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Abstract 

Software distributed shared memory (DSM) pla@orms 
on networks of workstations tolerate large network laten- 
cies by employing one of several weak memory consistency 
models. Data-race tolerant applications, such as Genetic 
Algorithms (GAS), Probabilistic Inference, etc., offer an 
additional degree of freedom to tolerate network latency: 
they do not synchronize shared memory references, and be- 
have correctly when supplied outdated shared data. How- 
ever; these algorithms often have a high communication- 
to-computation ratio and can jlood the network with mes- 
sages in the presence of large message delays. We study 
the performance of controlled asynchronous implementa- 
tions of these algorithms via the use of our previously 
proposed blocking GlobalRead memory access primitive. 
GlobalRead iTplements non-strict cache coherence by 
guaranteeing to return to the reader a shared datum value 
from within a specified staleness range. Experiments on an 
IBM SP2 multicomputer with an Ethernet show significant 
performance improvements for controlled asynchronous im- 
plementations. On a lightly loaded Ethernet network, most 
of the GA benchmarks see 30% to 40% improvement over 
the best competitor for 2 to 16 processors, while two of 
the Probabilistic Inference benchmarks see more than 80% 
improvement for 2 processors. As the network load in- 
creases, the benejits of non-strict cache coherence increase 
signijicantly. 

1. Introduction 

High performance networks of workstations are be- 
coming increasingly popular as a parallel computing plat- 
form. Both message-passing and software distributed 
shared memory paradigms (DSMs) have been developed on 

such distributed platforms [ 161. An important performance 
bottleneck in these systems is the effective message trans- 
mission latency, which is poorer than in high-speed parallel 
computer interconnection networks. Software DSMs have 
attempted to reduce both the quantity of data and the num- 
ber of messages transferred by supporting weaker shared 
memory models [16]. These models, however, are aimed 
only at programs which have a synchronous model of com- 
putation, i.e. data-race free programs. 

A significant number of applications function correctly 
in the presence of data races, for example, iterative equa- 
tion solvers, genetic algorithms, probabilistic inference in 
Bayesian belief networks etc. These applications offer an 
additional degree of freedom to address large data trans- 
mission latencies since they do not synchronize accesses 
to shared memory locations, and behave correctly in the 
presence of losses and delays in the propagation of shared 
memory updates albeit requiring more computation (itera- 
tions) to converge to the solution. This can give them a 
performance advantage over their synchronous counterparts 
since synchronization costs are avoided and communication 
can be overlapped with further computation. Typical asyn- 
chronous algorithms are iterative in nature, and their rate 
of convergence to a solution is critically dependent on the 
propagation delay of shared variables, though their correct- 
ness is not. The asynchronous nature of the communica- 
tion allows the DSM to tradeoff computational efficiency 
(viz. the number of iterations executed) to (a) dynamically 
adapt better to network load, via techniques such as buffer- 
ing [ 181, and ( b )  amortize message transmission overheads, 
by coalescing several updates of a single shared memory 
location. This tradeoff is done at a potential cost: each 
additional iteration needed to reach convergence results in 
additional shared memory updates and thus additional net- 
work traffic. When running on an already heavily loaded 
network, uncontrolled asynchronous algorithms can poten- 
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tially flood the network with messages, moving the network 
to unstable conditions and thus unboundedly increasing the 
communication delay. 

We have previously proposed [9] a method of control- 
ling asynchronous algorithms wherein the message genera- 
tion rate is controlled indirectly by the receiver of shared up- 
dates (rather than by the sender). The main idea is to enforce 
an upper bound on the age of shared values read by a node. 
This is done by the use of a system supported blocking read 
primitive, termed GlobalRead, that is guaranteed to return 
a value of acceptable age of the specified shared location. 
The receiver process is throttled until its GlobalRead is sat- 
isfied, thus implementing program-level flow control since 
the receiver process cannot send its own messages. Eventu- 
ally, this blocking of processes propagates to all nodes since 
in typical applications processes exchange messages rather 
than act exclusively as producers or consumers. In essence, 
the use of GlobalRead converts a fully asynchronous algo- 
rithm into a partially asynchronous algorithm [2]. 

