
Abstract
Push-Pull Messaging is a novel messaging mechanism for
high-speed interprocess communication in a cluster of
symmetric multi-processors (SMP) machines. This
messaging mechanism exploits the parallelism in SMP
nodes by allowing the execution of communication stages
of a messaging event on different processors to achieve
maximum performance. Push-Pull Messaging facilitates
further improvement on communication performance by
employing three optimizing techniques in our design: (1)
Cross-Space Zero Buffer provides a unified buffer
management mechanism to achieve a copy-less
communication for the data transfer among processes
within a SMP node. (2) Address Translation Overhead
Masking removes the address translation overhead from
the critical path in the internode communication. (3)
Push-and-Acknowledge Overlapping overlaps the push
and acknowledge phases to hide the acknowledge latency.
Overall, Push-Pull Messaging effectively utilizes the
system resources and improves the communication speed.
It has been implemented to support high-speed
communication for connecting quad Pentium Pro SMPs
with 100Mbit/s Fast Ethernet.

1. Introduction

A cluster refers to a group of whole computers that
works cooperatively as a single system to provide fast and
efficient computing services. As the cost of
multiprocessor machines decreases, typically those small-
scale SMPs with two to four processors, building a low-
cost Cluster Of Multi-Processors (COMP) is a cost-
effective solution to achieve high computing power.

Effective and efficient clustering requires high-speed
communication between nodes. However, messaging in a
cluster environment is non-trivial since the sender and

* The research was supported by Hong Kong Research Grants

Council grant HKU 7030/97E, HKU 1998/99 Large Equipment grant,
and HKU CRGC grant 10200544.

receiver are usually not synchronized. The asynchronous
nature of message passing leads to additional overheads in
buffering, queuing/de-queuing, and synchronizing
communication threads. Building COMPs brings new
challenges in designing a high-performance
communication system.

In recent years, several research works were conducted
for developing COMPs. COMPaS developed by RWCP
[11], Clumps by UC Berkeley [7], and FMP by Tsinghua
University [9], are the most successful SMP-type
COMPs. All these small-scale COMPs used Myrinet as
the connection network. Thus, most implementations can
achieve low point-to-point communication latency. The
performance, however, mostly bounded by the co-
processor performance, which was poorer than the
performance of the processors in the SMP machines.

To further improve the communication speed in
COMP, we can exploit the unrevealed power of SMP
processors to handle messages. In a COMP, all processors
in a SMP node can process different messages in parallel.
However, they may have to share some common system
resources, such as NICs and messaging buffers. Efficient
messaging mechanism should minimize the locking effect
and reduce the synchronization overhead while multiple
user and kernel processes are accessing the shared
resources, and intelligently use any idle or less loaded
processor in the SMP node to handle the messages.

In this paper, we discuss Push-Pull Messaging and its
optimizing techniques to achieve low latency and high
bandwidth communication between processes in the
COMP environment. The idea of Push-Pull Messaging is
similar to the classical three-phase protocol. In three-
phase protocol, the communication pattern guarantees
buffers along the communication path are not overflowed,
thus reducing the amount of retransmission overhead. The
protocol, however, introduced a significant amount of
overheads during the handshaking phase.

To adopt the good qualities in the protocol while
avoiding the penalty in the handshaking phase, we
introduce Push-Pull Messaging. The messaging process is

Push-Pull Messaging: A High-Performance Communication Mechanism for
Commodity SMP Clusters*

Kwan-Po Wong and Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong
Pokfulam, Hong Kong

kp.wong@graduate.hku.hk, clwang@csis.hku.hk

started by the send party. The send party transmits a
message by first directly “pushing” a portion of the
message to the receive party. The receive party starts the
pull phase after the receive operation has been issued and
the pushed message has arrived. The rest of the message
is sent after an acknowledgement from the receive party is
received by the send party.

This communication pattern likes the three-phase
protocol guarantees buffers to be properly managed.
Unlike the three-phase protocol, Push-Pull Messaging can
reduce the handshaking delay for the short message
transfers. In addition, the pattern makes it possible to
apply various optimizing techniques to remove those
unexpected overheads from the critical path.

