Link Contention-Constrained Scheduling and Mapping of
Tasks and Messages to a Network of Heterogeneous Processors

Y U-KWONG Kwok! AND ISHFAQ AHMAD?

1Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

2Department of Computer Science
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Email: ykwok@eee.hku.hk, iahmad@cs.ust.hk

Abstract™—In this paper, we consider the problem of processors such that the overall completion time of the
scheduling and mapping precedence-constrained taskspplication, called theschedule lengthis minimized

to a network of heterogeneous processors. In suckvhile the precedence constraints among the tasks are
systems, processors are usually physically distributedpreserved. Since this scheduling problem is NP-
implying that the communication cost is considerably complete [4], [6], it is commonly tackled by using
higher than in tightly coupled multiprocessors. heuristics [7]. While each heuristic may perform well
Therefore, scheduling and mapping algorithms for suchunder different circumstances, there are three important
systems must schedule the tasks as well as theriteria that must be considered for evaluating a
communication traffic by treating both the processorsheuristic: (1) Does the heuristic make realistic
and communication links as important resources. Weassumptions about the application and architecture of the
propose an algorithm that achieves these objectives arglystem? (2) Is it problem-specific or can it work under a
adapts its tasks scheduling and mapping decisionside range of parameters without compromising the
according to the given network topology. Just like tasks,solution quality? (3) Does the complexity of the heuristic
messages are also scheduled and mapped to suitatdermit it to be practically used for compile-time
links during the minimization of the finish times of scheduling?

tasks. Heterogeneity of processors is exploited by hg first criterion relates to the assumptions made by
scheduling critical tasks to the fastest processors. Ouf,q scheduling algorithm about the program tasks and
extensive experimental study has demonstrated that thg chitecture models. Indeed, to simplify the design of the
proposed algorithm is efficient, robust, and yieldsgcnequling method, earlier approaches usually rely on
consistent performance over a wide range of schedullngimp"fying assumptions such as assuming all tasks to
parameters. have equal execution times, or ignoring the
Keywords: algorithms, parallel processing, communication delays among tasks altogether [4], [9].
heterogeneous systems, scheduling, link contentionyith the emergence of a wide variety of architectures in
task graphs. recent years, the architectural attributes such as system
1 Introduction topology,' message routing 'strategy, overlapped
) . communication and computation, and processors
One of the major goals of using a heterogeneouseterogeneity, must also be taken into account by a
system is to minimize the completion time of a parallel scheduling algorithm. The second criterion dictates that
application by exploiting the heterogeneous processinghe scheduling algorithm should generate good solutions
requirements within the application [5]. To achieve this¢g, 5 variety of applications and target systems. A
goal, a judicious scheme is needed to properly schedulgchedu”ng algorithm tailored for one particular
and allocate the tasks of the application to the moshppjication and architecture may not generate efficient
suitable processors. In this study, we are interested in thgo|ytions on another architecture [8]. The third criterion
static scheduling of precedence-constrained tasks to @hich s related to the execution time of the heuristic

network of heterogeneous processors. Static schedulingself is an important consideration for effectively using
is normally done at compile-time with available it for compile-time scheduling of large-scale
information about the structure of the parallel applicationgppjications [1].

in terms of its task execution times, task dependencies,) . . .
P We are interested in scheduling algorithms that both

communication, and synchronization [4], [9]. The goal hedule task q bit work
of static scheduling is to allocate a set of tasks to a set orcheauie asks and messages on arbitrary Networks
consisting of heterogeneous processors and
communication links. Scheduling tasks while
T This research was supported by the Hong Kong Research ; ; ; ;
Grants Council under contract number HKUST619/94E and a considering link contention for a heterogeneous system

grant from the HKU CRCG. is a relatively less explored research topic and very few

algorithms for this problem have been designed. Onepportunity to migrate again to a processor one more hop
well-known algorithm is thedynamic level scheduling away from the original processor. This incremental
(DLS) algorithm [11], which employs a dynamic list scheduling by migration process is repeated for all the
scheduling approach. In this paper, we propose a newprocessors in a breadth-first fashion. The advantage of
algorithm, the primary objective of which is to generate this incremental approach is that no pre-specified routing
efficient solutions while simultaneously handles table is needed because the algorithm adapts its
arbitrary communication and execution costs in thescheduling decisions to each input topology, which may
parallel application, schedules tasks and messages e arbitrary. More importantly, the incremental
considering link contention as well as processorsscheduling of tasks and messages can lead to optimized
heterogeneity, and adapts to arbitrary network topologyroutes.

