n)}

used for guiding the search. We also describe a number of

across all nodes. The objective of scheduling is to assign theffective search space pruning techniques to enhance the
nodes to the processors and arrange the execution order of tgiciency of our algorithm. Subsequently, we present the
nodes such that the schedule length is minimized and theroposed parallel optimal scheduling algorithm. Finally an

precedence constraints are preserved.

An example DAG, shown in Figure 1(a), will be used in
our discussion. We assume that the processopsogessing
element¢PESs) in the target system do not share memory so that
communication solely

processors may be heterogeneous or

relies on message-passing. Th@&amework

approximate algorithm for obtaining solutions with a bounded
solution quality is presented.

3.1 State-Space Search Formulation

Formulation of a problem in a state-space search
requires four basic componentsstate

homogeneouspresentation initial state expansion operatorand goal

Heterogeneity of processors means the processors havgyie

different speeds or processing capabilities. However, we
assume every module of a parallel program can be executed on
any processor though the computation time needed on differefiP
processors may be different. The processors are connected by
an interconnection network based on a certain topology. The
topology may be fully-connected or of a particular structure
such as a hypercube or mesh. Although processors may be
heterogeneous, we assume the communication links are
homogeneous. That is, a message is transmitted with the samé
speed on all links. An example processor graph is shown in
Figure 1(b). ‘

The arbitrary DAG scheduling problem is an NP-complete
problem [7]. However, a few attempts for optimal scheduling
of DAGs under more relaxed assumptions have been reported.
Chou and Chung [4] proposed an algorithm for optimal unit-
computation DAG scheduling on multiprocessors. However,
communication among tasks is ignored. Chang and Jiang [2]

In the context of the scheduling problem, we define these

mponents as follows:

State RepresentatioBtate representation describes how a
search state represents a partial solution. A state in the
search space for the scheduling problem is a partial
schedule in which a sub-graph of the DAG is assigned to a
certain number of processors.

Initial State. The initial state is the starting state. In the
case of scheduling, it is an empty partial schedule.
Expansion OperatorAn expansion operator dictates a
scheme for constructing larger partial solutions from an
existing partial solution. For expanding a search-state, the
first node from the list ofeady nodestfie nodes whose
predecessors have been scheduled selected. The
selected node is considered for assignment to each of the
available processors. Each possible assignment generates
one new state. The next node from the list is then selected,

and state expansion continues in a similar fashion. Th HE SERIAL A* SCHEDULING ALGORITHM :

state expansion stops when all of the ready nodes have (1) pyt the initial stated in the OPEN list and set
been considered for assignment. f(®) = 0.

+ Goal StateA goal state is a solution state and hence the (2) Remove from OPEN the search statavith the

terminating point of a search. In the case of the scheduling smallest, and put it on the list CLOSED.

problem, itis a complete schedule. (3) If sis the goal state, a complete and optimal

The above components only outline the search scheme for schedule is found and the algorithm stops;
obtaining a solution. To obtain an optimal solution we need an otherwise, go to the next step. '
“intelligent” algorithm to navigate the search space using (4) Expand the stateby exhaustively matching all the
effective exploration techniques. We use the A* algorithm ready nodes to the processors. Each matching
from the area of artificial intelligence [16] to find an optimal produces a new state s'. Compute
solution for the scheduling problem. In the A* algorithm, a cost f(s') = g(s) +h(s) for each new statg. Put all
function f(s) is attached to each stagn the search-space, the new states in OPEN. Go to step (2).
and the algorithm always chooses the state with the minimum In the worst case, the A* algorithm can require an
value of f(s) for expansion. The cost functidr(s) is a exponential time and a large memory space to determine the

lower-bound estimate of the exact minimum cost of the searchptimal solution. However, with a properly defined admissible
path from the initial state through stateto the goal state, under-estimate functionf(s) , the algorithm is reasonably
denoted byfl{(s) . The functiori(s) is usually defined by efficient on average.

using problem-dependent heuristic information, and is _ ;

considered to beadmissible (or consistent if it satisfies 3.2 State-Space Prunlng_ .

f(s) < f(s) for any states. With an admissible function, the To enhance the search efficiency we propose to augment