We have implemented the Push-Pull Messaging on
quad Pentium Pro SMPs, connected through 100Mbit/s
Fast Ethernet. We have measured the single-trip latency
of 34.9 µs, and the peak bandwidth of 12.1 MB/s for the
internode communication. The single-trip latency between
processes within the same SMP node can be as low as 7.5
µs, and the achievable bandwidth is 350.9 MB/s. We also
developed an early and late receiver tests for examining
the run-time performance of the proposed messaging
mechanism. We found using Fast Ethernet is a low-cost
solution to achieve high-speed communication, other than
using expensive interfaces like Myrinet, ATM, or future
network interface VIA [12].

For the rest of the paper, we first discuss a generic
communication model for COMP in Section 2. In Section
3, we present the basic idea of Push-Pull Messaging. In
Section 4, we discuss the proposed optimizing techniques.
In Section 5, the performance results are shown. Analysis
is presented for both internode and intranode cases.
Finally, the conclusion is given in Section 6.

2. A generic communication model for SMP

The communication between a pair of COMP nodes
can be viewed as a communication pipeline with various
processing stages. A generic communication model with
four pipelining stages is examined below and the related
design issues are discussed.

Stage 1: Transmission thread invocation
User applications initiate the transmission by issuing
a send operation in user space. Then, the data
transmission thread will be invoked to format
outgoing packets. The thread puts the packets to the
outgoing first-in-first-out (FIFO) queue in the data
dump of the network interface card (NIC). In a
COMP, several processors may access the NIC
simultaneously. To ensure the correctness of the
invocation in the multiprocessor environment, the
system has to restrict that only one user or kernel
thread invokes the thread at a time. Efficient
synchronization between concurrent processes in the

COMP node is crucial to the communication
performance [5].

Stage 2: Data pumping
After the submission of packets, the NIC pumps
packets to the physical network through the hardware
on the NIC. The time spent in data pumping mainly
depends on the hardware performance. For example,
it can be affected by the performance of DMA
engines in the host node and the NIC, and the
network switch performance [8].

Stage 3: Reception handler invocation
The data arrives at the receive party and stores in a
designated buffer in the NIC. Interrupt and polling
are two main mechanisms to invoke the handler to
serve the data arrival requests. For COMP nodes,
there are two types of interrupt – asymmetric and
symmetric interrupt. With asymmetric interrupt,
requests are always delivered to one pre-assigned
processor. With symmetric interrupt [4], requests can
be delivered to different processors, where the
selection of processors is governed by an arbitration
scheme. On the other hand, polling is a light-weight
approach to handle incoming packets. Polling routine
watches the change of state variables and starts the
handling routine if necessary. The frequency of
polling determines the reliability of communication
[3,6].

Stage 4: Reception processing
After invoking the reception handler, the handler
processes packets immediately. Reception processing
involves re-assembly of packets, copying between
buffers, de-queuing buffer entries and pending
requests, and synchronization between user and
kernel threads. In a COMP node, there are multiple
active user-level receiving threads. Without careful
coordination between these communication threads
and the reception handler in kernel space, high-speed
communication is impossible.

3. Push-Pull Messaging

The basic idea of Push-Pull Messaging is based on the
communication model discussed in Section 2. Figure 1
illustrates the communication architecture of Push-Pull
Messaging.

As shown in the figure, each send or receive process
has its application-allocated buffer, source buffer and
destination buffer respectively, resided in the user space.
Each process also shares three data structures with the
kernel. The send queue stores the information of pending
send operations. The receive queue stores the information
of pending receive operations. The buffer queue and
pushed buffer stores pending incoming packets where
their destinations in memory are undetermined.

D P
Process

D P
Proc.

 Send Process

Source Buf fer

Recept ion
Handler

User Space Kerne l Space

Buf fer Queue and
Pushed Buf fer

Rece ive Queue

Send Queue

Incoming FIFO Buf fer
Q u e u e

Outgoing FIFO Buf fer
Q u e u e

 Receive Process

Dest inat ion Buffer

Recept ion
Handler

User SpaceKerne l Space

Buf fer Queue and
Pushed Buf fer

Rece ive Queue

Send Queue

Incoming FIFO Buf fer
Q u e u e

Outgoing FIFO Buf fer
Q u e u e

1a 2a

2b.1
2b.2

Ack

3
b1b .1

1b.2

4

Ack

3a

Queues used by o ther
processes

D P
Proc.D P

Proc.

D P
Process

Queues used by o ther
processes

D P
Proc.
D P

Proc.D P
Proc.