The algorithm has a practicable complexity and is Thg remainder of this paper is organized as follows.
suitable for regular and irregular parallel program, ihe next section, we provide a formal problem

structures. statement, followed by a detailed description and
In a traditional algorithm, the tasks are first arrangedexplanation of the proposed algorithm. An illustrative

as a list using some priority measure and then each taséxample is used throughout to explicate the features of

is scheduled one after another to a processor whiclthe algorithm. Section 3 presents the experimental

allows the earliest finish time [2], [4], [8], [9], [10], [11]. results. The last section concludes the paper.

To find such a processor in a heterogeneous targed The Proposed Algorithm

system where message scheduling has to be handled, a) i])

routing table is also needed, as in the DLS, for In this section, we first formally define the

determining the most suitable route for messages in ordetcheduling problem and the model used. We then outline

to minimize the data ready time of each task. TheOUr proposed algorithm, calleBubble Scheduling and

problem with using a routing table is two-fold: (i) the Allocation (BSA). A small example is used for

routing table has to be pre-determined, usually usingllustrating the algorithm’s characteristics.

shortest-path algorithm, for the input target topology; (i) 2.1 The Scheduling and Mapping Model

ﬂurlng ttr:e fschedulllng pr(;)cesds, the routlng table,.w.hlcg A parallel program is composed of tasks

as to be frequently updated, may not give optimize {T1, T, ..., T} inwhich there is a partial ordef; < T,

routes. Checking such routing information for eVeryimplies thatT; cannot start execution until finishes

candldatg processors inevitably “:‘S“'t? n h|g.h UMeue to the data dependency between them. Thus, a
complexity. Furthermore, the routing information is

L arallel program can be represented by a directed acyclic
usually maintained for only a few common network P prog b y Y

. : . task graph[2]. Parallelism exists among independent
topologies which may not be useful for an arbitrary tasks—; andT; are said to be independent if neither
network. i

T;<T; nor T;<T,. Each taskT; is associated with a
The proposed algorithm is different from traditional nominal execution cost, which is the execution time
scheduling schemes in several aspects. First, in theequired by T, on a reference machine in the
algorithm, the tasks are not fixed in one single list heterogeneous system. Similarly, a nominal
throughout the entire scheduling process as in the&ommunication cost; is associated with the message
traditional approach. Initially, the tasks are all scheduledm;; from T, to T; . Assume there are messages where
to a single processor—effectively the parallel programis(n-1)<e<m so that the task graph is a connected
serialized. Then, each task is considered in turn forgraph.
possible migration to the neighbor processors. The
objective of this process is to improve the finish times of
tasks because a task migrates only if it can “bubble up”

To model heterogeneity of the target system which
consists ofm processofs?,, P,, ..., P} heterogeneity

: L -~ T factorsare used. For example, if ata3k is scheduled
If a task is selected for migration, the communication, - processop, , then its actual execution cost is given

messages from its predecessors (some of which malgy hiti whereh,, is the heterogeneity factor which is

remain in the original processor while others may havedetermined by measuring the difference in processing
also migrated) are scheduled to the communication ”m?:apabilities (e.g., speed) of processer and the

between the new processor and_ t_he original ProCeSSOfafarence machine with respecttotask . Similarly, if a
After all the tasks in the original processor are messagM, is scheduled to the communication ik

considered, the first phase of schedl_JImg completes. Irﬂ)e ween processofs, afg , its actual communication
the second phase, the same process is repeated on one

) _ 8t is given byh',,c; . An example parallel program
the neighbor processor. Thus, a task migrated from thﬁraph is shown in Figure 1.

original processor to a neighbor processor may have a

possible positions, with IB tasks inserted among them,
and OB tasks are appended at the end.

To determine whether a task is a CP task, we can use
two attributes:t-level (top level) andb-level (bottom
level). Theb-levelof a task is the length of the longest
path beginning with the task. Thdevelof a task is the
length of the longest path reaching the task. Thus, all
tasks on the CP have the same valug-téyel+ b-leve),
which is equal to the length of the CP. Based on this
observation, we can easily partition the parallel program
into CP, IB, and OB tasks by i®(e) time becausetthe
levelandb-levelof all tasks can be computed by using
depth-first search. A task with a largbrlevelimplies
that it is followed by a longer chain of tasks, and thus, is

The start time and finish time of a messagg fromgjven a higher priority. The serialization process can be
T, to T; on a communication link,, are denoted by performed by aro(e) time algorithm outlined below.
MST(M,;, Ly,) and MFT(M;,L,,) , respectively. Thus,

Figure 1: A parallel program task graph.