A* algorithm guarantees to find an optimal solution. the A* algorithm by incorporating a number of state-space

runing techniques outlined below:
The function f(s) can be decomposed into twop g q

componentsg(s) and(s) such thd(s) = g(s)+h(s) Processor Isomorphismif the target system is composed
whereg(s) is the cost from the initial state to stndh(s) ~ Of homogeneous processors connected by a regular network,
(which is also called theeuristic functiolis the estimated cost 9eneration of equivalent state can be avoided (for a ready node
from states to a goal state. Sincg(s) represents the actuayvith different processors). To identify isomorphic processors,
cost of reaching a state, it i8(s) where the problem-We need the following definitions.
dependent heuristic information is captured. Indd€a) iDefinition 1: The ready time of PE i, denoted By, , is
only an estimate of the actual cost from sttie a goal state, defined as the finish time of the last node scheduled to PE i.
denoted byhl(s) . Arh(s) is called admissible if it satisfies Definition 2: Two processors PE i and PE j are isomorphic if:
h(s) < ht{s) which in turn impliesf (s) < fl{s) . A properly (i) neighbors = neighbors, and
defined and tightly boundel(s) (hendés)) is, therefore,(ii) RT, = RT; = 0.
crucial to enhance the search efficiency. One trivial definition ~ The first condition in Definition 2 requires that the two PEs
of h(s) is to make it zero for ang; the search, however, then have the same node-degree in the processor-graph and have the
degenerates to an exhaustive enumeration of states, incurrisgme set of neighboring PEs. According to the second
an exponential time. condition, two isomorphic PEs have to be empty. This is a
For the DAG schedulng problem, our definionigs) _ s SYOTG EGUTement sweaier condtioncoud S en
aimed at making the computation of the function efficient,
since the time required to expand can be very costly. We firs{t‘Ot have any predecessor and successor scheduled t@&ither
defineg(s) to be the maximum finish time of all the schedule andl_DE). However, verifying this _Neaker condition increases
nodenghat s9(S) = max{FT(n)} Obviouslg(s) is dtheh gmleacompt))le?(]lty of schedﬁllng bebcaushe ivgryﬂr:odes
e : ; : | : scheduled to both processors have to be checked. Thus, we
well-defined in that it essentially represents the length of theassume the stronger condition for the sake of reducing the time-

partial schedule. complexity in state-space pruning.

The function h(s) is defined as. For example, consider the task graph and processor

Qéfr)es:pmmﬁé%“&éﬂgg%i)’ W.h%&nsn)m '?Nﬁlr::% Cn;ndglsonetwork shown in Figure 1. Suppose we want to generate new
be easily computed, represents an estimate o,f the “remainin yearch states by scheduling o the processors. It is obvious

schedule length. Yhat we need to generate only one search state by assigning

to PE 0. Exhaustively matchimg to all three processors is not
Theorem 1:h(s) is admissible. needed since PE 1 and PE 2 are equivalent to PE 0 at this search
Proof: Observe that the functidi(s) is less than or equal tatep.

the time period between the finish time of the exit node, which P ; .

bl J Priority Assignment:\When more than one nodes are ready
'ﬁ(lg)' rlgh%r(lst)hefc;sra;nn@psaggg%d H?ﬁfé{(“g) i'sTarl]durffisV;?blr:eav%r scheduling for generating a new state, not all them need to
(Q.E._D.) " be considered. Instead, only the node with a higher priority will

be examined for scheduling before a node with a lower priority.

It should be noted that the simple definition of the heuristic.l_he rationale is that less important nodes (those with less
function h(s) permits very efficient implementation of the . P

states expansion process which is critical to enhance tHgpact on the final schedule length) should be considered later

efficiency of the A* algorithm. This issue will be illustrated In the search process so as to avoid regenerating some of the

again later when we describe our experimental resultse.‘lready explored states. If more than one node has the same

Furthermore, notice that botty(s) arfds) are monotong?oMty, ties are broken randomly.
functions. Node priorities can be assigned using various attributes.
The algorithm, conforming to the convention, uses tonWO common attributes for assigning priority are tHevel

lists: a list called OPEN for keeping the un-expanded stated!OP 1evel) ando-level(bottom level). The-level of a noden

. : 15 the length of the longest path from an entry noda;to
and a list called CLOSED for keeping the expanded states. (excludingn;). Here, the length of a path is the sum of éll the

node and edge weights along the path. tflegel of n; highly

correlates withn, 'start timewhich is determined aftaw, is search tree contains the node chosen for scheduling and the
scheduled to a processor. Tidevelof a noden; is the length processor to which the node is scheduled. The cost of the state,
of the longest path from nodg to an exit node. FHevelof decomposed into twa@(s) antd(s) , is also shown. The

a node is bounded by the length of thiéical path A critical numbers shown next to some of the states in the search tree
path (CP) of a DAG is a path with the longest length; clearly, andicate the order of state expansion. For this example 26 states
DAG can have more than one CP. Bothtttevelandb-level are generated and 9 states are expanded. The effectiveness of
can be computed i@(e) time using standard graph traversahe proposed A* algorithm is clear when we compare this
procedures like depth-first search. Thdevel of a node search tree size with the size of an exhaustive search tree,
without the edge costs is called thitic b-levelor simply which contains more thad® = 729 states.

