
he

are
-

ll
nt
a
c
the
a
e

ic

by
nd
e

on
to
e
].
in
tem
ed
rs
a

at
ns
A
r
nt
n
ic
g

th
rks
nd

m
w

Link Contention-Constrained Scheduling and Mapping of
Tasks and Messages to a Network of Heterogeneous Processors

YU-KWONG KWOK1 AND ISHFAQAHMAD2

1Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong

2Department of Computer Science
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Email:ykwok@eee.hku.hk, iahmad@cs.ust.hk
Abstract†—In this paper, we consider the problem of
scheduling and mapping precedence-constrained tasks
to a network of heterogeneous processors. In such
systems, processors are usually physically distributed,
implying that the communication cost is considerably
higher than in tightly coupled multiprocessors.
Therefore, scheduling and mapping algorithms for such
systems must schedule the tasks as well as the
communication traffic by treating both the processors
and communication links as important resources. We
propose an algorithm that achieves these objectives and
adapts its tasks scheduling and mapping decisions
according to the given network topology. Just like tasks,
messages are also scheduled and mapped to suitable
links during the minimization of the finish times of
tasks. Heterogeneity of processors is exploited by
scheduling critical tasks to the fastest processors. Our
extensive experimental study has demonstrated that the
proposed algorithm is efficient, robust, and yields
consistent performance over a wide range of scheduling
parameters.

Keywords: algorithms, parallel processing,
heterogeneous systems, scheduling, link contention,
task graphs.

1 Introduction

One of the major goals of using a heterogeneous
system is to minimize the completion time of a parallel
application by exploiting the heterogeneous processing
requirements within the application [5]. To achieve this
goal, a judicious scheme is needed to properly schedule
and allocate the tasks of the application to the most
suitable processors. In this study, we are interested in the
static scheduling of precedence-constrained tasks to a
network of heterogeneous processors. Static scheduling
is normally done at compile-time with available
information about the structure of the parallel application
in terms of its task execution times, task dependencies,
communication, and synchronization [4], [9]. The goal
of static scheduling is to allocate a set of tasks to a set of

processors such that the overall completion time of t
application, called theschedule length, is minimized
while the precedence constraints among the tasks
preserved. Since this scheduling problem is NP
complete [4], [6], it is commonly tackled by using
heuristics [7]. While each heuristic may perform we
under different circumstances, there are three importa
criteria that must be considered for evaluating
heuristic: (1) Does the heuristic make realisti
assumptions about the application and architecture of
system? (2) Is it problem-specific or can it work under
wide range of parameters without compromising th
solution quality? (3) Does the complexity of the heurist
permit it to be practically used for compile-time
scheduling?

The first criterion relates to the assumptions made
the scheduling algorithm about the program tasks a
architecture models. Indeed, to simplify the design of th
scheduling method, earlier approaches usually rely
simplifying assumptions such as assuming all tasks
have equal execution times, or ignoring th
communication delays among tasks altogether [4], [9
With the emergence of a wide variety of architectures
recent years, the architectural attributes such as sys
topology, message routing strategy, overlapp
communication and computation, and processo
heterogeneity, must also be taken into account by
scheduling algorithm. The second criterion dictates th
the scheduling algorithm should generate good solutio
for a variety of applications and target systems.
scheduling algorithm tailored for one particula
application and architecture may not generate efficie
solutions on another architecture [8]. The third criterio
which is related to the execution time of the heurist
itself is an important consideration for effectively usin
it for compile-time scheduling of large-scale
applications [1].

We are interested in scheduling algorithms that bo
schedule tasks and messages on arbitrary netwo
consisting of heterogeneous processors a
communication links. Scheduling tasks while
considering link contention for a heterogeneous syste
is a relatively less explored research topic and very fe

† This research was supported by the Hong Kong Research
Grants Council under contract number HKUST619/94E and a
grant from the HKU CRCG.

op
al
he
of

ng
its
y
l
zed

s.

d
e
of

tal

ne

s

s
, a
clic
t
er
a
e
e
al
ge
re
d

h

d
en
s
ng
he
a

on
algorithms for this problem have been designed. One
well-known algorithm is thedynamic level scheduling
(DLS) algorithm [11], which employs a dynamic list
scheduling approach. In this paper, we propose a new
algorithm, the primary objective of which is to generate
efficient solutions while simultaneously handles
arbitrary communication and execution costs in the
parallel application, schedules tasks and messages by
considering link contention as well as processors
heterogeneity, and adapts to arbitrary network topology.
The algorithm has a practicable complexity and is
suitable for regular and irregular parallel program
structures.