-) SERIALIZATION .
we have MFT(M;, L) = MST(M; Ly) + ¢y . The Input: a program task graph withn tasks

start time of a taskr; on processer, is denoted by
ST(T, P,) which critically depends on the taskiata) '

boX . , Output: a serial order of the tasks
Iready “”.‘e(?.RT)- ‘If'he DRT offa tas'k IS d((ajfmed as theh . compute the-levelandb-levelof each task by
gtgzst arriva time of messages from |ts'pre epessors.T e using depth-first search:
finish time of a task T, is given by identify the CP; if there are multiple CPs,
FT(T,P,) = ST(T,,P) +h,t;. The objective of select the one with the largest sum of execution

scheduling is to minimize the maximumT , which is 3 CO-? {ahnd tCie; ?rekbroﬁenhradndomly;t o
. put the ask which does not have any
called theschedule lengthSL). predecessor to the first position of the serial

2.2 Serialization order;

{T, Ty ..., T}

n

e . . 4. i « 2; T, « the next CP task
The serialization process, which determinesthe order 5\ hile not all the CP tasks are included do

of subsequent tasks migration, is a crucial step of the g, if T, has all its predecessors in the serial
algorithm. A parallel program can be serialized using order then o _ _
many different methods because there are many total /- putT, atpositiori andincrement ;
orders which do not violate the original partial order. In & else letT, be the predecessorigf which is

. L) not in the serial order and has the largest
the BSA algorithm, the serialization process is centered b-level (ties are broken by choosing the
around aritical path of the parallel program. predecessor with a smalleleve));

. - ; : 9. if T, has all its predecessors in the serial
DEFINITION 1: A critical path (CP) is deflngd as the set order then pULT, at positior and
of tasks and messages forming a path with the largest increment i ; otherwise, recursively
sum of execution costs and communication costs. include all the ancestors of, in the

serial order such that the tasks with a

In the case that there are multiple CPs, we select the X - C
largerb-levelare included first;

one with a larger sum of execution costs and ties are 1q repeat the above step until all the
broken randomly. The CP is a crucial structure of a predecessors of, are in the serial order;
parallel program because it is the longest execution path 11. putT, atposition andincrement ;

and thus, timely scheduling of its tasks can potentially 12. T, — the next CP task _ _
lead to a shorter schedule length. However, to preserve 13- gggfennddall thed O%ﬁtfiSks to the serial order in
the precedence constraints among tasks, we cannot "9 or_ er dfleve|

arrange all the CP tasks first. Instead, in the serialization FOF €xample, consider the parallel program graph

process, we have to first consider a CP task’sShown earlier in Figure 1. Based on the nominal

predecessors, which need not be CP tasks themselve<ecution and communication costs, tievek andb-
Such predecessors are caliaebranch (IB) tasks. The |€veb of the tasks can be computed and the tasks
remaining tasks, which are neither CP tasks nor IB tasks! T+ T7 Te} formthe CP. Sincd, is the first CP task, it
are callecbut-branch(OB) tasks. This partitioning of the is placed in the first position in the serial order. The

tasks induces a serial order of the parallel program, irr€cond task isT, because it is another unexamined
which CP tasks are arranged to occupy the earliespredecessorofthenextCPtask . Aflgr s appended
to the serial order, all predecessors Df have been

considered and, therefore, it can also be added. Now, théheir finish times (bubble up). To determine whether a
last CP taskT, is considered. It cannot be appended tmigration is beneficial, we have to compute the finish
the serial order because some of its predecessors (i.e., thiene of the task on a neighbor processor. To compute the
IB tasks) have not been examined yet. Since ligth andtart time, we need to know the DRT of the task, which
T have the same value bfleveland T, has a smaller in turn depends on the scheduling of messages. We
t-level T, is considered first. However, both outline below an algorithm for computing the finish time
predecessors of; have not been examined. Thus, itsf a message on a communication link between two
two predecessorst, ant, are appended to the lighrocessors. Using a procedure cal@omputeMFTwe

first. Next, T4 is appended followed by, . The only OB can determine the finish times of every incoming
task, T , is the last task in the serial order. The finalmessages of the task on a neighbor processor. The
serialized listis{T,, T, T, T4 T3 Tg Tg To T} - maximum finish time is then the DRT of the task. The
jcorresponding predecessor which sends this latest
message is called theery important predecess¢YIP)

tof the task.