In Push-Pull Messaging, the send process first pushes a
part of the message to the receive party as shown in arrow
1a. The pushed message, which contains BTP (Bytes-To-
Push) bytes, is then handled by the reception handler in
the receive party. The rest is registered in the send queue
through arrow 1b.1. Depending on the timing of the
receive operation performed by the receive process, the
pushed message will be stored in the pushed buffer if the
receive operation is not yet started as shown in arrow
2b.1. Otherwise, the message will be copied to the
destination buffer as shown in arrow 2a by the registered
information in the receive queue. Once the receive
operation started, either the reception handler in the
receive party or the receive process itself will pull the rest
of the message from the send process.

The pull phase will be started by sending an
acknowledgement (or “Ack” in the figure), which
implicitly contains request information, through arrow 3a
or arrow 3b. The reception handler in the send party
processes the acknowledgement. If the request is granted,
the send handler will send the requested part of the
message in the send queue through arrow 1b.2 to the
receive party. The reception handler in the receive party
handles the message and directly copies the message to
the destination buffer without buffering in the pushed
buffer through arrow 2a using the registered information
in the receive queue.

The important parameter BTP defines the number of
bytes to be pushed by the sender at the beginning. This
number is chosen based on the speed of the network and
the memory system. The method to obtain this parameter
is explained in Section 5.2.

Memory is a valuable resource for improving the
communication performance. A pinned memory area is
usually used as communication endpoint in either user or
kernel spaces to improve the communication performance
[1,2,11]. Although this approach could achieve low-
latency communication by avoiding the delay in paging
overheads, inefficient use of these pinned memory areas
will limit the communication bandwidth when multiple
communication channels are concurrently connected

between SMP nodes. This leads to poor scalability in
maintaining high-speed communication in COMP.

In Push-Pull Messaging, only a small buffer of BTP
bytes is needed as the pushed buffer. Applications can
dynamically change the size of the pushed buffer to adapt
to the runtime environment.

4. Optimizing techniques

In this section, we discuss optimizing techniques to
further improve the communication performance based on
the Push-Pull Messaging mechanism.

4.1. Exploiting parallelism in COMP nodes

In a COMP node, push and pull phases can be carried
out on different processors to produce maximum
performance. After the push phase, the rest of the
message will be transferred by the pull operation. As the
pull phase is designed to make a direct transfer from the
source buffer to the destination buffer without
intermediate buffering, this phase can be handled by a
lightly loaded processor. It is not necessary to be handled
by the same processor as the one used in applications.

The selection of the processor depends on the
reception handler invocation method. In all of our tests,
we used symmetric interrupt mechanism in our optimized
Push-Pull Messaging. This mechanism allows the pull
phase to be executed on a least-loaded processor. Because
of running the pull phase on another processor, the phase
can be overlapped with the computation or
communication events carrying on other processors. This
overlapping can hide a portion of the communication
latency in the internode test. The latency hiding
mechanisms are discussed in Section 4.3 and 4.4.

In the push phase, we did not choose the lightly loaded
processor to push data. This is because offloading the
processing overhead to other processors could not exploit
the temporal cache locality in the original processor.
Contrarily, it may introduce a large number of cache
misses. Instead of offloading, we execute the push phase
on the processor same as the one serving the send process.

Figure 1. Communication architecture of Push-Pull Messaging

4.2. Cross-space zero buffer

Cross-Space Zero Buffer is a technique to improve the
performance of data copying across different protected
user and kernel spaces. In common message passing
libraries, the syntax of the communication APIs is usually
defined as follows.

send(source_buffer_address, buffer_length)
receive(destination_buffer_address, buffer_length)

The send operation accepts a virtual address of the
source buffer and its length. Like the send operation, the
receive operation requires the virtual address of the
receive buffer and its length. Both buffers are allocated by
applications in the process space. As process spaces are
protected, direct communication cannot be carried out
between two user processes. Typically, the
communication is taken place through a shared memory
facility provided by the kernel. Using shared memory
approach, however, introduces an unavoidable memory
copy operation. The unavoidable copy operation and
implicit synchronization result in extra processing
overheads, thus lengthening the communication latency
and consuming more memory resources.