In a traditional algorithm, the tasks are first arranged
as a list using some priority measure and then each task
is scheduled one after another to a processor which
allows the earliest finish time [2], [4], [8], [9], [10], [11].
To find such a processor in a heterogeneous target
system where message scheduling has to be handled, a
routing table is also needed, as in the DLS, for
determining the most suitable route for messages in order
to minimize the data ready time of each task. The
problem with using a routing table is two-fold: (i) the
routing table has to be pre-determined, usually using
shortest-path algorithm, for the input target topology; (ii)
during the scheduling process, the routing table, which
has to be frequently updated, may not give optimized
routes. Checking such routing information for every
candidate processors inevitably results in high time
complexity. Furthermore, the routing information is
usually maintained for only a few common network
topologies which may not be useful for an arbitrary
network.

The proposed algorithm is different from traditional
scheduling schemes in several aspects. First, in the
algorithm, the tasks are not fixed in one single list
throughout the entire scheduling process as in the
traditional approach. Initially, the tasks are all scheduled
to a single processor—effectively the parallel program is
serialized. Then, each task is considered in turn for
possible migration to the neighbor processors. The
objective of this process is to improve the finish times of
tasks because a task migrates only if it can “bubble up”.
If a task is selected for migration, the communication
messages from its predecessors (some of which may
remain in the original processor while others may have
also migrated) are scheduled to the communication link
between the new processor and the original processor.
After all the tasks in the original processor are
considered, the first phase of scheduling completes. In
the second phase, the same process is repeated on one of
the neighbor processor. Thus, a task migrated from the
original processor to a neighbor processor may have an

opportunity to migrate again to a processor one more h
away from the original processor. This increment
scheduling by migration process is repeated for all t
processors in a breadth-first fashion. The advantage
this incremental approach is that no pre-specified routi
table is needed because the algorithm adapts
scheduling decisions to each input topology, which ma
be arbitrary. More importantly, the incrementa
scheduling of tasks and messages can lead to optimi
routes.

The remainder of this paper is organized as follow
In the next section, we provide a formal problem
statement, followed by a detailed description an
explanation of the proposed algorithm. An illustrativ
example is used throughout to explicate the features
the algorithm. Section 3 presents the experimen
results. The last section concludes the paper.

2 The Proposed Algorithm

In this section, we first formally define the
scheduling problem and the model used. We then outli
our proposed algorithm, calledBubble Scheduling and
Allocation (BSA). A small example is used for
illustrating the algorithm’s characteristics.

2.1 The Scheduling and Mapping Model

A parallel program is composed of task
in which there is a partial order:

implies that cannot start execution until finishe
due to the data dependency between them. Thus
parallel program can be represented by a directed acy
task graph[2]. Parallelism exists among independen
tasks— and are said to be independent if neith

nor . Each task is associated with
nominal execution cost which is the execution tim
required by on a reference machine in th
heterogeneous system. Similarly, a nomin
communication cost is associated with the messa

from to . Assume there are messages whe
so that the task graph is a connecte

graph.

To model heterogeneity of the target system whic
consists of processors ,heterogeneity
factorsare used. For example, if a task is schedule
to a processor , then its actual execution cost is giv
by where is the heterogeneity factor which i
determined by measuring the difference in processi
capabilities (e.g., speed) of processor and t
reference machine with respect to task . Similarly, if
message is scheduled to the communication link
between processors and , its actual communicati
cost is given by . An example parallel program
graph is shown in Figure 1.

n
T1 T2 … Tn, , ,{ } Ti T j<

T j Ti

Ti T j

Ti T j< T j Ti< Ti

τi

Ti

cij

Mij Ti T j e
n 1–() e n2<≤

m P1 P2 … Pm, , ,{ }
Ti

Px

hixτi hix

Px

Ti

Mij Lxy

Px Py

h'i jxycij

m,

se

t

all

is
m

is
e

,
n

y
al

l

is
st

l

a

e
r;

in

h
al

ks
t
e
ed
ed
en
The start time and finish time of a message from
to on a communication link are denoted by

and , respectively. Thus,
we have . The
start time of a task on processor is denoted by

which critically depends on the task’sdata
ready time(DRT). The DRT of a task is defined as the
latest arrival time of messages from its predecessors. The
finish time of a task is given by

. The objective of
scheduling is to minimize the maximum , which is
called theschedule length (SL).