In the serialization process, the tasks are al
scheduled to a single processor, called thiot
processor, which is selected as follows. The firs
processor in the heterogeneous system is considered and After the DRT of the task on a neighbor processor is
the corresponding heterogeneity factor is multiplied tocomputed, the potential finish time of the task can also be
the nominal execution cost of each task. Based on the sefetermined. Then, using another procedure called
of actual execution costs, the CP is constructed. ThiComputeFT we can determine whether a task can
process is repeated for other processors and eventualignprove its finish time through migrating to a neighbor
the processor that gives the shortest CP length based gmocessor of the pivot processor. If the finish time does
actual execution costs is selected as the first pivoimprove, the task is rescheduled to the neighbor
processor. To illustrate, consider the actual executioprocessor and its incoming and outgoing messages are
costs of the tasks on the four processor heterogeneowdso rearranged. If the finish time does not improve, then
system as shown in Table 1. Given the actual executiom task will also migrate if its VIP is scheduled to that
costs, the CPs with respect®y P, P, , ahgd areneighbor processor. The rationale behind this heuristic
{ToT4Tel, {TuTuTeTol, {TuT,T.,Tet, and decision is that if a task and its VIP are scheduled to the
{T.,T,TesTo}, respectively. The CP lengths are 240, same processor, the successors of the task may
226, 235, and 260, respectively. Thus, the first pivotsubsequently improve their finish times also. This
processori®, because the CP is shortest with respect frocess is repeated for all the remaining tasks on the
this processor. The serial order is pivot. Then a neighbor processor is chosen to be a new
{TuTuTe T T2 T4 Ta Te, T}, Which is different pivot. Thus, each processor in the heterogeneous system
from that determined earlier using nominal executionin turn will be assigned as the pivot in a breadth-first
costs. manner. Throughout the entire bubbling up process,
messages are automatically routed in the migration
process of tasks from the pivot processor to other
processors. There is no need to use a routing table. If the
routing of messages has to be static (as in some

Table 1: The task execution cost of each task on a
four heterogeneous processors.

task|P; P, P3 Py commonly used networks, such as a hypercube that uses
the E-cube routing method), we can just put a constraint

T, (3 7 2 6 on the destinations a task can migrate to. Moreover, the

T |21 50 57 56 routes taken by such messages are optimized routes in

T |15 28 3 6 that, at every step, a task migrates if its finish time is not

To |54 141655 increased.

Ts |45 42 97 12

Te |15 20 57 78 Using the techniques discussed above, the BSA

T; |33 43 51 60 algorithm can be formalized below. In the following, the

Tg |51 18 47 74 procedure BuildProcessorList constructs a list of

To |8 16 15 20 processors in a breadth-first order from the first pivot
processor.

2.3 Tasks Migration

After the parallel program is serialized to the first
pivot processor, tasks have to be considered for possible
migration to the neighbor processors in order to improve

BSA ALGORITHM :
Input: a parallel program graph witm
{Tu Ty,
m processors Py, P,, ..., P}
Output a program schedule

initial Pivot — the processor that gives the
shortest CP length;
Serializatior{Pivot);
BuildProcessorLigPivot);
while ProcessorLists not empty do
Pivot — remove the first processor from
ProcessorList
for eachT; orPivotdo
if FT(T;, Pivot)>DRT(T;, Pivot) or VIP
of T, is not scheduled Bivot then
for each neighbor processat,
Pivot, compute DRT(T,P,)
FT(T;, P)
9. if there’is a neighbor processe,
such that FT(T, P,) <FT(T, PIVOt)
then
make T
P
else’if FT(T,Py) = FT(T;,P,) and
VIP of T, is scheduled @, "then
make T, migrate fromPivot to
Py
The time complexity of the BSA algorithm is derived
as follows. The procedurduildProcessorListtakes
O(mR) time while SerializationtakesO(n?) time. Thus,
the dominant step is the while-loop, which takege)

time to compute th&T andDRT values of the task on

tasks

© No gpwd B

of
and

10. migrate fronPivot to
11.