We attacked the problem by employing a cross-space
zero buffer technique which realizes one-copy data
transfer across process spaces, thus reducing the memory
copy overheads. To realize the one-copy transfer across
process spaces, physical addresses of source and
destination buffers are needed. Although the virtual
addresses of buffers are continuous, the corresponding
physical addresses may be discontinued across pages.
Since buffers may not reside in contiguous memory
space, pairs of physical address and length need to be
obtained before the actual data movement. The physical
address points to the starting address of the multiple
buffer pages. The length denotes the number of
contiguous bytes at the corresponding address. Since this
data structure only contains addresses and length values
but not the actual messages, we call it zero buffer. By
knowing the physical addresses of both buffers, data
transfer from the source buffer to the destination buffer
can be performed by a kernel thread. Therefore, one-copy
data transfer across different process spaces could be
achieved.

In Push-Pull Messaging, zero buffers are not only
employed to improve the performance of intranode
communication between user processes. The buffers are
also implemented to allow direct transfer of data from the
NIC designated buffer to the destination buffer in
internode communication.

4.3. Address translation overhead masking

Address translation overhead masking is a technique
to hide the address translation overhead in the internode

communication. With the implemented zero buffer, the
data transfer from the NIC buffer to the destination buffer
on the same machine can be carried out directly by the
kernel without the user process’s involvement. However,
Push-Pull Messaging needs to perform address translation
before using zero buffers.

The address translation overhead grows linearly as the
size of the message increases. Since the communication
event requires relatively long latency time to complete
than the address translation, we can schedule every
network communication event in the push and pull phases
before the address translation to mask the overhead.

However, not all translations can be safely scheduled.
The translation of the pushed message needs to be done
before initiating the first network transmission. To further
hide this translation overhead, the operation of copying
the pushed message to the NIC’s outgoing buffer has to
be performed in user space. This can be done by direct
thread invocation method, which invokes the transmission
thread in the NIC at the user level without using system
calls. This method is achieved by mapping NIC control
registers and buffers onto the user process space. Thus,
the send process can directly trigger the NIC to start the
send operation. Similar approaches can be found in DP
[8], GAMMA [1] and U-Net [2].

Since all address translations can be safely scheduled,
the translation overhead is removed from the critical path
in communication. Figure 2 illustrates this masking
technique. The address translation, which is shown as
“Find out physical addresses”, is delayed in the send and
receive parties.

4.4. Push-and-acknowledge overlapping

Push-and-Acknowledge is an optimizing technique to
hide the acknowledge latency in the internode case.
Originally in Push-Pull Messaging, sending the
acknowledge message is on the critical path. To further
enhance the performance of Push-Pull Messaging, we
overlap the push and acknowledge phases in order to hide
the long acknowledge latency. This optimization is also
shown in Figure 2.

The pushed BTP bytes, originally used in Push-Pull
Messaging, are split into two parts. The first-pushed
message of BTP(1) bytes, is pushed to the destination at
the beginning. Transmission of the second-pushed
message of BTP(2) bytes, is overlapped with the
transmission of the acknowledge message. The latency of
the acknowledge message is masked. This technique can
also minimize the size of the pushed buffer, where only
the larger values of BTP(1) and BTP(2) is used as the size
of the buffer.

5. Performance results and analysis

The proposed Push-Pull Messaging was implemented
and evaluated on two ALR Revolution 6X6 Intel MP1.4-

complaint SMP computers. Each computer consisted of
four Intel Pentium Pro 200 MHz processors with 256
Mbytes of main memory. Each Intel processor had 8-
Kbyte L1 instruction cache and 8-Kbyte data cache. The
size of the unified L2 cache is 512 Kbytes. The computers
were connected by Fast Ethernet with the peak theoretical
bandwidth of 100 Mbit/s. Each computer attached one D-
Link Fast Ethernet 500TX card with Digital 21140
controller. Linux 2.1.90 was installed on each machine
with symmetric interrupt enabled.

We evaluated the performance of intranode and
internode communication. In each case, the single-trip
latencies of the communication system with different
values of the parameter BTP were measured. In all
benchmark routines, source and destination buffers were
page-aligned for steady performance. The benchmark
routines used hardware time-stamp counters in the Intel
processor, with resolution within 100 ns, to time the
operations. Each test performed one thousand iterations.
Among all timing results, the first and last 10% (in terms
of execution time) were neglected. Only the middle 80%
of the timings was used to calculate the average.