static level(sl). Thet-levek, b-levek, andsl's of the DAG

. A2 2 < At the beginning of the search, on is ready for
depicted in Figure 1(a) are shown in Figure 2. scheduling ar?d is £iherefore expanded.lylonly one s)t/ate is
| sl brlevel tlevel generated as a result of this expansion. This is because we used
mo| e 20 the processor isomorphism criterion to avoid generating two
n§ 0 16 3 equivalent states as initially there is no difference between PE
ng | 6 10 4 0, PE 1, and PE 2. This pruning is important since it eliminates
A ISR a large part of the search space by avoiding the expansion of
° states situated at a higher level of the search tree. In the next
Figure 2: Thesl's (static levels)b-levels and step, this newly generated state is then expanded because it is
t-levelsof the DAG shown in Figure 1(a). the only state in the OPEN list. Now four states are generated

. . by schedulingn, andn, to PE O and PE 1. Only two
In the proposed scheduling algorithms, the ready nodes fq§rocessors are considered because PE 1 and PE 2 satisfy the
scheduling while generating a new state are considered in gocessor isomorphism criterion at this stage. Note that we
decreasing order df-level+ t-Ie\{el That is, the node Wlth the could have generated two more states by schednling to PE
largest value ob-level+ t-levelwill be chosen for generating a o and PE 1. However, sincg angl are equivalent nodes by
new state. Definition 3, only one of them is chosen for scheduling. Again
Node Equivalence: By considering the equivalence a large part of the search space is disregarded. In the next step,
relation among the nodes, states leading to the same schediii¢ state representing the schedulingof to PE 0 is chosen for
length can be avoided. By equivalence we mean the two stat€@pansion because of its least cost. Two states are generated by
will lead to schedules with the same schedule length. By usingchedulingn, to PE 0 and PE 1. Again we used the
b-level and t-level we can define the equivalence relation €quivalence relation between, ~ angd to avoid generating
between two nodes in the DAG. two more states. Since the costs of the two newly generated
. . . . states are higher than that of a previously generated state,
(I?)eﬂr;gg(n 3; Iworgg?e?i and; aeguivalentif: namely the state representing the scheduling,of to PE 1, the
(i F\’/V() f]: w(ﬁ_) anr}:i d latter is chosen for expansion. Next three states are generated
(il suc'((n = éu'cc(0). because the empty processor PE 2 is different from PE 1, to
Sotctht condibs () and (i) together mpy e WS, = e o hat rocesorsomarpne carot
leveln;) =tleve(n;), and b-levein;) =b-leve(n;). With this generating three redundant states. One of the newly generated

definition, if two nodes are equivalent, they have the sam Fich h heduli f PE O h h
relationships with the predecessors and successors in that theAR{eS, Which represents the scheduling,of to PE 0, has the
inimum cost, and therefore, is chosen for expansion. As a

incur the same amount of communication with the predecesso ; .
result of this expansion, only two new states are generated

n rs. Furthermor h ill X ! X
and _successors urthermore, they will ~ beeady n§ince n; is the only ready node and processor PE 2 is not

simultaneously and the schedule length will be the same dered d X hi As hiah
matter which node is selected first. Thus, only one of the twgonsidered due to processor isomorphism. As higher costs
tes are generated, the search reverts to expanding the left-

corresponding new states needs to be stored while the other =i

be safely discarded. For example, in the task graph shown fhOSt State on the second level of the search tree (note that we

Figure 1(a),n, anch; are equivalent. This is obvious withd® not count the initial state as one level).

reference to the values di-levek andt-levek shown in The state representing the schedulingipf to PE 1 is not

Figure 2. generated because it has been visited before on the right-most
Upper-Bound Solution Costin this method, we use an branch of the search tree. The search then proceeds in a similar

P fashion and eventually reaching a goal state with a final cost of
r n limin newl ner. . Th . . h
upper bound cod to e ate a newly generated state at14 time units. The path of the search tree representing the

is, if the states has itsg(s) greater thad, we can safely imal scheduling is sh in thick ed 0 th f
discard such a state because it can never lead to an optinfiftimal scheduling is shown in thick edges in the tree o
igure 3. The final optimal schedule is shown in Figure 4.