12.

each neighbor processor. If migration is done, it also neighbor processors (schedule length = 147,

takesO(e) time. Since there a@n) tasks onRieot

andO(m) neighbor processor, each iteration of the while
loop takesO(men time. Thus, the BSA algorithm takes °

improved. Note that the reduction @f ‘s finish time is
contributed not only by the “bubbling up” process but

T,} and a heterogeneous system withalso by the heterogeneity of the processors—the

execution costoff, o, is28whilean, isonly 15.
Similarly, T, also migrates t®®>;, since it can also be
“bubbled up” and its execution cost is reduced. After two
more migrations from the first pivot processbs , the
first phase is completed; the intermediate schedule at this
point is shown in Figure 2(a). In the second phase, the
pivot processor i®; . Only; migrates while the other
tasks cannot improve their finish times. No more
migration can be performed after this stage and the final
schedule is shown in Figure 2(b). The schedule length is
only 138 which is considerably smaller than that can be
achievable on homogeneous processors.

P1
0 L12

P2

P3 P4

L23 L34 L41

50

100

(a) Intermediate schedule after T8 and T9 migrate to
total

150

communication costs = 200)

P1 P2 P4

L12 L23 L34 L41

O(meen) time. %

2.4 An Example o] -
To illustrate the novel characteristics of the BSA *° |- \%/

algorithm, let us consider applying it to schedule the (e

parallel program graph shown in Figure 1 to a four- 77| w

processor heterogeneous ring system with the actualy 28/

0“

(b) final schedule after T3 migrates from P1 to P4
(schedule length = 138, total communication costs = 200)

execution costs depicted in Table 1. For simplicity, we
assume that the communication links are homogeneous;
that is, h',, = 1 for all messages; and links, -
Initially, the tasks are injected by the procedure [_
Serializationto the first pivot processoP, in the order:
TuT0T6 T4 T3 T4 T Te Ts, @as we have shown in
Section 2.2. Note that the actual execution cost®on
are quite different from the nominal execution costs.
Then, tasks are considered for possible migration. In the
first phase,T, , being the first CP task, does not migrate3 Performance Results
because its migration is not beneficial. Also, angd
do not migrate because their finish times cannot b
improved by migration. Howevel,; and, migrate to
P, and P;, respectively as their finish times are

Figure 2: Schedules generated by the BSA algorithm.

In this section, we present the experimental
eperformance of the BSA algorithm and also compare it
with a previous algorithm, called thdynamic level
scheduling(DLS) algorithm, which was also designed

for heterogeneous systems. The DLS algorithm is also &he execution cost of each task was randomly selected
greedy algorithm in that it chooses a task for schedulingrom a uniform distribution with range [100, 200].

if its potential start time is the earliest and it has theAgain, three granularities (0.1, 1.0, and 10.0) were
largestb-level selected for each graph size. Unless otherwise state, the

In our experiments, we applied the two algorithms toNeterogeneity factors (i.e, ard,,) were selected
two suites of task graphs using a Sun Ultrasparc,ra”domly from.a uniform Q|str|but|on with range [1, 50]..
workstation. The first suite consisted of regular graphsTh“S- the nominal execution and communication costs in
representing a number of parallel applications includingeaCh graph represented the costs of the fastest processor.
the mean value analysis [1], Gaussian elimination [3], To investigate the effect of processor network
Laplace equation solver [1], LU-decomposition [3], topology (i.e., processor connectivity), we used four
containing regular patterns of tasks and communicatiordifferent topologies in the experiments: 16-processor
messages. Since these applications operate on matrices)g, 16-processor hypercube, 16-processor fully-
the number of tasks (and messages) in their task graplonnected network, and 16-processor randomly
depends on the matrix dimensioth . Each applicatiorstructured topology. The random topology was
has its own equation in terms of for determining the generated such that the degree of each processor ranged
exact number of tasks but all of the equations@¢él?) from two to eight.

We generated ten graphs for each application by varying |, o first experiment, we compared the schedule
N such t'haF the graph size varies from approxma}tely 5qengths produced by the BSA algorithm with those by the
to 500 with increments of 50. The average execution Cosp) g aigorithm. For the regular graphs, it turned out that
each task of the applications is about 150. Note that the 5, algorithm generated similar performance for the

graph structure and relative magnitudes of the executiog, e types of applications and thus, we computed the

costs in these applications are fixed according 0 theyerage schedule lengths across different applications.
underlying algorithm modeled by the graph. However, 14 eyamine the effect of graph size, we also computed

the communication costs can be varied. We used #he average schedule lengths across the three
parameter calle@ranularity, which is defined as the gonjarities. These average schedule lengths for the

average —execution cost divided by the averaggg topologies are shown in Figure 3. From the plots, we
communication cost in a graph. Within each type of o 4 number of observations:

graph, we used three granularities: 0.1, 1.0, and 10.0.) .