A preliminary performance evaluation of GlobalRead 
was reported in [lo]. The results showed that GlobalRead 
enables us to prevent unstable network conditions, which 
is achieved by specifying an appropriate amount of asyn- 
chrony via the GlobalRead parameters. In this paper, 
we present a detailed performance evaluation of non-strict 
cache coherence implemented via GlobalRead for two 
important, emerging applications: (i) genetic algorithms 
(GAS) [5], and (ii) probabilistic inference in Bayesian be- 
lief networks using an approximate search algorithm [ 151. 
Experiments on an IBM SP2 multicomputer with an Eth- 
ernet interconnect show significant performance improve- 
ments for controlled asynchronous implementations. On 
a lightly loaded network, most of the GA benchmarks see 
30% to 40% improvement over the best competitor for 2 
to 16 processors, while two of the Probabilistic Inference 
benchmarks see more than 80% improvement for 2 proces- 
sors. As the network load increases, the benefits of non- 
strict cache coherence increase significantly. 

The rest of the paper is organized as follows. In the 
next section, we present the GlobalRead primitive, and 
discuss related work. In section 3, we briefly describe 
genetic algorithms and probabilistic inference in Bayesian 
belief networks, which are used as the driver applications 
in this work. Section 4 describes our experimental setup. 
In section 5, we present performance results showing the 
effectiveness of non-strict coherence implemented via the 
GlobalRead primitive. Finally, section 6 summarizes the 
paper. 

2. The GlobalXead primitive 

The GlobalRead primitive [9] was proposed as a shared- 
memory access mechanism that enables the programmer to 

control the amount of runtime asynchrony in asynchronous 
applications. The GlobalRead primitive is visible to the 
programmer and takes three arguments: the shared loca- 
tion to be read, the current iteration number of the read- 
ing process, and the maximum acceptable age of the shared 
datum to be read. The maximum age is specified as the 
maximum number of iterations prior to the current iteration 
number that the shared datum could have been generated. 
Thus, GlobalRead(locn, curriteG age) returns a value of 
Iocn generated no earlier than in the 1 curriter - age I’th 
iteration of the process that is generating successive val- 
ues of locn. This implies that if the local copy of locn is 
older than acceptable, the reading process is blocked until 
an acceptable newer value of locn becomes available. Alter- 
nately, when the local copy is within the age limit specified, 
the GlobalRead degenerates to an ordinary read. The age 
is chosen by the programmer based on the desired conver- 
gence rate for the algorithm and the convergence rate fea- 
tures of the algorithm. 

The implementation of the GlobalRead primitive in a 
DSM involves the maintenance of age information with 
each local copy of a shared location. The age of each shared 
variable has to be updated locally at every write, and prop- 
agated along with every propagation of the variable. On a 
GlobalRead, the DSM checks whether the age of its local 
copy meets the specified requirements. If not, it blocks the 
reading process until a value of suitable age is available, 
and either broadcasts a request for a copy of suitable age, 
or just waits until the required update arrives. In the for- 
mer method, the receipt of a request for a new copy of a 
shared variable can be interpreted as a hint that the process 
is running slower than the process issuing the GlobalRead. 
The hint can be used to increase the process’s immediate 
network priority or local processor-scheduling priority, as 
appropriate. The simple blocking implementation will gen- 
erate fewer messages, and is more efficiently implemented 
as a user-level library routine. We consider only the latter 
implementation since dynamic load-balancing, which is a 
key additional benefit of the former implementation, is be- 
yond the scope of this paper. 

2.1. Related work 

We proposed GlobalRead as a mechanism for imple- 
menting non-strict cache coherence in early 1996 [9]. Inde- 
pendently and around the same time, the delta consistency 
model was proposed [ 171 for applications that tolerate loose 
notions of synchronization and consistency. Interestingly, 
the use of GlobalRead results in a memory consistency 
model that is very similar to delta consistency. 