schedule sincg(s) is a monotonic increasing function. W
use a fast heuristic to determideThe heuristic runsin alinear 3.3 The Parallel A* Algorithm for Scheduling

time and consists of two steps [14]: An efficient parallelization of the above algorithm is non-
(1) Construct a list of tasks ordered in decreasingtrivial and requires several design considerations, which will be
priorities for the DAG. elaborated below. First, to avoid ambiguity, we will hereafter
(2) Schedule the nodes on the list one by one to theall the processors executing the parallel A* algorithm as
processor that allows the earliest start time. physical processing elemenfBPEs). The PPEs should be
As both steps tak®(e) time, the upper bound cost can bgistinguished from theéarget processing elemenfS§PES), to
determined in a linear time. which the DAG is to be scheduled. The PPEs are connected by
To illustrate how the proposed A* algorithm and the state-2 certain network topology; for instance, the PPEs in the Intel
space pruning techniques work, we apply the algorithm td>aragon are connected by a mesh topology.
schedule the example task graph shown in Figure 1(a) to the 3- The initial load distribution phase of the parallel algorithm
processor ring shown in Figure 1(b). The search tree depictingwolves all the PPES in the system. Every PPE initializes the
the scheduling steps is shown in Figure 3. Each state in thepPEN list by expanding the initial empty state. Suppose there

Initial State

5[n, - PEO n,-PE1] 2[n,~PEO] 3[n,-PE1
=5+7 =6+7 f=6+2 f=8+2

ns~ PEO| [ns— PE1|6[n, - PEO
f=8+7 f=6+7 f=9+2

nz - PEO n; - PE1
f=12+7 f=6+7

Goal

Figure 3: The search tree for scheduling the example task graph shown in Figure 1(a) to the 3-processor ring shown in Figure 1(b).

PE0 PE1 PE 2 expanding the states. In the absence of communication among
U]] the PPEs, some of the PPEs may work on more promising parts
2J of the search space while others may expand unnecessary
ng states, which are the ones the serial algorithm would not
2 ikl expand. This will inevitably result in a poor speedup since the
I 3 parallel algorithm would be quite inefficient. To avoid this, the
PPEs must periodically communicate with each other to
ng exchange information about the costs of the nodes in the OPEN
0 = list. In our scheme, each PPE only communicates with its
5 neighboring PPEs to execute the following local load-
) balancing algorithm:
s N ROUND-ROBIN L OAD SHARING :
Figure 4: The optimal schedule generated by the (1) Determine the average number of un-expanded
A* algorithm (schedule length = 14 time units). statesN,,, in all the OPEN lists.

(2) Every PPE which has the number of local un-
areq PPEs in the parallel machine and each PPHE haigyhbor expanded states is more thah,, , distribute the
PPEs; for instance, in the case of the Intel Paragon, the value of surplus states to the deficit PPEs in a round-robin
dis 4. Moreover let there Hestates in OPEN. For distributing fashion. o o
k states t@ PPEs, there are three cases to consider: The duration of the communication period is set tdlbe

. . number of expansions, whefeis initially v/2, thenv/4 ,
Case 1 k> q): Each PPE expands only the initial empty /g "and so on, until it reaches 2 which is the minimum we
state which results ik new states. Every PPE then gets one seq. The periods are exponentially decreasing because at the
state while the extra states are distributed in a round-robin (R eginning of the search, the costs of the search states differ by

manner. a small margin. At such early stages, exploration is more
Case 2(k = q): Each PPE expands the initial empty stateimportant than exploitation and, therefore, the PPEs should
and then gets exactly one state. work independently for a longer period of time. When the

search reaches the later stages of the search tree, the best cost

Case 3(k<q): Each PPE keeps on expanding states i
OPEN starting from the initial empty state until the number o?f)tnaetg tends to have a much smaller cost than the locally best

states in OPEN is greater than or equal.tdhe list OPEN is
then sorted in an increasing order of cost values. Each PPE then To avoid excessive overhead, communication is performed
gets one state from OPEN in an interleaved manner. That is, ti#ly among the neighboring PPEs instead of globally involving
first state in OPEN will go to PE 0, the second state to PRl the PPEs. During communication, the neighboring PPEs
g-—1, the third state to PE 1, the fourth state todRE2,and vote and elect the best cost state, which is then expanded by all
so on. The extra states, if any, will be distributed in a RRthe participating PPEs. The resulting new states then go to each
fashion. Although there is no guarantee that a best state at theighboring PPE in a RR fashion. Once a goal state is found by
initial level of the search tree will lead to a promising state afte@ny one PPE, it is sent to all the PPEs in the system so that the
some expansions, the algorithm tries to distribute the googearch can terminate.

states as evenly as possible among all PPEs. Using the above mentioned partitioning, communication,

Following the distribution, the PPEs start searching by?r;ld load balancing schemes, we outline the algorithm as
ollows.

