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1 IntrodutionNew parallel omputing systems, suh as the SUN Mirosystems E10000, the SRC-6, andthe SGI Origin 2000, provide a pool of homogeneous proessors, a large shared memory,ustomizable I/O onnetivity, and expandable primary and seondary disk storage support.Eah resoure in these system arhitetures may be saled independently based on ost anduser need. A site whih typially runs CPU intensive jobs may opt for a on�guration whihis fully populated with CPUs but has a redued memory to keep the overall system ostlow. Alternatively, if the expeted job mix ontains a large perentage of I/O and memoryintensive jobs, a large memory on�guration may be purhased with high I/O onnetivityto network or storage devies. Finally, a mixed job set may be best servied by a balanedsystem on�guration. Therefore, given an expeted job mix, a "shared-everything" parallelsystem an be on�gured with the minimal set of resoures needed to ahieve the desiredperformane. The question, then, is how to shedule jobs from the atual job stream onto agiven mahine to ahieve the expeted performane.In lassial job management systems (JMS), a job was submitted along with a set ofresoure requirements whih speify the number of CPUs, amount of memory, disk spae,et., and the expeted time to omplete. The target systems were primarily distributedmemory parallel proessors with a single system resoure - a proessing node onsistingof a CPU, memory, and a network onnetion to I/O devies. Although job alloationresearh literature is �lled with exoti methods of alloating resoures to a job stream [9℄,simple alloation shemes suh as First-Come-First-Serve (FCFS) or FCFS with Bak�ll(FCFS/BF) were used in pratie, providing aeptable levels of performane [8℄. These joballoation shemes were limited in part due to the all-or-nothing hardware partitioning ofthe distributed systems. For example, a memory intensive job must be alloated enoughnodes to meet the jobs memory requirements, but may not need all the CPUs whih wereo-alloated by default. The exess CPUs are not available to other waiting jobs and areessentially wasted. This situation is worse in newer systems where resoures may be alloatedto a job independently from eah other. The greedy FCFS-based job alloation shemesannot take full advantage of this additional exibility.Consider extending the FCFS-based shemes to aount for multiple resoures in a par-tiular physial system on�guration. The pure FCFS job alloation sheme would pak jobsfrom the job queue into the system, in order of their arrival, until some system resoure (C-PUs, memory, disk spae, et.,) was exhausted. The weak point of FCFS is that the next jobin the queue may require more resoures than those left available in the system. In this ase,the job alloation sheme is bloked from sheduling further jobs until suÆient resouresbeome available for this large job. This results potentially in large fragments of resouresbeing under-utilized. The FCFS with bak�ll probabilistially performs better by skippingover jobs whih require a large perentage of a single resoure and �nding smaller jobs whihan make use of the remaining resoures. Still, a single resoure beomes exhausted whileothers remain under-utilized. The FCFS-based algorithms are restrited in seleting jobsbased on their general arrival order.In order for a job alloation sheme to eÆiently utilize the independently alloatableresoures of a parallel proessor, it must be free to selet any job based on mathing all of2
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Figure 1: Job Alloation Sheme Comparisonthe jobs' resoure requirements with the available system resoures. As an example, onsiderthe JMS state depited in �gure 1 (a). The job alloation sheme must map the six jobsin the job queue to a two-resoure system with 16 CPUs and 32 GBytes of memory. TheCPU and memory requirements of eah job are spei�ed. Assume that the order in thejob queue represents the order of arrival and that eah job requires the same amount ofexeution time t. Under these assumptions, a job alloation sheme would selet a set ofjobs for exeution during sheduling epoh ei. The number of epohs required to shedule alljobs in the job queue is used to ompare di�erent job alloation shemes. Figure 1 (b) showsthe jobs alloated to eah sheduling epoh for FCFS, FCFS/BF, and an unonstrained joballoation sheme (UNC). The UNC sheme is free to selet any job in the job queue foralloation during the urrent epoh. Although this is a ontrived example, it illustratesthe basi aws of FCFS-based job alloation shemes and the potential of less restritive joballoation shemes. The FCFS alloation sheme alloates jobs 0 and 1 in the �rst shedulingepoh but then annot alloate job 2, due to the total CPU requirement of the three jobsbeing greater than the system provides (8 + 4 + 7 > 16). FCFS/BF overomes this aw byskipping job 2 and sheduling jobs 4 and 5 in the �rst epoh. However, it then must shedulejobs 2 and 3 in separate epohs as there are no other jobs available to bak�ll in eah ofthese epohs. Finally, the optimal UNC algorithm was smart enough to not shedule jobs 0and 1 in the same epoh. Instead it �nds two job subsets whih exatly math the mahine3