2.2 Serialization

The serialization process, which determines the order
of subsequent tasks migration, is a crucial step of the
algorithm. A parallel program can be serialized using
many different methods because there are many total
orders which do not violate the original partial order. In
the BSA algorithm, the serialization process is centered
around acritical path of the parallel program.

DEFINITION 1: A critical path (CP) is defined as the set
of tasks and messages forming a path with the largest
sum of execution costs and communication costs.

In the case that there are multiple CPs, we select the
one with a larger sum of execution costs and ties are
broken randomly. The CP is a crucial structure of a
parallel program because it is the longest execution path
and thus, timely scheduling of its tasks can potentially
lead to a shorter schedule length. However, to preserve
the precedence constraints among tasks, we cannot
arrange all the CP tasks first. Instead, in the serialization
process, we have to first consider a CP task’s
predecessors, which need not be CP tasks themselves.
Such predecessors are calledin-branch (IB) tasks. The
remaining tasks, which are neither CP tasks nor IB tasks,
are calledout-branch(OB) tasks. This partitioning of the
tasks induces a serial order of the parallel program, in
which CP tasks are arranged to occupy the earliest

possible positions, with IB tasks inserted among the
and OB tasks are appended at the end.

To determine whether a task is a CP task, we can u
two attributes:t-level (top level) andb-level (bottom
level). Theb-levelof a task is the length of the longes
path beginning with the task. Thet-levelof a task is the
length of the longest path reaching the task. Thus,
tasks on the CP have the same value of (t-level+ b-level),
which is equal to the length of the CP. Based on th
observation, we can easily partition the parallel progra
into CP, IB, and OB tasks by in time because thet-
level andb-levelof all tasks can be computed by using
depth-first search. A task with a largerb-level implies
that it is followed by a longer chain of tasks, and thus,
given a higher priority. The serialization process can b
performed by an time algorithm outlined below.

SERIALIZATION :
Input: a program task graph with tasks

Output: a serial order of the tasks
1. compute thet-levelandb-levelof each task by

using depth-first search;
2. identify the CP; if there are multiple CPs

select the one with the largest sum of executio
cost and ties are broken randomly;

3. put the CP task which does not have an
predecessor to the first position of the seri
order;

4. ;
5. while not all the CP tasks are included do
6. if has all its predecessors in the seria

order then
7. put at position and increment ;
8. else let be the predecessor of which

not in the serial order and has the large
b-level (ties are broken by choosing the
predecessor with a smallert-level);

9. if has all its predecessors in the seria
order then put at position and
increment ; otherwise, recursively
include all the ancestors of in the
serial order such that the tasks with
largerb-level are included first;

10. repeat the above step until all th
predecessors of are in the serial orde

11. put at position and increment ;
12. ;
13. append all the OB tasks to the serial order

descending order ofb-level;

For example, consider the parallel program grap
shown earlier in Figure 1. Based on the nomin
execution and communication costs, thet-levels andb-
levels of the tasks can be computed and the tas

form the CP. Since is the first CP task, i
is placed in the first position in the serial order. Th
second task is because it is another unexamin
predecessor of the next CP task . After is append
to the serial order, all predecessors of have be

T1

40

20

T2

30

T3

30

T4

40

T5

50

T6

40

T7

40

T8

40

T9

10

100
10 10 10

10
101010

50
60

50

Figure 1: A parallel program task graph.

Mij

Ti T j Lxy

MST Mij Lxy,() MFT Mij Lxy,()
MFT Mij Lxy,() MST Mij Lxy,() h'i jxycij+=

Ti Px

ST Ti Px,()

Ti

FT Ti Px,() ST Ti Px,() hixτi+=
FT

O e()

O e()

n
T1 T2 … Tn, , ,{ }

i 2← Tx the next CP task←

Tx

Tx i i
Ty Tx

Ty
Ty i

i
Ty

Tx
Tx i i

Tx the next CP task←

T1 T7 T9, ,{ } T1

T2

T7 T2

T7

a
h
he
h

e

o

g
he

e
est

is
be
ed
n
r
s

or
are
en
t
tic
he
ay

is
he
ew
tem
t
s,

on
er
the

e
ses
int
he
s in
ot

A
e

t

considered and, therefore, it can also be added. Now, the
last CP task, is considered. It cannot be appended to
the serial order because some of its predecessors (i.e., the
IB tasks) have not been examined yet. Since both and

have the same value ofb-leveland has a smaller
t-level, is considered first. However, both
predecessors of have not been examined. Thus, its
two predecessors, and are appended to the list
first. Next, is appended followed by . The only OB
task, , is the last task in the serial order. The final
serialized list is: .