PARALLEL A* SCHEDULING ALGORITHM : possible .because .of the communication overhead a_nd t.he
(1) Expand the initial (empty) state and generate scomputation load incurred due to the extra processing in

number of new states: generating more states.
(2) Eliminate redundant equivalent states;] * i
(3) Every PPE participates in the initial RR load sharing3'4 The ,ApmeImate A AIgerthm .)

phase; According to Pearlet al [16], if a solution with cost
4 Seti = 2 : bounded by (1¢) of the optimal cost is good enough, the A*
4 ;
5 repeat algorithm can be modified to generate such a solution
®) p

_Tvl]. efficiently. We adopt their notations and call the modified A*
(6) SetT = (J ; alg%rithm, which is in fact an approximate algorithm, as the
AU algorithm. One more list called FOCAL is needed for

gg repe;ltjg‘zs?gcehx’gand the local states: AzD. This list contains a subset of states currently on the
(9) until the number of expanded states is equal to OPEN list. Specifically, we put only the states with

(10) Globally exchange cost information and import f(S)<(1+&)minoper f(S)} . That is, the costs of the
the best cost state: states in FOCAL are no greater than the minimum cost in

(11) Expand the imported best cost state and perfornfPPEN by a factor (1&). Thu#.l only expands states from

RR load sharing of the generated states; FOCAL. Furthermore,A.ll always finds a solution with cost
(12) Seti = ix2 ; not exceeding the optimal cost by more than a factor of (1+).
(13) until a complete schedule is found; This is formalized by the following theorem.

It should be mentioned that in our implementation, eachr, 2: 16l A0 iss -admissibl
PPE only checks for redundant states in its own CLOSED Iisf:,rggfr:eg;, d.e[firfiliorsw Oflls;eocag‘jl_rmtisgt::g.st of the goal stagg
before adding newly generated states. Although a globallys within a factor of (1€) frc’)m the minimum cost,,. al in

maintained CLOSED list can guarantee no states will be eveEoCAL. Sincef is admissible by Theorem 1, we also have
re-visited, the communication and synchronization overhead off <t~ Thus: f,,,<(1+€)f,< (1+8)’f . [16].
maintaining the list in a distributed manner can severely limitQ'g.p.)" goa mn op

the scalability of the algorithm. Furthermore, we believe that

the states pruning techniques incorporated in the algorithm ca% Performance Results

effectively discard any redundant states. In this section we present the performance results of the
When the parallel A* algorithm is applied to schedule theproposed serial and parallel A* algorithms. We first compare

example task araph shown in Figure 1(a) to the 3-process pe results generated by the serial A* algorithm with that of the
ring sphown ingFigure 1(b) usinggz PF(>E)s the segrch treBranch-and-bound algorithm proposed by Chen and Yu [3]. We
! en describe the speedup achieved with the parallel A*

generated, shown in Figure 5, is slightly different. Three morﬁelgorithm implemented on the Intel Paragon, over the proposed

states are generated on the left-most branch of the root in the=: ; .
search treg. This phenomenon can be explained as follow _erlal algorithm. Finally, we also compare the results generated

According to the parallel A* algorithm, both PPEs generate th Iy us_tltr:g the paralleA.l) algorithm with those of the exact
first two levels of the search tree (note that we do not count th@'gorthm.
empty initial state as one level) at the beginning as there are ndt1 \Workload
enOL!gh states for distribution. One PPE (call it PPE O) then gets a5 no widely accepted benchmark graphs exist for the
the first and the fourth states, while the other gets the secon§ac scheduling problem, we believe using random graphs
and the third ones. Initially the period of communication is setyit, diverse parameters is appropriate for testing the
to be 6/2 = 3 . Thus, both PPEs work independently until performance of the algorithms. In our experiments we used
they have expanded 3 states (see Figure 5 for the order of Stﬁﬁee sets of random task graphs, each with a different value of
expansions). CCR (0.1, 1.0, and 10.0). Each set consists of graphs in which
At the time of communication, PPE 0 has fully expandedthe number of nodes vary from 10 to 32 (with an increment of
the right-most branch of the root as shown in Figure 5 (afte2); thus, each set contains 12 graphs. The graphs were
expansions 1 and 2). For the left-most branch, the states at lev@indomly generated as follow. First the computation cost of
3 (corresponding to assignimy ang) are generated. Thugach node in the graph was randomly selected from a uniform
the best local cost of PPE 0 is 11, corresponding to the state gistribution with mean equal to 40. Beginning from the first
assigningn, to PE 0. On the other hand, PPE 1 has expandedde, a random number indicating the number of children was
the branch, which contains the goal state, up to the 4th levelhosen from a uniform distribution with mean equaVfd.0
(corresponding to the states of assignipg to PE 0, 1 and 2Jhus, the connectivity of the graph increases with the size of
Thus, the best local cost of PPE 1 is 13 (corresponding tthe graph. The communication cost of an edge was also
assigningn; to PE 2). randomly selected from a uniform distribution with mean equal
to 40 times the specified value of CCR. Notice that as we were
Iso interested in the minimum TPEs required for each optimal
hedule, we let the algorithms uSg¢v) TPEs. However, in