The performance potential of asynchronous algorithms 
on workstation clusters had earlier motivated the develop- 
ment of the software DSM system Mermera [18], which 
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supports non-coherent memory operations for usage by 
asynchronous algorithms. Mermera supports slow mem- 
ory [8], a very weak consistency model which does not 
require much ordering constraints on the updates sent by 
a processor, and on which totally asynchronous algorithms 
are guaranteed to converge. The writes to slow memory re- 
turn as soon as the writes have been submitted to the DSM 
system for propagation, and are hence asynchronous in na- 
ture. The asynchronous nature of the communication allows 
the DSM system to reduce network load and amortize mes- 
sage overheads by buffering updates,and transmitting the 
multiple updates together in a single message. 

A previously proposed method [7] for controlling asyn- 
chronous algorithms uses the Warp [14] flow control pro- 
tocol to adaptively throttle message generation rate of the 
asynchronous algorithm as a function of the current esti- 
mate of network load. Throttling is implemented by either 
not submitting a shared location update for transmission un- 
til congestion is alleviated [7] or by entirely discarding the 
update and proceeding with further computation [6]. How- 
ever, asynchronous algorithms also have the problem that a 
few lightly loaded nodes in the computation may run ahead 
and generate unnecessary message traffic due to non-receipt 
of updates from heavily loaded nodes which are slow in fin- 
ishing their iterations. Adaptive throttling will kick in once 
the network gets heavily loaded in this scenario but cannot 
prevent the initial flooding. 

3. Data-race tolerant applications 

3.1. Genetic algorithms 

A genetic algorithm (CA) [5] is a search procedure in- 
spired by the “survival of the fittest” principle of natural 
evolution. In a GA, a constant-sized population of individ- 
uals, representing a possible solution to the given problem, 
is iteratively evolved from generation to generation until 
the solution is reached. Each individual is assigned afitness 
score according to how good a solution to the problem it 
is. The genetic search proceeds across generations by repli- 
cating or weeding out individuals in a generation based on 
some evaluation of their fitness, and thus transforming to a 
new generation. Usually, these transformations involve two 
operators: cmssover and mutation. The termination crite- 
rion of the GA can be based either on a prespecified num- 
ber of generations, on the amount of variation of individuals 
between different generations, or on a prespecified level of 
fitness achieved by some individual. 

Parallel GAS are increasingly being used since GAS may 
require a huge amount of time in order to find good solu- 
tions to various hard problems in state space search and 
optimization. In addition to reduction in the execution 
time, parallel GAS can also explore different regions of the 

search space simultaneously thus leading to a better quality 
solution. 

In this work, we consider a particular class of par- 
allel GAS known as coarse-grained parallel or “island” 
GAS [3]. The population of the CA is divided into multi- 
ple sub-populations or demes that evolve isolated from each 
other most of the time, but exchange individuals occasion- 
ally. This exchange of individuals is called migration, and it 
is controlled by several parameters: interval, rate, and topol- 
ogy. Two important issues that arise in the design of island 
GAS are the sub-population size and the migration of indi- 
viduals between demes. Empirical studies [3] have shown 
that an island GA with small to medium-sized demes, and 
one in which each processor broadcasts the best individual 
found in every generation to all other processors, finds the 
global solution in fewer number of generations compared to 
other island GAS. 

The communication penalty and the overall execution 
time of island GAS can be often substantially reduced 
by means of an asynchronous implementation. An asyn- 
chronous implementation of the island CA will not wait 
for migrants from the previous generation to arrive. Each 
processor will continue computing with the available indi- 
viduals and incorporate migrants into its population as and 
when they arrive. However, our experiments [20] indicate 
that since the message generation rate of asynchronous GAS 
is greater, they can create large network loads, resulting in 
large queuing delays, in turn increasing the message gen- 
eration of the asynchronous GAS, i.e. a positive feedback 
loop leading to network overload. Moreover, the increase 
in the number of generations supersedes the gains from the 
removal of synchronization, especially when the communi- 
cation penalties are high as in a low bandwidth Ethernet. In 
addition, the solution quality is also adversely affected by 
large message delays. A deme may converge quickly to its 
local optimum in the absence of any migrants from other 
demes for a long time, and so the overall solution quality 
will be poorer. 

We use GlobalRead to implement partially asyn- 
chronous parallel GAS and thus alleviate all the above- 
mentioned problems with synchronous and fully asyn- 
chronous parallel GAS. 