on�guration. As a result, the unrestrited job alloation sheme requires fewer shedulingepohs to omplete all jobs.The UNC alloation sheme tries to selet a subset of jobs whose total resoure require-ments math the physial on�guration of the target parallel system. This an be generalizedto solving a multi-apaity bin-paking problem. The parallel system is represented by a binwith d apaities orresponding the the multiple resoures available in the system. Thejob wait queue is represented by an item list where eah item is desribed by a d-apaityrequirements vetor. A sheduling epoh onsists of paking jobs from the job queue intothe urrently available resoures in the parallel system. The information available in theadditional apaity requirements for eah job is used to guide the sheduling proess.Our ontribution is to provide multi-apaity aware bin-paking algorithms whih makeuse of the information in the additional apaities to guide item seletion in the pakingproess. Past researh in multi-apaity bin-paking has foused on extending the singleapaity bin-paking to deal with the multiple apaities, and on providing performanebounds on these simple algorithms. In general, these naive algorithms did not use theadditional apaity information to guide them so do not sale well with inreasing apaityounts. Our simulation results show that the multi-apaity aware algorithms provide aonsistent performane improvement over the previous naive algorithms. Further simulationresults shows that the multi-apaity aware algorithms an produe a better paking froma small input list, whih supports its use in online job sheduling. The omplete bridgebetween bin-paking and job sheduling under multiple onstraints is the subjet of oururrent work in progress.The remainder of this doument is outlined below. Setion 2 provides a summary ofpast researh in multi-apaity bin-paking algorithms and disusses some of the limitationsof these algorithms. Our new multi-apaity aware bin-paking algorithms are presented inSetion 3, with experimental results and onlusions provided in Setion 4.
2 Related ResearhA variety of past researh has dealt with single and d-apaity bin-paking problem formu-lations and their onnetion to the generalized sheduling problem [1℄, [2℄, [3℄, [5℄. A briefsummary of this work is provided below. In general, the d-apaity bin-paking algorithmsare extensions of the single apaity bin-paking algorithms. However, they do not takeadvantage of the information in the additional apaities, and therefore do not sale wellwith inreasing d.The lassial single apaity bin-paking problem may be stated as follows. We are givena positive bin apaity C and a set (or list) of salar items L = fx1; x2; : : : ; xi; : : : ; xng witheah item xi having an size s(xi) satisfying 0 � s(xi) � C. What is the smallest m suhthat there is a partition L = B1 SB2 S : : :SBm satisfying Pxi2Bj s(xi) � C; 1 � j � m? Biis interpreted as the ontents of a bin of apaity C and the goal is to pak the items of Linto as few bins as possible.The single apaity bin-paking problem formulation has been generalized to support4



d-apaities as follows [10℄, [7℄. The apaity of a ontainer is represented by a d-apaityvetor, ~C = (C1; C2; : : : ; Cj; : : : ; Cd), where Cj; 0 � Cj, represents the kth omponent a-paity. An item is also represented by a d-apaity vetor, ~Xi = (Xi1; Xi2; : : : ; Xij; : : : ; Xid),where Xij; 0 � Xij � Cj, denotes the jth omponent requirement of the ith item. Trivially,Pdj=1Cj > 0 and Pdj=1Xij > 0 8 1 � i < n. An item ~Xi an be paked (or �t) into a bin~Bk, if ~Bk + ~Xi � ~C, or Bkj +Xij � Cj 8 1 � j � d. The items are obtained from an initiallist L, and the total number of items to be paked is denoted by n. Again, the goal is topartition the list L into as few bins ~Bk as possible.The approah to solving the d-apaity bin-paking problem has mainly been to extendthe single apaity bin-paking algorithms to deal with the d-apaity items and bins. TheNext-Fit (NF) algorithm takes the next d-apaity item ~Xi and attempts to plae it in theurrent bin ~Bk. If it does not �t (ie, if Xij + Bkj > Cj for some j) then a new bin, ~Bk+1,is started. Note that no bin ~Bl; 1 � l < k is onsidered as a andidate for item ~Xi. TheFirst-Fit (FF) algorithm removes this restrition by allowing the next item ~Xi to be plaedinto any of the k urrently non-empty bins. If ~Xi will not �t into any of the urrent kbins, then a new bin ~Bk+1 is reated and aepts the item. The Best-Fit adds a further binseletion heuristi to the First-Fit algorithm. Best-Fit plaes the next item into the bin inwhih it leaves the least empty spae. Other variations of these simple algorithms have alsobeen extended to support the d-apaity formulation.Orthogonal to the item-to-bin plaement rules desribed above is the method for pre-proessing the item list before paking. For the single apaity bin-paking problem, sortingthe salar item list in non-inreasing order with respet to the item weights generally improvesthe performane of the paking. First-Fit Dereasing (FFD) �rst sorts the list L in non-inreasing order and the applies the First-Fit paking algorithm. Next-Fit and Best-Fit maybe extended in a similar manner. The impat of pre-sorting the item list may be thoughtof as follows. Consider the First-Fit paking algorithm. When the input list is pre-sorted,the largest items are plaed into the lower-numbered bins. Eah suessive item onsiderseah urrently de�ned bin in the order of their reation until it �nds a bin into whih it will�t. The result of this proess is that the large items plaed in the earlier bins are usuallypaired with the smaller items plaed last. This avoids ases where the many small itemsmay be wasted by �lling ommon bins with other small or medium items, leaving no smallitems to be paired with the larger items. Sorting in the d-apaity formulation has also beenexplored with similar suess as in the single apaity ase. In the d-apaity formulation,however, the items are sorted based on a salar representation of the d omponents. Asimple extension to the single apaity ase is to sort the items based on the sum of their domponents (Maximum Sum). Other methods inlude sorting on the maximum omponent,sum of squares of omponents, produt of omponents, et.. The goal is to somehow apturethe relative size of eah d-apaity item.The performane bounds for d-apaity bin-paking have also been studied [4℄. If A is analgorithm and A(L) gives the number of bins used by that algorithm on the item list L, thende�ne RA � A(L)=OPT (L) as the performane ratio of algorithm A, where OPT (L) givesthe optimal number of bins for the given list. It has been shown that RA � d + 1 for anyreasonable algorithm. Reasonable implies that no two bins may be ombined into a single5