During the communication, therefore, PPE 0O transfers it
best cost state to PPE 1, which is the state of assigning
PE 0. After the communication, both PPEs expand the be - - -
state. However, as a result of the expansion, two states wi ractice, the algorithms used far less thalPEs during the

: . arch process because redundant states were generated when

costs higher than 13 are generated. Therefore, PPE 0 contin : :
to expand the descendant of the best state. On the other halﬁc% algorithms tried to use a} new TPE.)
PPE 1 reverts to expand its locally best state, the ond.2 Results of the Serial A* Algorithm
corresponding to assignimg ~ to PE 2. This expansion leadsto |n our first experiment, we ran the serial A* algorithm
generating the parent state of the goal state. Consequently, t[]§ing a single processor on the Intel Paragon. We also
goal state is found and PPE 1 broadcasts the result to PPE 0 QHﬁ)Iemented the branch-and-bound algorithm proposed by
the algorithm terminates. Chenet al. on the same platform. We measured the running

We tested this example on the Intel Paragon using twaimes (in seconds) of both alg_orithms. The results are shoyvn in
processors and obtained a speedup of 1.7. Linear speedup is f@ble 1. To assess the effectiveness of the pruning techniques,

Initial State
PPE 0 and
ng - PEO
f=2+10

PPE 1,
Expansion 0

PPE 0, PPE 1, PPE 0,
Expansion 3 Expansion i\ Expansion 1
n, - PEO n, - PE1 ng - PEO n, - PE1
=5+7 =6+7 f=6+2 f=8+2

PPE 0 and
PPE 1, PPE N PPE 0,
Expansion 4 Expansion Expansion 2,

n; - PEO n, -~ PEOQ n, - PEO n - PE1 n, - PE 2
=8+ f=9+7 =5+7 f=11+7 =6+7
Expansio'ni \
ng - PEO ng - PE1 nz - PEO ng - PE2 n3 -~ PEO ng - PE1
f=12+7 =6+7 f=9+7 f=6+7 =8+7 f=11+7
PPE 1,
Expansion 5
ns -~ PEO ns - PE1 ns - PE L PE1 ns — PE2
f=12+2 f=12+2 f=12 + 12 +2 f=12+2

|:| States handled by PPE 0

ng — PE 2 States handled by PPE 1
f=17+0 I:l Y

. . : - n; States handled by both PPEs
Figure 5: Using the parallel A* algorithm, the search tree for scheduling the exal

task graph shown in Figure 1(a) to the 3-processor ring shown in Figure 1(b).

Comparing the data on the second and third column of
Table 1: The running times (in seconds) of the Céeal’s Table 1, we can see that the pruning techniques feduc.e the
branch-and-bound algorithm and the proposed A* algorithm, ~ funning times consistently by about 20%. One plausible
with and without pruning, using a single processor on the Intel ~ €Xplanation is that for general graph structures, the proposed
Paragon for task graphs with CCR equal to 0.1, 1.0, and 10.0. A* algorithm behaves more conservatively in that it does not
prune many search-states by the solution cost bounding

CCR=01 CCR=10 CCR~=10.0 strategy. This is because thiecosts of some search-states
Size [[Chen A%y A* Chen. Atgy A* Chen Ay, A (where some nodes are sub-optimally scheduled) are less than
10 [[202 150 120 289 260 191 367 256 204 the upper bound solution cost.
12 ||458 295 245 558 410 312 703 537 428 .
14 [|1043 675 567 1349 867 682 1873 903 735 4.3 Results of the Parallel A* Algorithm
16 [|2781 1523 1209 3218 2098 1543 3965 2014 1689 ; * ;
1o 15231 3100 265 6345 2568 2363 7604 3731 3028 In the second experiment, we ran the parallel A* algorithm
20 ||13492 7128 5667 16112 9546 6751 17872 9043 7365 on the Intel Paragon using 2, 4, 8, and 16 PPEs. The running
22 |[|29484 15680 12098 32367 15785 13257 34650 19754 15324 times used were compared with the serial A* algorithm. The
24 [|60129 32045 25688 68492 35689 28462 70326 35789 30257 P
26 [|139852 74570 59809 142725 80234 63125 153247 89964 68532 results are presented as speedup plots shown in Figure 6. As
28 || 289092 153473 125687309356 179835 142568324687 180053 152371 can be noticed from the three plots, the speedup of the parallel
30 593412 305673 256892620605 357923 276581687001 347900 302674 A* a|gorithm is moderate|y less than linear, which is very
32 ||— 652480 525788 — 687924 563284 — 701235 598352 :

encouraging. An explanation for the good speedups is that
the running times of the A* algorithm without state-spaceduring the communication phases, only neighboring PPEs
pruning are also shown in the middle column of the table. ~ €xchange information on the locally best states. Furthermore,
. . the Intel Paragon has a very fast communication network which