3.2. Probabilistic inference in Bayesian belief net- 
works 

Probabilistic inference [ 151 is an important technique for 
reasoning under uncertainty. It answers a question about 
event probabilities given information about other events. 
The events and the dependencies among them are usually 
represented by a directed acyclic graph, referred to as a 
Bayesian belief network [15]. Nodes in the belief network 
denote events. Edges denote the dependencies between 
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events. Each node has a finite number of values, which cor- 
responds to the possible number of outcomes of that event. 
The information about the dependencies among the out- 
comes of events is expressed as conditional probabilities. 
Real life Bayesian Networks tend to be large and complex, 
and their use is often restricted by the time required to draw 
inferences from such large networks [ 121, thus necessitating 
parallel implementations. 

Figure 1 An example Bayesian network 
Maastatic cancel 

0 

Figure 1 shows an illustrative belief network [15] for a 
case study in medical diagnosis. Each node takes on a set of 
values (herefalse or true) with probabilities that depend on 
the values taken by its parents. Each node has a conditional 
probability, which describes the probability that the node 
takes each of its values given a combination of values for 
its parents. For example, p ( D  = true I B = true,  C = 
true)  = 0.80. 

Probabilistic inference determines the conditional prob- 
ability of query node(s), given the instantiation of evidence 
of other nodes. Two types of approaches [ 151 are taken to 
find the desired conditional probabilities: exact algorithms, 
and approximate search algorithms. One of the approxi- 
mate search algorithms is the logic sampling algorithm [ 151, 
which we consider in this paper. 

Logic sampling is a method of computing probabilities 
by counting how frequently events occur in a series of sim- 
ulation runs. For example, in the belief network of Figure 1, 
we can generate samples by the following procedure: We 
draw a random value a1 for A,  using the probability P(u) .  
Given a1 , we draw random values bl and c1 for the variables 
B and C, using the probabilities P(b I u1) and P ( c  I a l ) ,  
respectively. And so on, for the entire network. This pro- 
cess is repeated to obtain multiple samples. The probability 
of any event or combination of events is then computed by 
averaging the frequency of events over those cases in which 
the evidence variables agree with the data observed. 

An advantage offered by logic sampling is its inherent 
parallelism. If we associate a processor with each of the 
variables in the belief network, then the simultaneous occur- 
rence of events within each run can be produced by concur- 
rently activating the processors responsible for these events. 
(In practice, a subset of the network is assigned to each pro- 
cessor.) Each processor receives the values assigned to the 

parents of its nodes, and sends the values assigned to its 
nodes to the child nodes that belong to different processors. 
This procedure iteratively converges to the posterior condi- 
tional probability distribution of the query nodes in the be- 
lief network. To alleviate the drawbacks of the synchronous 
implementation, we implement an asynchronous version of 
logic sampling using a modification of the synchronization 
via rollback [2] technique. To the best of our knowledge, 
there are no prior asynchronous implementations of logic 
sampling. 

In the asynchronous implementation, each processor 
continuously updates the states of its nodes, and sends mes- 
sages containing the values of the integace nodes I to other 
processors, without blocking for messages from other pro- 
cessors. Whenever a processor needs the value of some in- 
terface node and the corresponding message has not been 
received, the processor uses a default value for that node. 
The default values for the interface nodes are determined 
on the basis of the conditional probability distribution of 
the nodes. For example, in the belief network of Figure 1, 
since p ( A  = true)  = 0.20 and p ( A  = f a l se )  = 0.80, A 
will sample the value false  in four-fifths of a large number 
of samples, which is therefore used as the default value for 
A.  In effect, each processor takes a gamble that the sampled 
value will be equal to the default value. If this is true for all 
iterations and for all the interface nodes, then it is evident 
that the simulation is completed in the least possible time. 

When a processor receives a value from a node that dif- 
fers from the default value for that node, the value of the 
child node and the values of all the nodes in the network 
that are dependent on this node and that have already been 
computed must be invalidated and recomputed. The pro- 
cessor then has to roll back. We use standard rollback tech- 
niques [2], such as sending antimessages, to implement the 
rollback. The potential benefit of GlobalRead in this sce- 
nario is to restrict the number of costly rollbacks by not 
allowing any processor to stray far ahead (or to lag far be- 
hind) of other processors. This results in a reduction in the 
number of iterations required for convergence, leading to an 
improvement in overall program completion time. 