In the serialization process, the tasks are all
scheduled to a single processor, called thepivot
processor, which is selected as follows. The first
processor in the heterogeneous system is considered and
the corresponding heterogeneity factor is multiplied to
the nominal execution cost of each task. Based on the set
of actual execution costs, the CP is constructed. This
process is repeated for other processors and eventually
the processor that gives the shortest CP length based on
actual execution costs is selected as the first pivot
processor. To illustrate, consider the actual execution
costs of the tasks on the four processor heterogeneous
system as shown in Table 1. Given the actual execution
costs, the CPs with respect to , , , and are

, , , and
, respectively. The CP lengths are 240,

226, 235, and 260, respectively. Thus, the first pivot
processor is because the CP is shortest with respect to
this processor. The serial order is

, which is different
from that determined earlier using nominal execution
costs.

2.3 Tasks Migration

After the parallel program is serialized to the first
pivot processor, tasks have to be considered for possible
migration to the neighbor processors in order to improve

their finish times (bubble up). To determine whether
migration is beneficial, we have to compute the finis
time of the task on a neighbor processor. To compute t
start time, we need to know the DRT of the task, whic
in turn depends on the scheduling of messages. W
outline below an algorithm for computing the finish time
of a message on a communication link between tw
processors. Using a procedure calledComputeMFT, we
can determine the finish times of every incomin
messages of the task on a neighbor processor. T
maximum finish time is then the DRT of the task. Th
corresponding predecessor which sends this lat
message is called thevery important predecessor(VIP)
of the task.

After the DRT of the task on a neighbor processor
computed, the potential finish time of the task can also
determined. Then, using another procedure call
ComputeFT, we can determine whether a task ca
improve its finish time through migrating to a neighbo
processor of the pivot processor. If the finish time doe
improve, the task is rescheduled to the neighb
processor and its incoming and outgoing messages
also rearranged. If the finish time does not improve, th
a task will also migrate if its VIP is scheduled to tha
neighbor processor. The rationale behind this heuris
decision is that if a task and its VIP are scheduled to t
same processor, the successors of the task m
subsequently improve their finish times also. Th
process is repeated for all the remaining tasks on t
pivot. Then a neighbor processor is chosen to be a n
pivot. Thus, each processor in the heterogeneous sys
in turn will be assigned as the pivot in a breadth-firs
manner. Throughout the entire bubbling up proces
messages are automatically routed in the migrati
process of tasks from the pivot processor to oth
processors. There is no need to use a routing table. If
routing of messages has to be static (as in som
commonly used networks, such as a hypercube that u
the E-cube routing method), we can just put a constra
on the destinations a task can migrate to. Moreover, t
routes taken by such messages are optimized route
that, at every step, a task migrates if its finish time is n
increased.

Using the techniques discussed above, the BS
algorithm can be formalized below. In the following, th
procedure BuildProcessorList constructs a list of
processors in a breadth-first order from the first pivo
processor.

T9

T6

T8 T8

T8

T8

T3 T4

T8 T6

T5

T1 T2 T7 T4 T3 T8 T6 T9 T5, , , , , , , ,{ }

P1 P2 P3 P4

T1 T7 T9, ,{ } T1 T2 T6 T9, , ,{ } T1 T2 T7 T9, , ,{ }
T1 T2 T6 T9, , ,{ }

P2

T1 T2 T6 T7 T3 T4 T8 T9 T5, , , , , , , ,{ }

task P1 P2 P3 P4

T1 39 7 2 6
T2 21 50 57 56
T3 15 28 39 6
T4 54 14 16 55
T5 45 42 97 12
T6 15 20 57 78
T7 33 43 51 60
T8 51 18 47 74
T9 8 16 15 20

Table 1: The task execution cost of each task on a
four heterogeneous processors.

t
he
.
e
o
e
his
he
r
e
al
is
e

al
it
BSA ALGORITHM :
Input: a parallel program graph with tasks

and a heterogeneous system with
 processors

Output: a program schedule
1. initial Pivot ← the processor that gives the

shortest CP length;
2. Serialization(Pivot);
3. BuildProcessorList(Pivot);
4. whileProcessorList is not empty do
5. Pivot ← remove the first processor from

ProcessorList;
6. for each onPivot do
7. if or VIP

of is not scheduled toPivot then
8. for each neighbor processor of

Pivot, compute and
;

9. if there is a neighbor processor
such that
then

10. make migrate fromPivot to
;

11. else if and
VIP of is scheduled to then

12. make migrate fromPivot to
;

The time complexity of the BSA algorithm is derived
as follows. The procedureBuildProcessorListtakes

time whileSerializationtakes time. Thus,
the dominant step is the while-loop, which takes
time to compute theFT andDRT values of the task on
each neighbor processor. If migration is done, it also
takes time. Since there are tasks on thePivot
and neighbor processor, each iteration of the while
loop takes time. Thus, the BSA algorithm takes

time.