As can be observed from the values in the first two columngermits the PPEs exchange small messages (i.., the partial

of the table in Table 1 (results for CCR equal to 0.1) thehodes assignment and cost) in a short time compared with the
proposed A* algorithm consistently used much less time tha’brocessing time for states expansion.

the branch-and-bound algorithm, even without the state-space . .
pruning strategies. This is primarily due to the our algorithm's__We also observe that the speedup dropped slightly with
lower time-complexity for computing the cost of each stateincreasing graph sizes. This is because the parallel A
This observation reveals that reducing the complexity of thedlgorithm tends to generate slightly more search states, which
cost function evaluation method itself can reduce ther® notgenerated by the serial algorithm. Another reason is that
algorithm’s running time. The result for a graph size with 32th€ communication overhead becomes more significant for
nodes was not available for the algorithm by Cletnal. larger graph sizes. Comparing the three plots, we find that the
because the running time exceeded the limit. speedup curves become more irregular when the value of CCR
is higher. This is because as CCR gets higher, the parallel

Similar observations can be made about the results with|gorithm uses more diverged search directions which are then
CCR equal to 1.0 and 10.0. There is one major differenceegulated by the inter-PPE communication.

though. The running times spent by both algorithms increased .

with the value of CCR. This is because with a larger value oft.4 Results of the Parallel & Algorithm

CCR, the costs of the intermediate states vary more vigorously In the last experiment, we ran the parakeH algorithm
and, thus, the search has to explore a wider scope in the searcising 16 PPEs on the Intel Paragon with approximation factor
space. € equal to 0.2 and 0.5. The percentage deviations from optimal

+2PPEs
“]|=4PPES
¥8 PPES
*16 PPEs

,,,,,,,

Speedup
Speedup

*16 PPES|

10 12 14 16 18 20 22 24 26 28 30 3
Graph Size
(@) CCR=0.1

10 12 14 16 18 20 22 24 26 28 30 32
Graph Size

(b) CCR=1.0

+2PPEs
“]|=4PPES
¥8 PPES
*16 PPEs

Speedup

10 12 14 16 18 20 22 24 26 28 30 32
Graph Size

(c) CCR =10.0

Figure 6: Speedups of the parallel A* algorithm using
2, 4, 8, and 16 PPEs on the Intel Paragon for task
graphs with CCR equal to (a) 0.1; (b) 1.0; and (c) 10.0.

schedule lengths were measured and the scheduling time ratipg

of the parallelA,l algorithm to the parallel A* algorithm were

noted. The results are plotted in Figure 7, indicating that the
actual percentage deviations from optimal are not as great &3

the approximation factor in both cases. This is particularly tru

for smaller graphs, and is due to the fact that the FOCAL lis

does not exclude the states leading to an optimal goal for
reasonably effective cost function. Regarding the schedulin

time ratios, we find that the computation time saved for each

case is of considerable margin—ranges from 10 to 40% for
equal to 0.2 and from 50 to 70% foequal to 0.5. Thus, the
parallel A,0 algorithm is an attractive choice if slightly inferior
to optimal solutions are acceptable.

1

+CCR=01
-||=CCR=10
vCCR=100

+CCR=01
=CCR=10
4|7 CCR=10.0

Deviation from Optimal
Scheduling Time Ratio

0
10 12 14 16 18 20 22 24 26 28 30 &
Graph Size

(b) 16 PPEsg = 0.2

0
10 12 14 16 18 20 22 24 26 28 30 3
Graph Size:

(a) 16 PPEss = 0.2

-|[*CCR=10.0 <3| CCR=100

Deviation from Optimal

Scheduling Time Ratio

0
10 12 14 16 18 20 22 24 26 28 30 &
Graph Size

(d) 16 PPEsg = 0.5

0
10 12 14 16 18 20 22 24 26 28 30 3
Graph Size

(c) 16 PPEss = 0.5

Figure 7: The deviation from optimal schedule length (plots (a) and
(c)) of the schedules generated by the paralfelbfgorithm using 16

PPEs on the Intel Paragon and the scheduling time ratio (plots (b) and.8]

(d)) of the A* algorithm to the A* algorithm witke = 0.2 and 0.5.