The round-trip latency test measured the ping-pong
time of two communicating processes. The bandwidth test
measured the time to send the specified number of bytes
from one process to another process, plus the time for the
receive process to send back a 4-bytes acknowledgement.
The time measured was then subtracted by the single-trip
latency time for a 4-byte message. Thus, the bandwidth
was calculated as the number of bytes transferred in the
test divided by the calculated time.

5.1. Intranode communication

Push-Pull Messaging with different BTP parameters
was tested for intranode communication. The parameter

varied from zero (Push-Zero) to the whole message length
(Push-All). Push-Pull Messaging used 16 bytes as the
BTP parameter. The single-trip latency is shown in Figure
3. In the intranode communication, when the size of the
message was below 16 bytes, Push-Pull and Push-All
Messaging performed equally well and both outperformed
Push-Zero Messaging. In this case, both send and receive
operations were equally “light”. The receive operation
could not complete the registration of the operation before
the send operation started the actual data transfer.
Therefore, Push-Pull and Push-All needed to utilize the
pushed buffer. However, copying the message twice
between the buffers only costs a small amount of
overhead, as the message was so small. Push-Zero
Messaging tried to avoid copying twice by synchronizing
the send and receive parties. However, the
synchronization resulted in a larger amount of overhead.

From 10 bytes to 3000 bytes, the receive operation
could register the destination buffer information before
the send operation started the actual data transfer. All
mechanisms could proceed without using the pushed
buffer, including Push-All for most of the cases. They all
used zero buffers to minimize the transfer overhead. For
messages shorter than 16 bytes, Push-Pull operated like
Push-Zero. For messages larger than 16 bytes, Push-Pull
returned to its standard operation. This change in
communication pattern allowed Push-Pull to effectively
reduce the number of memory copies in the pull phase.
Push-Zero also synchronized the send and receive parties
before transferring the message. This synchronization and
the change in pattern allowed both messaging
mechanisms utilizing their zero buffers. Therefore both
messaging mechanisms outperformed Push-All. Around
4000 bytes, the latency of Push-All Messaging was
abruptly increased but Push-Pull and Push-Zero kept
increasing steadily. The cause of this sudden performance
lost was the timing of the send and receive operations.
Originally, the receive operation could register the
destination buffer information before the actual data
transfer. However, the address translation overhead grows
with the message size. As the receive operation became

0

20

40

60

80

100

120

10 1000 3000 4000 5000 8192
Size (Bytes)

S
in

g
le

-T
ri

p
 M

e
a

n
 L

a
te

n
cy

 (
u

s)

push-zero

push-pull

push-all

Figure 3. Intranode communication with the
pushed buffer of size 12 Kbytes.

Source
Buffer

Destination
Buffer

data transfer

Send
Party

Receive
Party

Send/Recv
Thread in

NIC

Send/Recv
Thread in

NIC

Execution
Thread in

Processors

Execution
Thread in

Processors

Recv(to_rbuf, len)

Send(buf, len)

push

first-pushed message

second-pushed message

The rest of the message

1. Find out physical
addresses

2. Register send op

1. Find out physical
addresses
2. Register receive
op

Handle message 1
acknowledge

Handle request

C o p y
B Y T E S _ T O _ P U S H (1)
to dest inat ion buf fer

Handle message 2

C o p y
B Y T E S _ T O _ P U S H (2)
to dest inat ion buf fer

Handle message 3
Copy (len -
BYTES_TO_PUSH(1) -
B Y T E S _ T O _ P U S H (2))
to dest inat ion buf fer

Control
Transfer

Critical
Communication

Path

pull

Figure 2. Overhead Masking and Push-and-
Acknowledge Overlapping are used in Push-Pull

Messaging.

“heavier”, Push-All could not always proceed without
using the pushed buffer. The registration could not be
completed before the actual transfer in most of the times.
Consequently, the transfer process utilized the pushed
buffer and could not exploit the zero buffer. The average
performance was further degraded around 3000 to 4000
bytes. Push-All performed poorer than Push-Pull and
Push-Zero for most of the message sizes.

Zero buffer played an important role in minimizing the
latency in all messaging mechanism. However, to
practically exploit the mechanism, a proper
communication pattern should be adopted. Since the
communication pattern of Push-Pull and Push-All
reinforced the execution order of the registration and data
transfer phases, the performance of zero buffer could be
exploited effectively. The zero buffer mechanism not only
shortened the latency of the messaging, but it also
improved the bandwidth of the communication since only
one memory copy is needed. The measured peak
bandwidth of Push-Pull is 350.9 Mbytes/s when sending
around 4000 bytes, almost 66% of the theoretical 533-
Mbyte bus bandwidth. The minimum latency for sending
a 10-byte message is only 7.5 µs.