2.4 An Example

To illustrate the novel characteristics of the BSA
algorithm, let us consider applying it to schedule the
parallel program graph shown in Figure 1 to a four-
processor heterogeneous ring system with the actual
execution costs depicted in Table 1. For simplicity, we
assume that the communication links are homogeneous;
that is, for all messages and links .
Initially, the tasks are injected by the procedure
Serializationto the first pivot processor in the order:

, as we have shown in
Section 2.2. Note that the actual execution costs on
are quite different from the nominal execution costs.
Then, tasks are considered for possible migration. In the
first phase, , being the first CP task, does not migrate
because its migration is not beneficial. Also, and
do not migrate because their finish times cannot be
improved by migration. However, and migrate to

and , respectively as their finish times are

improved. Note that the reduction of ‘s finish time is
contributed not only by the “bubbling up” process bu
also by the heterogeneity of the processors—t
execution cost of on is 28 while on is only 15
Similarly, also migrates to since it can also b
“bubbled up” and its execution cost is reduced. After tw
more migrations from the first pivot processor , th
first phase is completed; the intermediate schedule at t
point is shown in Figure 2(a). In the second phase, t
pivot processor is . Only migrates while the othe
tasks cannot improve their finish times. No mor
migration can be performed after this stage and the fin
schedule is shown in Figure 2(b). The schedule length
only 138 which is considerably smaller than that can b
achievable on homogeneous processors.

3 Performance Results

In this section, we present the experiment
performance of the BSA algorithm and also compare
with a previous algorithm, called thedynamic level
scheduling(DLS) algorithm, which was also designed

n
T1 T2 … Tn, , ,{ }

m P1 P2 … Pm, , ,{ }

Ti
FT Ti Pivot,() DRT Ti Pivot,()>
Ti

Py
DRT Ti Py,()

FT Ti Py,()
Py'

FT Ti Py',() FT Ti Pivot,()<

Ti
Py'

FT Ti Py',() FT Ti Py',()=
Ti Py'

Ti
Py'

O m2() O n2()
O e()

O e() O n()
O m()

O men()
O m2en()

h'i jxy 1= Mij Lxy

P2

T1 T2 T6 T7 T3 T4 T8 T9 T5, , , , , , , ,
P2

T1

T2 T6

T3 T4

P1 P3

T3

T3 P2 P1

T7 P1

P2

P1 T3

T1

7

T2

50
T3

15

T4

16

T5

42

T6

20

T7

33

T8

47

T9

8

0

50

100

150

P1 P2 P3 P4
L12 L23 L34 L41

T3←T1 T1→T4

T3→T8 T3→T8

T7←T2

T9←T6 T8→T9 T8→T8

(a) Intermediate schedule after T8 and T9 migrate to
neighbor processors (schedule length = 147, total
communication costs = 200)

(b) final schedule after T3 migrates from P1 to P4
(schedule length = 138, total communication costs = 200)

T1

7

T2

50
T3

6

T4

16

T5

42

T6

20

T7

33

T8

18

T9

16

0

50

100

150

P1 P2 P3 P4
L12 L23 L34 L41

T3←T1T1→T4

T7←T2

T9←T6 T8→T9 T8→T9

Figure 2: Schedules generated by the BSA algorithm.

T3←T1

T8←T3

ted

re
the
d

.
in
sor.

k
r

or
y-
ly
s
ged

le
e

at
he
he
ns.
ed
ree
the
e

e

ed

or
for heterogeneous systems. The DLS algorithm is also a
greedy algorithm in that it chooses a task for scheduling
if its potential start time is the earliest and it has the
largestb-level.