bin. Note that the Next-Fit algorithm is not reasonable whereas the First-Fit and Best-Fitare reasonable. While this bound may seem a bit dismal, simulation studies have shownthat the simple algorithms desribed above perform fairly well over a wide range of input.However, even though these algorithms perform better, on average, than the worst-aseperformane bound might suggest, there is still room for improvement.Consider the First-Fit algorithm. When seleting a bin for plaing the next item, First-Fit essentially ignores the urrent omponent weights of the item and the urrent omponentapaities of the bins. Its only riteria for plaing an item in a bin is that the item �ts. As aresult, a single apaity in a bin may �ll up muh sooner than the other apaities, resultingin a lower overall utilization. This suggests that an improvement may be made seletingitems to pak into a bin based on the urrent relative weights or rankings of it d apaities.For example, if Bkj urrently has the lowest available apaity, then searh for an item ~Xiwhih �ts into ~Bk but whih also has Xij as its smallest omponent weight. This redues thepressure on Bkj, whih may allow additional items to be added to bin ~Bk. This multi-apaityaware approah is the basis for the new algorithm designs presented in Setion 3.
3 The Windowed Multi-Capaity Aware Bin-PakingAlgorithmsThe d-apaity First-Fit(FF) bin-paking algorithm presented in setion 2 looks at eah item~Xi in the list L in order and attempts to plae the item in any of the urrently existing bins~B1 : : : ~Bk. If the item will not �t in any of the existing bins, a new bin ~Bk+1 is reated andthe item is plaed there. An alternate algorithm whih ahieves an idential paking to FFis as follows. Initially, bin ~B1 is reated and the �rst item in the list L, ~X1, is plaed intothis bin. Next, the list L is sanned from beginning to end searhing for the next element ~Xiwhih will �t into bin ~B1. Plae eah suessive ~Xi whih �ts into bin ~B1. When no elementis found whih will �t, then bin ~B2 is reated. Plae the �rst of the remaining elementsof L into ~B2. The proess is repeated until the list L is empty. The primary di�erene isthat eah bin is �lled ompletely before moving on to the next bin. With respet to jobsheduling, this is analogous to paking jobs into a mahine until no more will �t during asingle sheduling epoh. At the start of the sheduling epoh, a bin is reated in whih eahomponent is initialized to reet the amount of the orresponding mahine resoure whihis urrently available. Jobs are then seleted from the job wait queue and paked into themahine until there are not suÆient quantities of resoures to �ll the needs of any of theremaining jobs.The list sanning proess provides the basi algorithm struture for our new multi-apaity aware bin-paking algorithms. The key di�erenes between the new algorithms andthe FF algorithm is the riteria used to selet the next item to be paked into the urrent bin.Whereas FF requires only that the item �ts into the urrent bin, the multi-apaity awarealgorithms will use heuristis to selet items whih attempt to orret a apaity imbalane6



in the urrent bin. A apaity imbalane is de�ned as the ondition Bki < Bkj; 1 � i; j � din the urrent bin ~Bk. Essentially, at least one apaity is fuller than the other apaities.The general notion is that if the apaities are all kept balaned, then more items will like-ly �t into the bin. A simple heuristi algorithm follows from this notion. Consider a binapaity vetor in whih Bkj is the omponent whih is urrently �lled to a lower apaitythan all other omponents. A lowest-apaity aware paking algorithm searhes the list Llooking for an item whih �ts in bin ~Bk and in whih Xij is the largest resoure requirementin ~Xi. Adding item ~Xi to bin ~Bk heuristially lessens the apaity imbalane at omponentBkj. The lowest-apaity aware paking algorithm an be generalized to the ase where thealgorithm looks at the w; 0 � w � d�1 lowest apaities and searhes for an item whih hasthe same w orresponding largest omponent requirements. The parameter w is a windowinto the urrent bin state. This is the general windowed multi-apaity bin-paking heuristi.Similar heuristis have been suessfully applied to the multi-onstraint graph partitioningproblem [6℄. Two variants of this general heuristi appliable to the d-apaity bin-pakingproblem are presented below.Permutation Pak. Permutation Pak (PP) attempts to �nd items in whih the largestw omponents are exatly ordered with respet to the ordering of the orresponding smallestelements in the urrent bin. For example, onsider the ase where d = 5 and the apaitiesof the urrent bin ~Bk are ordered as follows:Bk1 � Bk3 � Bk4 � Bk2 � Bk5The limiting ase is when w = d� 1. In this instane, the algorithm would �rst searh thelist L for an item in whih the omponents were ranked as follows:Xi1 � Xi3 � Xi4 � Xi2 � Xi5whih is exatly opposite the urrent bin state. Adding ~Xi to ~Bk has the e�et of inreasingthe apaity levels of the smaller omponents (Bk1; Bk3 : : :) more than it inreases the apa-ity levels of the larger omponents (Bk2; Bk5; : : :). If no items were found with this relativeranking between their omponents, then the algorithm searhes the list again, relaxing theorderings of the smallest omponents �rst, and working up to the largest omponents. Forexample, the next two item rankings that would be searhed for are:Xi1 � Xi3 � Xi4 � Xi5 � Xi2and Xi1 � Xi3 � Xi2 � Xi4 � Xi5: : : and �nally, Xi5 � Xi2 � Xi4 � Xi3 � Xi1In the limiting ase, the input list is essentially partitioned into d! logial sublists. Thealgorithm searhes eah logial sublist in an attempt to �nd an item whih �ts into theurrent bin. If no item is found in the urrent logial sublist, then the sublist with the7