Thus, in a fine-grained (i.e., granularity = 0.1) ° the BSA falgorlthm consistently outperformed the
application, the average communication costis aboutten PLS algorithm;

times the average task execution cost. On the other hand,* the improvement was about 20% and increased
in a coarse-grained (i.e., granularity = 10.0) application, slightly with graph size;

the average communication cost is only about 10% of the « the improvement was slightly larger for lower
average task execution cost. In summary, the regular processor connectivity (e.g., a ring); and

graphs suite contained 90 graphs (three graph types, ten. hoth algorithms gave shorter schedule lengths for
sizes, and three granularities). The second suite of task higher processor connectivity (e.g., a clique).
graphs consisted of randomly structured graphs with

sizes also varied from 50 to 500 with increments of 50.

50000
45000
40000

£ 35000

o

§ 30000

2 25000

T 20000

L

9 15000
10000

50008

schedule length

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
graph size graph size graph size graph size
(a) 16-processor ring (b) 16-processor (c) 16-processor clique (d) 16-processor random
hypercube topology

Figure 3: Average schedule lengths for the regular graphs with different
graph sizes using four different network topologies.

80000
70000
60000
50000
40000
30000
20000
100005

70000

=

60000

50000

40000

30000

schedule length
schedule length
schedule length
schedule length

20000

10000

i
50 100 150 200 250 300 350 400 450 500
graph size

50 100 150 200 250 300 350 400 450 500
graph size

50 100 150 200 250 300 350 400 450 500
graph size

50 100 150 200 250 300 350 400 450 500
graph size

(a) 16-processor ring (b) 16-processor (c) 16-processor clique (d) 16-processor random

hypercube topology
Figure 4: Average schedule lengths for the random graphs with
different graph sizes using four different network topologies.
120000 0. B 90000 5 5 80000 s B 120000 5 5
SA X 80000 FBSA - 70000 [BSA =¥ BSA -
100000 70000 100000
< < < 60000 <
E 80000 E 60000 2 50000 E 80000
2 2 50000 2 2
2 60000 L 240000 2 60000
é § 40000 § §
é 40000 § 30000 § 30000 § 40000
20000 20000
20000 10000 10000 20000
4 T X

ol o T
012345678910

granularity

(a) 16-processor ring

140000

ol o T
012345678910

DS -

ob T
0123 45678910

granularity

(b) 16-processor
hypercube

120000

DS -

granularity

ol o T
012345678910

granularity

ol T
0123 45678910

80000

ob T
0123 45678910

granularity

(c) 16-processor clique

granularity

ol T
012345678910

granularity

(d) 16-processor random
topology

Figure 5: Average schedule lengths for the regular graphs with different
granularities using four different network topologies.

140000

=N LS -
SA % SA % BSA SA ~%

120000 100000 70000 120000
£ 100000 £ oo 60000 £ 100000
2 2 2 50000 2
280000]] 280000
2 2 60000 2 40000 g
T 60000 T T T 60000
£ £ o000 £ 3000 £
Q Q Q Q
@ 40000 a 20000 @ 40000

20000 20000 10000 20000

1 4 1

ol T
012345678910

i

granularity

(a) 16-processor ring (b) 16-processor

hypercube

Figure 6: Average schedule lengths for the random graphs
different granularities using four different network topologies.

(c) 16-processor clique (d) 16-processor random
topology

with

These observations can be explained as followstime slot due to the inefficient scheduling of messages of
First, notice that the DLS algorithm selects a task forprevious tasks. The adverse effect of inefficient
scheduling if its start time is the earliest. This greedyscheduling of messages and tasks was also more
decision is made without regard to the scheduling ofprofound for increasing graph size and decreasing
subsequent tasks and hence, such a decision may be tpoocessor connectivity. In this aspect, the BSA algorithm
“local” in that the communication links are not properly has a better design because the messages are
utiized leading to inefficient scheduling of incrementally scheduled to suitable slots such that the
communication messages of subsequent tasks. Indeefihish times of tasks can be improved. When the
when we looked into the schedules produced by the DLRonnectivity was high, both algorithms generated shorter
algorithm more closely, we found that there were manyschedules because the message scheduling was easier to
cases in which a task could not be scheduled to a bettdrandle.