In our experiments, we applied the two algorithms to
two suites of task graphs using a Sun Ultrasparc
workstation. The first suite consisted of regular graphs
representing a number of parallel applications including
the mean value analysis [1], Gaussian elimination [3],
Laplace equation solver [1], LU-decomposition [3],
containing regular patterns of tasks and communication
messages. Since these applications operate on matrices,
the number of tasks (and messages) in their task graphs
depends on the matrix dimension . Each application
has its own equation in terms of for determining the
exact number of tasks but all of the equations are .
We generated ten graphs for each application by varying

such that the graph size varies from approximately 50
to 500 with increments of 50. The average execution cost
each task of the applications is about 150. Note that the
graph structure and relative magnitudes of the execution
costs in these applications are fixed according to the
underlying algorithm modeled by the graph. However,
the communication costs can be varied. We used a
parameter calledgranularity, which is defined as the
average execution cost divided by the average
communication cost in a graph. Within each type of
graph, we used three granularities: 0.1, 1.0, and 10.0.
Thus, in a fine-grained (i.e., granularity = 0.1)
application, the average communication cost is about ten
times the average task execution cost. On the other hand,
in a coarse-grained (i.e., granularity = 10.0) application,
the average communication cost is only about 10% of the
average task execution cost. In summary, the regular
graphs suite contained 90 graphs (three graph types, ten
sizes, and three granularities). The second suite of task
graphs consisted of randomly structured graphs with
sizes also varied from 50 to 500 with increments of 50.

The execution cost of each task was randomly selec
from a uniform distribution with range [100, 200].
Again, three granularities (0.1, 1.0, and 10.0) we
selected for each graph size. Unless otherwise state,
heterogeneity factors (i.e., and) were selecte
randomly from a uniform distribution with range [1, 50]
Thus, the nominal execution and communication costs
each graph represented the costs of the fastest proces

To investigate the effect of processor networ
topology (i.e., processor connectivity), we used fou
different topologies in the experiments: 16-process
ring, 16-processor hypercube, 16-processor full
connected network, and 16-processor random
structured topology. The random topology wa
generated such that the degree of each processor ran
from two to eight.

In our first experiment, we compared the schedu
lengths produced by the BSA algorithm with those by th
DLS algorithm. For the regular graphs, it turned out th
each algorithm generated similar performance for t
three types of applications and thus, we computed t
average schedule lengths across different applicatio
To examine the effect of graph size, we also comput
the average schedule lengths across the th
granularities. These average schedule lengths for
four topologies are shown in Figure 3. From the plots, w
make a number of observations:

• the BSA algorithm consistently outperformed th
DLS algorithm;

• the improvement was about 20% and increas
slightly with graph size;

• the improvement was slightly larger for lower
processor connectivity (e.g., a ring); and

• both algorithms gave shorter schedule lengths f
higher processor connectivity (e.g., a clique).

N
N

O N2()

N

hix h'i jxy

0

10000

20000

30000

40000

50000

60000

70000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

80000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

(a) 16-processor ring (b) 16-processor
hypercube

(c) 16-processor clique (d) 16-processor random
topology

Figure 3: Average schedule lengths for the regular graphs with different
graph sizes using four different network topologies.

of
t

ore
ng
m
are

he
e
ter
ier to
These observations can be explained as follows.
First, notice that the DLS algorithm selects a task for
scheduling if its start time is the earliest. This greedy
decision is made without regard to the scheduling of
subsequent tasks and hence, such a decision may be too
“local” in that the communication links are not properly
utilized leading to inefficient scheduling of
communication messages of subsequent tasks. Indeed,
when we looked into the schedules produced by the DLS
algorithm more closely, we found that there were many
cases in which a task could not be scheduled to a better

time slot due to the inefficient scheduling of messages
previous tasks. The adverse effect of inefficien
scheduling of messages and tasks was also m
profound for increasing graph size and decreasi
processor connectivity. In this aspect, the BSA algorith
has a better design because the messages
incrementally scheduled to suitable slots such that t
finish times of tasks can be improved. When th
connectivity was high, both algorithms generated shor
schedules because the message scheduling was eas
handle.

0

10000

20000

30000

40000

50000

60000

70000

80000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250 300 350 400 450 500

s
c
h

e
d

u
le

 l
e

n
g

th

graph size

DLS
BSA

(a) 16-processor ring (b) 16-processor
hypercube

(c) 16-processor clique (d) 16-processor random
topology

Figure 4: Average schedule lengths for the random graphs with
different graph sizes using four different network topologies.

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

(a) 16-processor ring (b) 16-processor
hypercube

(c) 16-processor clique (d) 16-processor random
topology

Figure 5: Average schedule lengths for the regular graphs with different
granularities using four different network topologies.