next best ranking math is searhed, and so on, until all lists have been searhed. Whenall lists are exhausted, a new bin is reated and the algorithm repeats. The drawbak isthat the searh has a time omplexity of O(d!). A simple relaxation to this heuristi is toonsider only w of the d omponents of the bin. In this ase, the input list is partitionedinto d!=(d�w)! sublists. Eah sublist ontains the items with a ommon permutation of thelargest w elements in the urrent bin state. Continuing the previous example, if w = 2, thenthe �rst list to be searhed would ontain items whih have a ranking of the following form:Xi1 � Xi3 � Xi4; Xi2; Xi5The logi behind this relaxation is that the ontribution to adjusting the apaity imbalaneis dominated by the highest relative item omponents and dereases with the smaller om-ponents. Therefore, ignoring the relative rankings of the smaller omponents indues a lowpenalty. The algorithm time omplexity is redued by O(d� w)!, to approximately O(dw).The simulation results provided in Setion 4 show that substantial performane gains areahieved for even small values of w � 2, making this a tratable option.Choose Pak. The Choose Pak (CP) algorithm is a further relaxation of the PP algo-rithm. CP also attempts to math the w smallest bin apaities with items in whih theorresponding w omponents are the largest. The key di�erene is that CP does not enforean ordering between these w omponents. As an example, onsider the ase where w = 2and the same bin state exists as in the previous example. CP would searh for an item inwhih Xi1; Xi3 � Xi4; Xi2; Xi5but would not enfore any partiular ordering between Xi1 and Xi3. This heuristi partitionsthe input list into d!=w!(d�w)! logial sublists thus reduing the time omplexity by w! overPP.An example is provided in Tables 1 and 2 whih further illustrates the di�erenes betweenthe FF, PP, and CP algorithms. Table 1 provides an item list for d = 5. Assoiated witheah item is an item rank whih indiates the relative rank of a omponent with respetto the other omponents in the same item. Item omponents are ranked aording to themaximum so the largest omponent is ranked 0, the seond largest is ranked 1, et.. Table 2shows the items seleted by the FF, PP, and CP algorithms in paking the �rst bin, givenw = 2. All algorithms initially selet the �rst item, ~X1. The bin rank is analogous to theitem rank in that it ranks the relative sizes of eah omponent apaity. However, the binrank uses a minimum ranking so the smallest omponent is ranked 0, the next smallest isranked 1, and so forth. For eah algorithm, Table 2 shows the item seletion sequene, theresultant umulative bin apaities, and the resultant bin ranking. The bin ranking is usedby the PP and CP algorithms to �lter the input list while searhing for the next item. TheFF algorithm ignores the urrent bin ranking.After the seletion of item ~X1, the FF algorithm searhes the list for the next item whihwill �t. It �nds that item ~X2 �ts and selets it next. The next item, ~X3 will not �t as theapaity Bk5 would be exeeded. Therefore, ~X3 is skipped as is ~X4 and ~X5. Item ~X6 �tsinto the bin and ompletely exhausts Bk1 and Bk5 so the algorithm reates a new bin andand selets item ~X3 as the �rst item. 8



Table 1: Example Item Input List with Item Rankings; d = 5;Item# Capaities Item Rank (Max)Xi1 Xi2 Xi3 Xi4 Xi5 r1 r2 r3 r4 r51 0.1 0.3 0.2 0.5 0.4 4 2 3 0 12 0.4 0.1 0.1 0.2 0.5 1 3 4 2 03 0.1 0.3 0.2 0.1 0.4 3 1 2 4 04 0.4 0.1 0.6 0.2 0.3 1 4 0 3 25 0.5 0.1 0.3 0.2 0.3 0 4 1 3 26 0.5 0.3 0.2 0.1 0.1 0 1 2 3 47 0.1 0.5 0.3 0.1 0.2 3 0 1 4 28 0.4 0.1 0.2 0.1 0.1 0 2 1 3 49 0.3 0.1 0.1 0.2 0.1 0 2 3 1 410 0.1 0.2 0.3 0.5 0.4 4 3 2 0 1