5.2. Internode communication

We carried out three latency tests to evaluate the
effectiveness of Push-Pull Messaging in the internode
communication. Symmetric interrupt was chosen as the
reception handler invocation method in all tests.

We used 80 bytes and 680 bytes as the value of
BTP(1) and BTP(2) respectively. These parameters were
obtained independently by two separate tests.

The first test measured the latency by varying the
value of BTP(2) but let BTP(1) be zero. This test only
exploited the Push-and-Acknowledge Overlapping
technique. As the value of BTP(2) increased, the latency
of a longer second-pushed message could be hidden
effectively. Thus, the remaining bytes of the message to
be pushed could become shorter. Since the pulled

message was on the critical path in communication, the
overall latency could be shortened as the value of BTP(2)
increased. However, there was an upper limit on the
BTP(2) value since the latency of the overlapped
acknowledge phase was about the single-trip time of a
short message. If the value of BTP(2) was too large, the
overall latency would increase as the reception handler
was unable to serve the second-pushed message and the
pulled message in parallel. In this test, we obtained 680
bytes as the value of BTP(2).

In the second test, we fixed 680 bytes as the value of
BTP(2) and varied the value of BTP(1). We then
measured the overall latency. As the first-pushed message
was on the critical path as shown in Figure 2, the latency
grew with the value of BTP(1) when the BTP(1) value
was larger than a threshold value. However, when the
value was smaller than the threshold value, the latency
would actually decrease. This reduction is caused by
filling the time gap between serving the first and the
second pushed message, which is illustrated as “Handle
message 1” in Figure 2. As the time to handle the message
was a little bit faster than the time to initiate the
transmission of the second-pushed message, the receive
party would have more time to process the first-pushed
message. Therefore sending a longer first-pushed message
would save some bandwidth, thus shortening the overall
latency. In this test, we obtained 80 bytes as the value of
BTP(1).

We compared the raw performance of Push-Pull
Messaging with three optimized Push-Pull Messaging –
Address Translation Overhead Masking (represented by
[∆]), Push-and-Request Overlapping (represented by [×])
and their combined version (represented by [�]) – as
shown in Figure 4.

Before 760 bytes, all four messaging mechanisms
behaved the same since the whole message was pushed to
the receive party directly. After 760 bytes, the messaging
mechanisms with Address Translation Overhead Masking
and Push-and-Acknowledge Overlapping efficiently
masked the overheads at both send and receive parties.
Therefore, both techniques showed significant
improvement over the non-optimized messaging
mechanism. When we compared these two techniques,
Push-and-Acknowledge Overlapping showed larger
improvement. It is because the acknowledge latency,
which is hidden by Push-and-Acknowledge Overlapping,
is larger than the translation overhead saved in Address
Translation Overhead Masking. In the figure, the full
optimization showed the most promising solution, which
integrated both orthogonal techniques.

5.3. Early and late receiver tests

In a cluster environment, the sender and receiver
operate in an asynchronous manner. Extra blocking time
happens when the receive party starts earlier than the send

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400
Size (Bytes)

M
e

a
n

 L
a

te
n

cy
 (

u
s)

no optimization

mask only

overlap only

full optimization

Figure 4. Performance measurement of the
internode communication using three optimizing

techniques.

party; while overheads are always caused by the late start
of the receive process. When we measured the latency of

the internode communication, the ping-pong benchmark
routine was redesigned to simulate a typical compute-
then-communicate parallel program to examine the
runtime performance of Push-Pull Messaging.

As shown in Figure 5, the ping and pong procedures
compute before communicate. Before taking the
measurement, we further synchronized both parties with a
barrier operation, which was a simple ping-pong
operation.

In the test, we varied both computations by inserting
different number of NOP (No Operation) instructions.
Two variations were tested. In the early receiver test
(denoted by the word “early” in Figure 6 left), we forced
the receive operation started before the send operation.
The value of x and y were chosen to be 500,000 and
100,000 respectively.