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

10000

20000

30000

40000

50000

60000

70000

80000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

0

20000

40000

60000

80000

100000

120000

140000

0 1 2 3 4 5 6 7 8 9 10

s
c
h

e
d

u
le

 l
e

n
g

th

granularity

DLS
BSA

(a) 16-processor ring (b) 16-processor
hypercube

(c) 16-processor clique (d) 16-processor random
topology

Figure 6: Average schedule lengths for the random graphs with
different granularities using four different network topologies.

,
n
ous
he
e
rs
ts,
,
re
d
en

ly
e
so
st
dy
t,
r a

s

,

g,”

s

s

l

us
The results for randomly structured graphs are shown
in Figure 4. From these results, we can see that the BSA
algorithm is robust in that it also consistently
outperformed the DLS algorithm, despite that both
algorithms generated longer schedules compared with
the regular graphs. Next, we investigated the effect of
granularity by computing the average schedule lengths
across the graph sizes. The results for regular graphs are
shown in Figure 5. We can see that the granularity had
significant impact on the performance of the scheduling
algorithms. First, the schedule lengths increased sharply
with decreasing granularity. At a low granularity (e.g.,
0.1), the message scheduling was a dominant factor in
determining the schedule length. Thus, the improvement
of the BSA algorithm over the DLS algorithm was also
larger for lower granularity. Finally, it is interesting to
note that the effect of network topology was less
significant from a granularity perspective. Similar
conclusions can be drawn from the results for randomly
structured graphs, which are shown in Figure 6.

We also investigated the effect of heterogeneity. For
this purpose, we used ten different randomly structured
task graphs with 500-task each (the granularity was 1.0).
We chose the 16-processor hypercube topology and
varied the range of heterogeneity as follows: [1, 10],
[1, 50], [1, 100], and [1, 200]. Thus, a large range
implies that there are more slow processors in the
system. Again we computed the average schedule
lengths, which are shown in Figure 7. As can be seen,
both algorithms generated longer schedules as the
heterogeneity range increased. However, the rate of
increase in schedule lengths generated by the BSA
algorithm was lower than that of the DLS algorithm. This
indicates that the BSA algorithm is more adaptive to a
highly heterogeneous system. We also measured the
running times of both algorithms, which were about the
same because the two algorithms are of comparable time
complexity.

4 Conclusions

In this paper we have presented a new algorithm
called the BSA algorithm, for scheduling and allocatio
of parallel tasks onto message-passing heterogene
architectures using a novel task ordering strategy. T
objective is to generate efficient solutions whil
simultaneously taking into account realistic paramete
such as arbitrary execution and communication cos
network topology, contention on communication links
and heterogeneity of processors. The distinctive featu
of the BSA algorithm is that it can adapt its tasks an
messages scheduling decisions according to the giv
network topology. Messages are incremental
scheduled to suitable links during the optimization of th
finish times of tasks. Heterogeneity of processors is al
exploited by scheduling critical tasks to the faste
processors. Our extensive performance evaluation stu
has demonstrated that the BSA algorithm is efficien
robust, and able to give consistent performance ove
wide range of parameters.

References
[1] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu,

“Automatic Parallelization and Scheduling of Program
on Multiprocessors Using CASCH,”Proceedings of the
1997 International Conference on Parallel Processing,
pp. 288-291, Aug. 1997.

[2] M. Cosnard and M. Loi, “Automatic Task Graphs
Generation Techniques,”Parallel Processing Letters, vol.
5, no. 4, pp. 527-538, Dec. 1995.

[3] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystam
“Parallel Gaussian Elimination on An MIMD Computer,”
Parallel Computing, vol. 6, pp. 275-296, 1988.

[4] H. El-Rewini, T.G. Lewis, and H.H. Ali,Task Scheduling
in Parallel and Distributed Systems, Englewood Cliffs,
New Jersey: Prentice Hall, 1994.

[5] R.F. Freund and H.J. Siegel, “Heterogeneous Processin
Computer, pp. 13-17, June 1993.

[6] M.R. Garey and D.S. Johnson,Computers and
Intractability: A Guide to the Theory of NP-Completenes,
W.H. Freeman and Company, 1979.

[7] Y.-K. Kwok and I. Ahmad, “Dynamic Critical Path
Scheduling: An Effective Technique for Allocating Task
Graphs to Multiprocessors,”IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 5, pp. 506-
521, May 1996.

[8] —, “Benchmarking the Task Graph Scheduling
Algorithms,” Proceedings of the 12th International
Parallel Processing Symposium, pp. 531-537, Mar. 1998.

[9] —, “Static Scheduling Algorithms for Allocating Directed
Task Graphs to Multiprocessors,”ACM Computing
Surveys, accepted for publication and to appear.