5 Conclusions

In this paper, we have presented algorithms for optimal
static scheduling of an arbitrary DAG to an arbitrary number of
processors. The proposed algorithms are based on the A*
search technique with a computationally efficient cost function
as well as a number of effective state-space pruning techniques.
The serial A* algorithm is found to outperform a previously
proposed branch-and-bound algorithm by using considerably
less time to generate a solution. The parallel A* algorithm,
using a dynamic load balancing strategy, yields a close-to-
linear speedup. Based on experimental evaluation, the parallel
AU algorithm has shown high capability to prune the search-
space; thereby reducing the running time dramatically. The
AU algorithm is scalable and an attractive choice if slightly
inferior to optimal solutions are acceptable.

References

[1] H.H. Aliand H. EI-Rewini, “The Time Complexity of Scheduling
Interval Orders with Communication is PolynomiaRarallel
Processing Lettersvol. 3, no. 1, 1993, pp. 53-58.

P.C. Chang and Y.S. Jiang, “A State-Space Search Approach for
Parallel Processor Scheduling Problems with Arbitrary
Precedence Relations,European Journal of Operational
Research77, 1994, pp. 208-223.

G.-H. Chen and J.-S. Yu, “A Branch-And-Bound-With-
Underestimates Algorithm for the Task Assignment Problem
with Precedence Constraint,” Promt| Conf. Distributed
Computing System&990, pp. 494-501.

H.-C. Chou and C.-P. Chung, “Optimal Multiprocessor Task
Scheduling Using Dominance and Equivalence Relations,”
Computers Operations Reseay@i (4), 1994, pp. 463-475.

E.G. Coffman, Computer and Job-Shop Scheduling Theory
Wiley, New York, 1976.

R. Correa and A. Ferreira, “On the Effectiveness of Synchronous
Parallel Branch-and-Bound AlgorithmsParallel Processing
Letters vol. 5, no. 3, 1995, pp. 375-386.

M.R. Garey and D.S. Johnsd@pmputers and Intractability: A
Guide to the Theory of NP-CompletenedsH. Freeman and
Company, 1979.

R.M. Karp and Y. Zhang, “Randomized Parallel Algorithms for
Backtrack Search and Branch-and-Bound Computatimuinal

of the ACM vol. 40, no. 3, July 1993, pp. 765-789.

H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing/EEE Trans.
Computersvol. C-33, Nov. 1984, pp. 1023-1029.

W.H. Kohler and K. Steiglitz, “Characterization and Theoretical
Comparison of Branch-and-Bound Algorithms for Permutation
Problems,”J. ACM,vol. 21, Jan. 1974, pp. 140-156.

V. Kumar, K. Ramesh, and V.N. Rao, “Parallel Best-First Search
of State-Space Graphs: A Summary of Results,” Prthcint'|
Conf. Art. Intell. (AAAI'88) Aug. 1988, vol. 1, pp. 122-127.

Y.-K. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling:
An Effective Technique for Allocating Task Graphs onto
Multiprocessors,” IEEE Transactions on Parallel and
Distributed Systemspl. 7, no. 5, May 1996, pp. 506-521.

—, “Efficient Scheduling of Arbitrary Task Graphs Using A
Parallel Genetic Algorithm,Journal of Parallel and Distributed
Computingyol. 47, no. 1, Nov. 1997, pp. 58-77.

Y.-K. Kwok, I. Ahmad, and J. Gu, “FAST: A Low-Complexity
Algorithm for Efficient Scheduling of DAGs on Parallel
Processors,” Pro@5th Int’l Conf. on Parallel Processingug.
1996, vol. II, pp. 150-157.

N.R. Mahapatra and S. Dutt, “Scalable Global and Local Hashing
Strategies for Duplicate Pruning in Parallel A* Graph Search,”
IEEE Trans. Parallel and Distributed Systemsl. 8, no. 7, July
1997, pp. 738-756.

J. Pearl and J.H. Kim, “Studies in Semi-Admissible Heuristics,”
IEEE Trans. on Pattern Analysis and Machine Intelligenod.
PAMI-4, no. 4, July 1982, pp. 392-399.

D.R. Smith, “Random Trees and the Analysis of Branch-and-
Bound Procedures,Journal of the ACMyol. 31, no. 1, Jan.
1984, pp. 163-188.

T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on
an Unbounded Number of ProcessofEEE Trans. on Parallel
and Distributed Systemsol. 5, no. 9, Sep. 1994, pp. 951-967.

(2]

(3]

6]

a

(8]

(9]

(10]

[11]

(12]

(13]

[14]

(15]

[16]

[17]