The other one is called late receiver test (denoted by
the word “late” in Figure 6 right). In this test, we forced
the receive operation always started after the send
operation. The value of x and y were chosen to be 100,000
and 300,000 in this test. In other words, we forced all
messaging mechanisms utilizing the pushed buffer. The
number of NOPs was pre-computed with the
consideration of the barrier synchronization delay since
the ping process always late about a single-trip latency
time spent in waiting the implicit synchronization
message from the pong process.

We carried out the tests for the three messaging
mechanisms, namely Push-Zero, Push-Pull and Push-All,
with full optimization. For the early receiver test, since
the receive operation always finished before the send
operation, the address of the destination buffer was
known to the reception handler at the receive party before
issuing the send operation. Therefore, the reception
handlers in all three messaging mechanisms could copy
the received data directly to the destination buffer using
zero buffers without intermediate buffering. Thus, the size
of the pushed buffer did not significantly affect the
performance for all message lengths.

However, because of the difference in the
communication pattern, Push-Pull and Push-All always
outperformed Push-Zero. It is because the push phase in
Push-Zero was not used to perform any useful data
transfer. This phase was originally used to preserve the
execution order of the registration of the pending receive
operation and the pull communication. This ordering,
however, was already reinforced due to the lightly loaded
receiver and the heavily loaded sender. Therefore, the
push phase in Push-Zero was wasting the communication
bandwidth. Push-Zero was constantly slowed down.

Push-Pull outperformed Push-All in most cases in the
early receiver test because the address translation
overhead was effectively hidden. Push-All could not hide
the overhead as the communication pattern did not allow
doing so. The improvement of Push-Pull over Push-All,
however, was not significant because the translation
overhead was not large and the number of memory copies
in both mechanisms was the same. During the push phase,
Push-All could bypass the intermediate buffer as the
receive operation was completed like Push-Pull.
Therefore, the performance of Push-All was similar to the
performance of Push-Pull.

For the late receiver test, as the computation on the
receive party was on the critical measurement path, the
computation contributed part of the latency. In this test,
the transmission of the pushed messages, if any, were
always pushed to the pushed buffer. Since the receive

3500

3700

3900

4100

4300

4500

4700

4 1024 2048 3072 4096 5120 6144 7168 8192

Size (B ytes)

S
in

g
le

-T
ri

p
 M

e
a

n
 L

a
te

n
c

y
 (

u
s

)

push-zero/early

push-pull/early

push-al l/early

800

1000

1200

1400

1600

1800

2000

4 1024 2048 3072 4096 5120 6144 7168 8192

Size (B ytes)

S
in

g
le

-T
ri

p
 M

e
a

n
 L

a
te

n
c

y
 (

u
s

)

push-zero/late

push-pull/late

push-al l/late
149400

149600

Figure 6. Performance comparison of Push-Pull Messaging for early and late receive tests with the
pushed buffer 4 Kbytes.

ping()
{
 barrier ();
 start = get_timer();
 compute x times;
 pp_send(message);
 compute y times;
 pp_receive(message);
 latency = get_timer() – start;
}

pong()
{
 barrier ();
 compute y times;
 pp_receive(message);
 compute x times;
 pp_send(message);
}

Figure 5. The redesigned ping-pong benchmark
routine for testing early and late receivers

operation was initiated so late, the reception handler in the
receive party could not process the remaining part of the
message without intermediate buffering in the pushed
buffer. Therefore, the handler had to copy the message
one more time before copying to the destination.

Before 3072 bytes, Push-All performed more
satisfactory than Push-Pull and Push-Zero because
whenever the receive operation was started, the pushed
buffer contained the whole message. The message could
then be copied directly to the destination buffer by the
receive process. However in Push-Pull and Push-Zero, the
receive operation always needed to initiate the
transmission of an acknowledgement. Therefore, Push-
Zero performed poorly for all message sizes whereas
Push-Pull introduced long network latency time after
around 800 bytes.

Although Push-All delivered messages faster than
others did, the performance was degraded significantly
after around 3000 bytes. This degradation showed that the
pushed buffer in Push-All was overwhelmed by incoming
packets. Most of the packets were lost during the
communication. With the implemented go-back-n reliable
protocol [10], Push-All could resume the transmission
afterwards but it still could not outperform others. It took
around 150 ms to transfer a 3072-byte message while
Push-Zero took 1303.58 µs and Push-Pull even took only
1227.42 µs.