26000
25000
24000 f
23000 f
22000
21000 ¢
20000 B
19000 | N
18000 7
17000 X
0 20 40 60 80 100 120 140 160 180 200
heterogeneity range

schedule length

Figure 7: Effect of heterogeneity.

4 Conclusions

In this paper we have presented a new algorithm,
called the BSA algorithm, for scheduling and allocation
of parallel tasks onto message-passing heterogeneous
architectures using a novel task ordering strategy. The
objective is to generate efficient solutions while
simultaneously taking into account realistic parameters
such as arbitrary execution and communication costs,
network topology, contention on communication links,
and heterogeneity of processors. The distinctive feature
of the BSA algorithm is that it can adapt its tasks and
messages scheduling decisions according to the given
network topology. Messages are incrementally
scheduled to suitable links during the optimization of the
finish times of tasks. Heterogeneity of processors is also

~ Theresults for randomly structured graphs are showrexploited by scheduling critical tasks to the fastest
in Figure 4. From these results, we can see that the BSfyrocessors. Our extensive performance evaluation study
algorithm is robust in that it also consistently has demonstrated that the BSA algorithm is efficient,

outperformed the DLS algorithm, despite that bothrobust, and able to give consistent performance over a
algorithms generated longer schedules compared witiiide range of parameters.

the regular graphs. Next, we investigated the effect o
granularity by computing the average schedule IengthT1
across the graph sizes. The results for regular graphs are
shown in Figure 5. We can see that the granularity had
significant impact on the performance of the scheduling
algorithms. First, the schedule lengths increased sharpl
with decreasing granularity. At a low granularity (e.g.,
0.1), the message scheduling was a dominant factor in
determining the schedule length. Thus, the improvemen
of the BSA algorithm over the DLS algorithm was also
larger for lower granularity. Finally, it is interesting to [4]
note that the effect of network topology was less
significant from a granularity perspective. Similar 5]
conclusions can be drawn from the results for randomly
structured graphs, which are shown in Figure 6. [6]

We also investigated the effect of heterogeneity. For
this purpose, we used ten different randomly structured?]
task graphs with 500-task each (the granularity was 1.0).
We chose the 16-processor hypercube topology and
varied the range of heterogeneity as follows: [1, 10],
[1,50], [1,100], and [1,200]. Thus, a large range!l
implies that there are more slow processors in the
system. Again we computed the average schedul]
lengths, which are shown in Figure 7. As can be seen,
both algorithms generated longer schedules as th
heterogeneity range increased. However, the rate o
increase in schedule lengths generated by the BSA
algorithm was lower than that of the DLS algorithm. This
indicates that the BSA algorithm is more adaptive to a
highly heterogeneous system. We also measured the
running times of both algorithms, which were about the
same because the two algorithms are of comparable time
complexity.

fReferences

. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu,
“Automatic Parallelization and Scheduling of Programs
on Multiprocessors Using CASCHProceedings of the
1997 International Conference on Parallel Processing
pp. 288-291, Aug. 1997.

M. Cosnard and M. Loi, “Automatic Task Graphs
Generation TechniquesParallel Processing Lettersol.

5, no. 4, pp. 527-538, Dec. 1995.

M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystam,
“Parallel Gaussian Elimination on An MIMD Computer,”
Parallel Computingvol. 6, pp. 275-296, 1988.

H. EI-Rewini, T.G. Lewis, and H.H. AliTask Scheduling
in Parallel and Distributed System&nglewood Cliffs,
New Jersey: Prentice Hall, 1994.

R.F. Freund and H.J. Siegel, “Heterogeneous Processing,”
Computer pp. 13-17, June 1993.

M.R. Garey and D.S. JohnsonComputers and
Intractability: A Guide to the Theory of NP-Completeness
W.H. Freeman and Company, 1979.

Y.-K. Kwok and |. Ahmad, “Dynamic Critical Path
Scheduling: An Effective Technique for Allocating Tasks
Graphs to Multiprocessors,JEEE Transactions on
Parallel and Distributed Systemsol. 7, no. 5, pp. 506-
521, May 1996.