9



Table 2: Example Item Seletion for FF, BP(w = 2) and CP(w = 2); d = 5;Algo. Item# Item Capaities Cum. Bin Capaities Bin Rank (Min)Xi1 Xi2 Xi3 Xi4 Xi5 Bk1 Bk2 Bk3 Bk4 Bk5 r1 r2 r3 r4 r5FF 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 2 1 4 32 0.4 0.1 0.1 0.2 0.5 0.5 0.4 0.3 0.7 0.9 2 1 0 3 46 0.5 0.3 0.2 0.1 0.1 1.0 0.7 0.5 0.8 1.0 3 1 0 2 4Total Bin Weight = 4.00PP 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 * 1 * *5 0.5 0.1 0.3 0.2 0.3 0.6 0.4 0.5 0.7 0.7 * 0 1 * *7 0.1 0.5 0.3 0.1 0.2 0.7 0.9 0.8 0.8 0.9 0 * 1 * *9 0.3 0.1 0.1 0.2 0.1 1.0 1.0 0.9 1.0 1.0 1 * 0 * *Total Bin Weight = 4.90CP 1 0.1 0.3 0.2 0.5 0.4 0.1 0.3 0.2 0.5 0.4 0 * 0 * *4 0.4 0.1 0.6 0.2 0.3 0.5 0.4 0.8 0.7 0.7 0 0 * * *6 0.5 0.3 0.2 0.1 0.1 1.0 0.7 1.0 0.8 0.8 * 0 * 0 *Total Bin Weight = 4.30
10



The PP algorithm revises the bin rank as eah item is seleted and uses it to guidethe seletion of the next item. After the seletion of item ~X1, the bin rank is (0; �; 1; �; �)indiating that the smallest apaity is Bk1 and the next smallest apaity is Bk3. The�'s represent don't ares to the PP algorithm (remember that on the w largest omponentapaities are of interest. PP then attempts to �nd an item in whih the Xi1 is the largestomponent and Xi3 is the next largest. This item will have a ranking idential to the urrentbin ranking, due to the fat that item ranks are based on the maximum and bin ranks arebased on the minimum omponents. Therefore, PP skips all items in the input list whihare not ranked the same as the bin ranking for the �rst w omponents. Item ~X5 mathesthe bin ranking and �ts into the bin so it is seleted next. After the addition of item ~X5,the new bin ranking is (�; 0; 1; �; �). Item ~X7 is the �rst item in the list whih mathes thisranking and �ts within the spae remaining in the bin, so it is seleted next. This results ina bin ranking of (0; �; 1; �; �). Item ~X8 mathes this ranking but does not �t in the bin asit would exeed apaity Bk1. No other item whih mathes this bin ranking will �t eitherso PP searhes for items whih math the next best bin ranking of (0; �; �; 1; �). Item ~X9mathes this ranking and �ts, so it is seleted and results in �lling all apaities in ~Bk exeptBk3, so PP reates a new bin and ontinues by seleting item ~X2 as the �rst item.The CP algorithm works muh the same way as the PP algorithm exept that the wsmallest bin items are all ranked equally. When omparing a bin rank to an item rank, thew largest item omponents are all treated equally as well. After the seletion of item ~X1, CPsearhes for an item in whih Xi1 and Xi3. To reiterate, the ordering between Xi1 and Xi3is not onsidered. Therefore, CP selets item ~X4 and adds it to the bin. Note that this itemwas skipped by PP beause it did not have the exat ordering of Xi1 � Xi3. However, sineCP has relaxed this requirement, ~X3 is an aeptable item andidate. Next, CP selets item~X6 whih sueeds in �lling bin apaities Bk1 and Bk3. CP reates a new bin and seletsitem ~X2 as the �rst item.Note that other multi-apaity aware heuristis may be employed whih essentially lookat the relative state or ordering of the individual bin apaities and searh for items whihexhibit ompatible relative state whih ould be used to orret a apaity load imbalane.For example, suppose that Bkl and Bkm represent the largest and smallest omponent a-paities, respetively, in the urrent bin. One heuristi would be to searh for an item inwhih Xil and Xim are the smallest and largest omponent (and that ~Xi �ts, naturally). Amore relaxed heuristi may only require that Xil < Xim.4 Experimental ResultsThe following subsetions present simulation results for the Permutation Pak (PP) andChoose Pak (CP) bin-paking algorithms. The performane measure of interest is the num-ber of bins required to pak all the items in the list. The results are reported as normalizedto the First-Fit (FF) algorithm. Note that PP(w = 0) and CP(w = 0) are idential to theFF algorithm where w is the number (or window) of apaity omponents used to guide thepaking proess. In the following disussion, FF refers to PP or CP with w = 0 and PP and11