On the other hand, Push-Pull always outperformed
Push-Zero in this late receiver test. The reason is that
Push-Pull had sent BTP bytes to the receive party during
the push phase. Therefore during the pull phase, shorter
message was delivered.

Overall, the Push-Pull Messaging showed very steady
performance in all cases as compared with Push-All and
Push-Zero. Push-Pull Messaging could flexibly adapt to
the cluster environment with different computation load
and maximize the performance. The peak bandwidth
could be as high as 12.1 Mbytes/s in fully optimized
Push-Pull Messaging.

6. Conclusion

Building COMPs brings new challenges in designing a
high-performance communication system. Our
communication system is able to achieve very low-
latency and high-bandwidth interprocess communication
in the COMP environment. Cross-Space Zero Buffer
mechanism efficiently eliminates all unnecessary memory
copy operations in the intranode communication, where a
peak bandwidth of 350.9 MB/s is achieved. Address
Translation Overhead Masking hides the address
translation overhead, around 12-13 µs for long messages,
from the critical path in the internode communication.
The Push-and-Acknowledge Overlapping can hide the
acknowledge latency from the critical path. Among these
optimizing techniques, Push-and-Acknowledge

Overlapping can reduce most of the overheads in the
internode communication, while Cross-Space Zero Buffer
can significantly improve the communication bandwidth
in the intranode communication.

Currently, the bandwidth of Fast Ethernet is still low
compared with the peripheral bus bandwidth. We believe
the next important step is to design a more general
mechanism to work with multiple network interfaces
using multiple processors.

References
[1] G. Ciaccio. “Optimal Communication Performance on Fast

Ethernet with GAMMA”, Proc. of International Workshop
on Personal Computers based Networks Of Workstations
1998 (PC-NOW '98), Orlando, March 30/April 3, 1998.

[2] T. von Eicken, A. Basu, V. Buch and W. Vogels. “U-Net:
A User-Level Network Interface for Parallel and
Distributed Computing”, Proc. of the 15th ACM
Symposium on Operating Systems Principles (SOSP’95),
December, 1995.

[3] B. Falsafi and D. A. Wood. “Scheduling Communication
on an SMP Node Parallel Machine”, Proc. of the 3rd
International Symposium on High-Performance Computer
Architecture (HPCA-3), 1997, pp. 128-138.

[4] “Intel Architecture Software Developer’s Manual Volume
3: System Programming Guide”, Intel Corporation.

[5] S. S. Lumetta and D. E. Culler. “Managing Concurrent
Access for Shared Memory Active Messages”, Proc. of the
12th International Parallel Processing Symposium
(IPPS’98), 1998, pp. 272-278.

[6] B. H. Lim, P. Heidelberger, P. Pattnaik and M. Snir.
“Message Proxies for Efficient, Protected Communication
on SMP Clusters”, Proc. of the 3rd International
Symposium on High-Performance Computer Architecture
(HPCA-3), 1997, pp. 116-127.

[7] S. S. Lumetta, A. M. Mainwaring and D. E. Culler. "Multi-
Protocol Active Messages on a Cluster of SMP's", Proc. of
Supercomputing '97 High Performance Networking and
Computing (SC97), November, 1997.

[8] C. M. Lee, A. Tam, and C. L. Wang, “Directed Point: An
Efficient Communication Subsystem for Cluster
Computing”, Proc. of the 10th International Conference on
Parallel and Distributed Computing and Systems (IASTED
’98), Las Vegas, 1998.

[9] J. Shen, J. Wang and W. Zheng. “A New Fast Message
Passing Communication System for Multiprocessor
Workstation Clusters”, Tech. Rep., Dept. of Computer
Science and Technology, Tsinghua Univ., China, 1998.

[10] A. S. Tanenbaum. “Computer Networks”, 3rd Edition,
Prentice-Hall International, Inc., 1996, pp. 207-213.

[11] Y. Tanaka, M. Matsua, M. Ando, K. Kubota and M. Sato.
“COMPaS: A Pentium Pro PC-based SMP Cluster and its
Experience”, Proc. of International Workshop on Personal
Computers based Networks Of Workstations 1998 (PC-
NOW '98), Orlando, March 30/April 3, 1998.

[12] “Virtual Interface Architecture Specification. Ver. 1.0”,
Compaq, Intel and Microsoft Corporations, 1997,
http://www.giganet.com/.