—, “Benchmarking the Task Graph Scheduling
Algorithms,” Proceedings of the 12th International
Parallel Processing Symposiypp. 531-537, Mar. 1998.
—, “Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors,ACM Computing
Surveysaccepted for publication and to appear.

0] M.A. Palis, J.-C. Lien, and D.S.L. Wei, “Task Clustering

and Scheduling for Distributed Memory Parallel
Architectures,” IEEE Transactions on Parallel and
Distributed Systemspl. 7, no. 1, pp. 46-55, Jan. 1996.

[11] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling

Heuristic for Interconnection-Constrained Heterogeneous
Processor Architectures|EEE Transactions on Parallel
and Distributed Systemsol. 4, no. 2, pp. 75-87, Feb.
1993.

	Link Contention-Constrained Scheduling and Mapping of Tasks and Messages to a Network of Heteroge...
	Yu-Kwong Kwok1 and Ishfaq Ahmad2
	1Department of Electrical and Electronic Engineering The University of Hong Kong, Pokfulam Road, ...
	2Department of Computer Science The Hong Kong University of Science and Technology, Clear Water B...
	Email: ykwok@eee.hku.hk, iahmad@cs.ust.hk
	1 Introduction
	2 The Proposed Algorithm
	2.1 The Scheduling and Mapping Model
	Figure�1 : A parallel program task graph.

	2.2 Serialization
	Definition 1 : A critical path (CP) is defined as the set of tasks and messages forming a path wi...

	Serialization:
	1. compute the t-level and b-level of each task by using depth-first search;
	2. identify the CP; if there are multiple CPs, select the one with the largest sum of execution c...
	3. put the CP task which does not have any predecessor to the first position of the serial order;
	4. ;
	5. while not all the CP tasks are included do
	6. if has all its predecessors in the serial order then
	7. put at position and increment ;
	8. else let be the predecessor of which is not in the serial order and has the largest b-level (t...
	9. if has all its predecessors in the serial order then put at position and increment ; otherwise...
	10. repeat the above step until all the predecessors of are in the serial order;
	11. put at position and increment ;
	12. ;
	13. append all the OB tasks to the serial order in descending order of b-level;
	Table 1 : The task execution cost of each task on a four heterogeneous processors.

	2.3 Tasks Migration

	BSA Algorithm:
	1. initial Pivot ¨ the processor that gives the shortest CP length;
	2. Serialization(Pivot);
	3. BuildProcessorList(Pivot);
	4. while ProcessorList is not empty do
	5. Pivot ¨ remove the first processor from ProcessorList;
	6. for each on Pivot do
	7. if or VIP of is not scheduled to Pivot then
	8. for each neighbor processor of Pivot, compute and ;
	9. if there is a neighbor processor such that then
	10. make migrate from Pivot to ;
	11. else if and VIP of is scheduled to then
	12. make migrate from Pivot to ;
	2.4 An Example
	Figure�2 : Schedules generated by the BSA algorithm.

	3 Performance Results
	Figure�3 : Average schedule lengths for the regular graphs with different graph sizes using four ...
	Figure�4 : Average schedule lengths for the random graphs with different graph sizes using four d...
	Figure�5 : Average schedule lengths for the regular graphs with different granularities using fou...
	Figure�6 : Average schedule lengths for the random graphs with different granularities using four...
	Figure�7 : Effect of heterogeneity.

	4 Conclusions
	References
	[1] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu, “Automatic Parallelization and Scheduling of Prog...
	[2] M. Cosnard and M. Loi, “Automatic Task Graphs Generation Techniques,” Parallel Processing Let...
	[3] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystam, “Parallel Gaussian Elimination on An MIM...
	[4] H. El-Rewini, T.G. Lewis, and H.H. Ali, Task Scheduling in Parallel and Distributed Systems, ...
	[5] R.F. Freund and H.J. Siegel, “Heterogeneous Processing,” Computer, pp. 13-17, June 1993.
	[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Comple...
	[7] Y.-K. Kwok and I. Ahmad, “Dynamic Critical Path Scheduling: An Effective Technique for Alloca...
	[8] —, “Benchmarking the Task Graph Scheduling Algorithms,” Proceedings of the 12th International...
	[9] —, “Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors,” ACM...
	[10] M.A. Palis, J.-C. Lien, and D.S.L. Wei, “Task Clustering and Scheduling for Distributed Memo...
	[11] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained ...