CP imply that w � 1.Both the PP and CP algorithms were tested with d, the apaity ount, ranging from 1to 32 and w, the apaity window, ranging from 0 to 4. Results are reported for d = 8 andthe full range of w tested. The results for the other test ases had similar harateristis asthose provided below so are omitted here for the sake of brevity.The input list of n = 32768 items is generated as follows. For item ~Xk 1 � k � n, the lthapaity omponent, Xkl 1 � l � d, was drawn from the lth independent random numbergenerator. The d independent random number generators eah followed an exponentialdistribution with a mean of X. The mean weight, X, was varied from 0.05 to 0.35 whihprovides substantial range of test input ases for the paking algorithms. The most profounde�et of the average weight is the resultant average number of items whih an be pakedinto a bin. At the low end of 0.05, the paking algorithms pak between 15 and 25 items perbin, with an average of approximately 1:0=(X), or 20. As the average weight inreases, theaverage number of items paked drops due to the items being larger but also due to therebeing fewer small items to �ll in the gaps in the bins. At an average weight of 0.35, only2 or 3 items an be paked into a bin on the average no matter whih paking algorithm isused. Above this average weight, we found the results to be approximately the same withall the algorithms so they are omitted here for the sake of brevity.4.1 Performane of the Permutation and Choose Pak Algorithmson Unsorted ListsThe PP and CP algorithms were implemented and simulated on the syntheti test asesas desribed above. Figure 2 shows the results for the PP algorithm with similar resultsprovided for CP in �gure 3. These �gures plot the bin requirement for the PP and CPalgorithms, respetively, normalized to the FF algorithm versus the average apaity weight,X. The data represents the ratio of the FF bin requirement to the PP or CP bin requirement.Therefore, a value greater than 1:0 represents a performane gain.Consider the results for the PP algorithm shown in �gure 2. For the ase where w � 1 andthe average weight X is low, the PP algorithm provides approximately a 10% improvementover the lassial FF algorithm. The performane di�erene diminishes as the average weightX grows, due to granularity issues. The larger omponent weights result in a less eÆientpaking of any single apaity in a bin, and is independent of d. Basially there are notenough small items to pair with the many large items. As w inreases above 1 the additionalperformane gains also diminish. This is due to three di�erent e�ets. First, the inuene ofthe largest weight is most important in ahieving a balaned apaity state. As w inreases,the impat to the apaity balaning by the lesser weighted omponents is also smaller. Theseond reason for the diminishing performane at higher w is a reetion of the stati and�nite population of the input list. Essentially, there are a �xed and limited number of smallitems in the input list. An item, ~Xk is onsidered small if the individual omponents aregenerally muh smaller than the average item weight, X. Small items are valuable for �lling12



in the raks of a bin whih has already has several items. Initially, there is a large sampleof items to selet from, and PP has a lot of suess in paking the �rst few bins. In doing so,however, PP essentially depletes the input list of small items. Simulations have shown thatas PP progresses, the average item size in the input list inreases more rapidly than withFF. Additionally, as the bin number grows, the average number of items paked into a bindereases more rapidly than with FF. The overall result is that, for large w, the performanegains from intelligent item seletion are o�set by the performane losses due to depletingthe supply of small items early in the paking proess. In fat, for large average weights,FF performs slightly better than PP as this e�et is ampli�ed by the larger average itemsizes initially in the input list. This is evident in �gure 2 for w = 4 and X > 0:25. Thissituation is exaerbated by pre-sorting the input item list and will be explored further inSetion 4.2. Note that this situation is primarily due to the �nite population of the input listused for bin-paking experiments. When PP is applied to job sheduling, the input streamis onstantly re-newed so the impat of small item depletion does not beome a global issue.This will be explored further in Setion 4.4. The third reason for a diminished performanewith inreasing w has to do with the way PP splits up the input list into logial sublists.Reall that PP �lters the input list into logial sublists, searhing for an item with a spei�ranking among its omponent weights. If it does not �nd an item with this spei� ranking,it then adjusts its searh to the next best ranking and repeats its searh on that logialsublist. As w gets larger, the number of logial lists grows as d!=(d�w!). Note that eah listrepresents a spei� permutation of the w apaity rankings. The windowed multi-apaityaware heuristi is suessful only if it is able to �nd an item with the proper omponentrankings among the d!=(d � w)! lists. For this to be true, d!=(d � w)! must be small withrespet to n. As PP paks the �rst few bins, this relationship is true (for our experiments).However, as items are removed from the input list, n is e�etively redued and the probabilitythat the PP algorithm will �nd the properly ranked item diminishes. The net e�et is thatthe �rst few bins are paked very well but the average improvement over all the bins is less.Now onsider the performane of the CP algorithm depited in �gure 3. The �rst thing tonote is that the general performane of CP is nearly as good or better than PP even thoughit uses a relaxed seletion method. The CP method is not as strit as the PP method inseleting the next item for paking, therefore, it does not ahieve the high eÆieny bin-paking on the �rst few bins as does the PP method. However, it does not su�er as bad fromthe small item depletion syndrome seen in the PP algorithm at the higher w values. This isseen by omparing the performane results between �gures 2 and 3 for the ase w = 4 andX > 0:25. Whereas the performane of PP gets worse than FF in �gure 2, CP maintains aperformane advantage over FF as shown in �gure 3.
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Figure 2: Performane Gains for Permutation Pak (d=8; No Pre-sorting)

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 3: Performane Gains for Choose Pak (d=8; No Pre-sorting)14