[10] M.A. Palis, J.-C. Lien, and D.S.L. Wei, “Task Clustering
and Scheduling for Distributed Memory Paralle
Architectures,” IEEE Transactions on Parallel and
Distributed Systems,vol. 7, no. 1, pp. 46-55, Jan. 1996.

[11] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Heterogeneo
Processor Architectures,”IEEE Transactions on Parallel
and Distributed Systems, vol. 4, no. 2, pp. 75-87, Feb.
1993.

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

0 20 40 60 80 100 120 140 160 180 200

sc
h
e
d
u
le

 le
n
g
th

heterogeneity range

DLS
BSA

Figure 7: Effect of heterogeneity.

	Link Contention-Constrained Scheduling and Mapping of Tasks and Messages to a Network of Heteroge...
	Yu-Kwong Kwok1 and Ishfaq Ahmad2
	1Department of Electrical and Electronic Engineering The University of Hong Kong, Pokfulam Road, ...
	2Department of Computer Science The Hong Kong University of Science and Technology, Clear Water B...
	Email: ykwok@eee.hku.hk, iahmad@cs.ust.hk
	1 Introduction
	2 The Proposed Algorithm
	2.1 The Scheduling and Mapping Model
	Figure�1 : A parallel program task graph.

	2.2 Serialization
	Definition 1 : A critical path (CP) is defined as the set of tasks and messages forming a path wi...

	Serialization:
	1. compute the t-level and b-level of each task by using depth-first search;
	2. identify the CP; if there are multiple CPs, select the one with the largest sum of execution c...
	3. put the CP task which does not have any predecessor to the first position of the serial order;
	4. ;
	5. while not all the CP tasks are included do
	6. if has all its predecessors in the serial order then
	7. put at position and increment ;
	8. else let be the predecessor of which is not in the serial order and has the largest b-level (t...
	9. if has all its predecessors in the serial order then put at position and increment ; otherwise...
	10. repeat the above step until all the predecessors of are in the serial order;
	11. put at position and increment ;
	12. ;
	13. append all the OB tasks to the serial order in descending order of b-level;
	Table 1 : The task execution cost of each task on a four heterogeneous processors.

	2.3 Tasks Migration

	BSA Algorithm:
	1. initial Pivot ¨ the processor that gives the shortest CP length;
	2. Serialization(Pivot);
	3. BuildProcessorList(Pivot);
	4. while ProcessorList is not empty do
	5. Pivot ¨ remove the first processor from ProcessorList;
	6. for each on Pivot do
	7. if or VIP of is not scheduled to Pivot then
	8. for each neighbor processor of Pivot, compute and ;
	9. if there is a neighbor processor such that then
	10. make migrate from Pivot to ;
	11. else if and VIP of is scheduled to then
	12. make migrate from Pivot to ;
	2.4 An Example
	Figure�2 : Schedules generated by the BSA algorithm.

	3 Performance Results
	Figure�3 : Average schedule lengths for the regular graphs with different graph sizes using four ...
	Figure�4 : Average schedule lengths for the random graphs with different graph sizes using four d...
	Figure�5 : Average schedule lengths for the regular graphs with different granularities using fou...
	Figure�6 : Average schedule lengths for the random graphs with different granularities using four...
	Figure�7 : Effect of heterogeneity.

	4 Conclusions
	References
	[1] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu, “Automatic Parallelization and Scheduling of Prog...
	[2] M. Cosnard and M. Loi, “Automatic Task Graphs Generation Techniques,” Parallel Processing Let...
	[3] M. Cosnard, M. Marrakchi, Y. Robert, and D. Trystam, “Parallel Gaussian Elimination on An MIM...
	[4] H. El-Rewini, T.G. Lewis, and H.H. Ali, Task Scheduling in Parallel and Distributed Systems, ...
	[5] R.F. Freund and H.J. Siegel, “Heterogeneous Processing,” Computer, pp. 13-17, June 1993.
	[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Comple...
	[7] Y.-K. Kwok and I. Ahmad, “Dynamic Critical Path Scheduling: An Effective Technique for Alloca...
	[8] —, “Benchmarking the Task Graph Scheduling Algorithms,” Proceedings of the 12th International...
	[9] —, “Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors,” ACM...
	[10] M.A. Palis, J.-C. Lien, and D.S.L. Wei, “Task Clustering and Scheduling for Distributed Memo...
	[11] G.C. Sih and E.A. Lee, “A Compile-Time Scheduling Heuristic for Interconnection-Constrained ...