4.2 E�ets of Pre-sorting the Input List on the Performane ofPP and CPPre-sorting the input list in a non-inreasing order of item size has been used to improve theperformane of the single apaity bin-paking algorithms. Our simulations show that thisgeneral trend ontinues for the d-apaity aware algorithms. For this experiment, the inputlist was sorted using a maximum sum method to assign a salar key ( ~Xi(key) = Pdj=1Xij)to an item. The PP and CP algorithms were then applied to the sorted list. The results forthe PP and CP algorithms are depited in �gures 4 and 5 respetively.The results depited for PP in �gure 4 show approximately an 8% performane gain atlow average omponent weights for w � 1 as ompared to the FF applied to the same pre-sorted list. Note that this performane gain is less than the approximately 10% seen for thease when the input list is unsorted as depited in �gure 2. The reasons for this diminishedreturn are twofold. First, sine the PP algorithm is more seletive in piking the next itemto pak into a bin, it searhes deeper into the list to �nd an item to adjust the apaityimbalane. Alternatively, FF �nds the next item whih �ts. Sine the list is pre-sorted, theitem found by PP is no greater than the item found by FF. After the initial item seletion,PP tends to �ll the urrent bin with smaller items resulting in depleting the small items inthe �nite list population. This ontributes to a overall diminished performane as the largeritems are left for the last bins, with no smaller items to pair with them. This e�et wasalso noted for PP on the unsorted list for w = 4 and average weight X > 0:25. Pre-sortingthe list merely ampli�es this phenomena. The seond reason for a diminished performanewith inreasing w has to do with the way PP splits up the input list into logial sublists.The globally sorted input list is fragmented into d!=(d�w!) loally sorted sublists whih aresearhed in an order whih is dependent on the apaity ranking of the urrent bin. The netresult is that as w inreases (with with respet to onstant input list size), the atual searhorder of the items in the input list beomes globally random so the performane gain due topre-sorting is nulli�ed.The CP algorithm relaxes its searh riteria with respet to PP. As shown in �gure 5,this results in slightly higher performane gains over FF as ompared to gains ahievedby PP for w > 1. Spei�ally, CP maintains a performane advantage at high averageomponent weights and higher w. This is due to the fat that CP partitions its inputlist into d!=(w!(d � w!)) logial sublists (a fator of w! fewer than PP) so the e�ets offragmentation are redued. As a result, CP realizes a higher bene�t from the pre-sortingthan does PP.
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4.3 Adaptive Pak: An Adaptive Multi-Capaity Aware PakingAlgorithmThe results presented in Setions 4.1 and 4.2 may be generalized as follows. For lower averageomponent weights, the PP and CP algorithms perform better with a higher w. At higheraverage weights, they perform better with a lower w. This is a reetion of the ability ofthe PP and CP algorithms to aggressively pak the �rst few bins with the smaller itemsin the �nite population list, leaving the larger grained items for paking last. The highpaking eÆieny on the �rst bins is o�set by the lower eÆieny on the later bins. In viewof these results, an adaptive paking algorithm ould be devised whih modi�es the window,w, based on the probability of �nding smaller items among those remaining in the inputlist. As this probability gets higher, a more aggressive w (larger) ould be used to pakthe abundant smaller items into bins to a higher apaity. Conversely, as the probabilitygets lower, a less aggressive w (smaller) ould be used to pak the larger items greedily asdone by FF. Adaptive Pak (AP) adjusts w based on the average omponent weight of theitems remaining in the input list after eah bin is paked. The performane results for APare shown in Figures 6 and 7 for unsorted and pre-sorted input lists for a range of apaityounts 2 � d � 32.In general, the AP performs as good or better than the PP and CP algorithms over therange of input simulated. Spei�ally, the degradation seen in the PP and CP algorithmsat high average weights, X, and high windows, w, is avoided by the AP algorithm. Also,the performane gains for eah d value are as good or better than the PP or CP algorithmsusing any single w value. This may be seen by omparing the data for d = 8 in Figures 6 and7 with the data in Figures 2 and 4. In Figure 6, for d = 8 and X = 0:15, the performanegain of AP over FF is approximately 8% while for the same ase in Figure 2, the gain isapproximately 7%. A similar omparison between Figures 7 and 4 shows that AP maintainsthe performane seen by PP(w = 4).4.4 A First Step Towards Job Sheduling under Multiple Con-straintsBin-paking is basially an abstration of a restrited bath proessing senario in whih allthe jobs arrive before proessing begins and all jobs have the same exeution time. The goalis to proess the jobs as fast as possible. De�ne Ai as the arrival time and Ti as the expetedexeution time of job i. In the bath proessing senario, Ai = 0, and Ti = T for someonstant T . The results of Setions 4.1 and 4.2 suggest that the windowed multi-apaityaware bin-paking algorithms may be used as the basis for a sheduling algorithm. Basially,eah bin orresponds to a sheduling epoh on the system resoures, and the shedulingalgorithm must pak jobs onto the system in an order suh that it all jobs are sheduledusing the fewest epohs. The Adaptive Pak algorithm with a pre-sorted job queue should16
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Figure 4: Performane Gains for Permutation Pak (d=8; Maximum Sum Pre-Sorting)

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0.05 0.1 0.15 0.2 0.25 0.3 0.35

 N
or

m
al

iz
ed

 B
in

 R
eq

ui
re

m
en

t

 Average Weight

(w=0)
(w=1)
(w=2)
(w=3)
(w=4)

Figure 5: Performane Gains for Choose Pak (d=8; Maximum Sum Pre-Sorting)17
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Figure 6: Performane Gains for Adaptive Pak (No Pre-Sorting)
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Figure 7: Performane Gains for Adaptive Pak (Maximum Sum Pre-Sorting)18



give good results as it provides the best performane in ahieving the lowest number of bins.The next level of omplexity is to remove the restrition on Ai to allow the ontinuousarrival of new jobs. Now the performane of the sheduling algorithm depends on the pakingeÆieny of only the �rst bin or epoh from a muh smaller item list or job queue. ThePP and CP algorithms work even better under this dynami item list population senario.In the stati input list senario, the PP and CP are able to pak a lot of smaller itemsinto the �rst few bins. However, this depleted the supply of small items on the earlier binsresulting in a less eÆient paking of the remaining items due to their large granularity.In the dynami item list senario, eah bin is paked from essentially a new list as itemsare replaed as soon as items are paked. Also, sine the PP and CP algorithms seletthe �rst element of the input list before initiating apaity balaning, the waiting time ofany item is bounded by the number of items ahead of it in the queue. Figure 8 shows theperformane of the PP algorithm on �rst-bin paking eÆieny for d = 8. In this simulation,the number of items in the item list is initialized to 4 times the expeted number of itemswhih would optimally �t into a bin. Spei�ally, n = 4:0 � d1:0=Xe. Note that this nis muh smaller than the n used for the bin-paking experiments. This reet the smallersize of job wait queues expeted to be seen by the sheduler. The simulation loops betweenpaking an empty bin and replaing the items drawn from the list. In this manner, thenumber of items that a paking algorithm starts with is always the same. The d-apaityitems are generated as in previous simulations. As shown in �gure 8, for small averageweights X and w > 0, the PP algorithm ahieves a 13% to 15% performane gain over theFF algorithm. Compare this performane gain to the 11% gain seen by the AP algorithm inFigure 6. The multi-apaity aware algorithms an pak any single bin muh better than thenaive FF algorithm, when starting from the same input list. For higher w and X, maintainsits performane gain over FF. The results for other d were simulated and showed similartrends. In general, the paking eÆieny of the PP algorithm inreases with inreasing w.The diminished inreases in performane for higher w, while positive and �nite, are dueprimarily to the lower impat of onsidering the smaller item omponents when performingapaity balaning. Additionally, for higher w, the probability of �nding an item whihbest mathes the urrent bin apaity imbalane is dereased due to the relatively smallpopulation from whih to hoose (n �!d=(d � w)!). Reall that the searh performed byPP(w = i) is a re�nement of the searh used by PP(w = j) for i > j. If PP(w = i) annot�nd the exat item it is looking for, then it should heuristially �nd the item that PP(w = j)would have found. Therefore, inreasing w should heuristially do no worse than for lowerw at the ost of higher time omplexity. Essentially, when (d!=(d � w)! � n), PP(w = i)ollapses to PP(w = j).As the average weight inreases, the item granularity issues diminish the paking eÆienyfor any paking algorithm. The relaxed seletion riteria used by the CP method results inlittle performane gains for w > 1 so those results are omitted from the graph for the sakeof larity. However, the CP algorithm still has a muh lower time omplexity for higher wthan does the PP algorithm, so a trade is available.The �nal level of omplexity in bridging the gap from bin-paking to job sheduling isto remove the exeution time restrition and allow eah item to have a di�erent exeutiontime. This is the subjet of our urrent work in progress.19
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4.5 Summary of Experimental ResultsThe experimental results for the PP and CP algorithms are summarized below.1. The windowed multi-apaity aware bin-paking algorithms, PP and CP, provide aonsistent performane inrease over the lassial FF algorithm for items with smalleraverage weights and omparable performane for items with higher average weights inan unsorted list.2. A large perentage of the performane gains are ahieved by a small window w � 2whih redues the time omplexity of the general windowed heuristi.3. Pre-sorting the input list provides performane gains for all the tested bin-pakingalgorithms but the gains are less for the multi-apaity aware algorithms using highwindow values on lists with high average omponent weights due to list fragmentationand small item depletion.4. An adaptive algorithm, AP, was devised whih maximizes the performane gains byadapting the apaity window aording to the average weight of the items remainingin the input list. AP performs as good or better than the PP and CP algorithmsand does not su�er from the same degradation seen by PP and CP at high averageomponent weights.5. The �rst-bin paking eÆieny of the PP algorithms provides substantial performaneover the FF algorithm whih provides a proof-of-onept that the windowed multi-apaity aware heuristi may be applied to the generalized online multi-onstraint jobsheduling problem.In general the experimental results show that the multi-apaity aware heuristis, whihstrive to orret loal apaity imbalanes, provides onsistent performane gains over thelassial apaity oblivious bin-paking algorithms. Additionally, a large perentage of theperformane gains ome from small w whih greatly redues the running time omplexity ofthe algorithms. Further, the heuristi produes superior �rst-bin paking eÆienies from asmall population list whih shows the appliability of the heuristi to job sheduling undermultiple onstraints.As a �nal note, the simulation results presented here are in some respet an artifat ofthe syntheti input data. Spei�ally, the relationship between the d omponents in a givenitem was unorrelated as they were drawn from independent random number streams. Ina job sheduling senario, the relationships between the omponents of a jobs requirementvetor may be quite orrelated. In one ase, if the items are proportional, (e.g. large memoryimplies large CPU requirements), then the dimension of the paking problem is e�etivelyredued from a 2-apaity to a 1-apaity. In this ase the multi-apaity aware algorithmswould provide a smaller performane gain with respet to the naive paking algorithms. If,however, the requirement omponents are inversely related, (e.g. Large memory requirementwith small CPU and medium I/O requirements), then the performane gains seen by themulti-apaity aware algorithms should be substantial. Job stream haraterization is partof our on-going work in applying the multi-apaity aware heuristis to the general problemof job sheduling under multiple onstraints.21
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