4. Experimental setup 

4.1. Parallel computing platform 

All our experiments were done on a multicomputer or- 
chestrated by the PVM message passing library [4], rather 
than on a real DSM implementation. A simple layer of soft- 
ware on top of PVM provided a shared-memory abstrac- 
tion for use with GlobalRead, without the optimizations 
inherent in a real DSM implementation. The applications 

' A  node whose adjacent nodes belong to different partition(s) is called 
an interface node 
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considered in our studies allow for simple message-passing 
implementations of the shared-memory abstraction: since 
the readers of each value are known at compile time, direct 
sends and receives between processes suffice to implement 
shared location writes and reads. For locations accessed via 
GlobalRead, a local user-level buffer at each node main- 
tains the latest copies of the locations received from corre- 
sponding writers. GlobalRead first checks this buffer be- 
fore initiating a receive (read) of the corresponding send 
(write) when necessary. GlobalRead is implemented by 
simply waiting for the required update to arrive, since this 
method has lower message overhead than actively request- 
ing a value of suitable age. In the experiments reported in 
this work, all the primitives that provide the GlobalRead 
abstraction are implemented as user-level macros. 

The benchmark parallel programs used in our studies 
are written in C and C++. The platform consisted of an 
IBM SP2 multicomputer having both a high-speed intercon- 

, . I  I 
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Table 1 Eight function test bed for GAS 
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nect and a lOMbps Ethernet. Each IBM SP2 node had an 
RS/6000 591 processor operating at 77 MHz. AIX 4.3, an 
IBM version of Unix, ran on each SP2 node. The C and 
C++ compilers, xlc and xlC respectively, available on AIX 

Tab,e Four Bayesian belief networks 

2.2 2.4 2.0 1.2 

4 

Edges per node 4.3 were used for compiling the programs. All the programs 
used the -02  optimization of these compilers. We used the 
IBM SP2’s LoadLeveler, which schedules userjobs in batch 
mode, to run our programs so that the nodes were ensured to 
be relatively free from background load during the experi- 
ments. For the applications available to us, the IBM SP2 
with the Ethernet provided the most suitable platform for 
illustrating the benefits of non-strict cache coherence when 
the network latencies are relatively high compared to the 
applications’ communication demands. Hence we report all 
our results for this platform. We expect that applications 
with higher communication requirements will see similar 
benefits from non-strict coherence even on faster intercon- 
nects such as the IBM SP2’s high-speed switch. 

4.2. Benchmarks 

4.2.1. Genetic algorithms. We use the function minimiza- 
tion problem to evaluate the performance of our GA bench- 
marks. Table 1 shows the test functions [5, 131 that we use 
in this work. Our experiments are limited to a particular 
class of GAS characterized by the following six parame- 
ters [5]: population size (N), crossover rate (C), mutation 
rate (M), generation gap (G), scaling window (W), selec- 
tion strategy (S). Based on DeJong’s work [ 5 ] ,  the parame- 
ter settings which we use in our experiments are: N = 50, 
C = 0 . 6 , M = O . O O l , G = l , W = l , a n d S = E .  

The standard notion of speedup with increasing number 
of processors for a constant problem size is not a meaning- 
ful metric for parallel GAS. Since different processors in a 
parallel CA can be used to explore different regions of the 

I inferencetimecsecs) 11.12 11.19 11.81 3.15 I 

search space simultaneously, it is interesting to determine 
any improvement in the solution quality as more processors 
become available. Therefore, in all the experiments with 
parallel GAS, we linearly scale the total population size with 
increasing number of processors. Each subpopulation in the 
parallel GA is initialized with individuals that are different 
from those in other subpopulations. Each processor broad- 
casts the best fit N/2 individuals found in each generation 
to all other processors. Each processor then replaces the 
worst individuals in its subpopulation with these migrants. 

4.2.2. Probabilistic inference in Bayesian belief networks. 
Table 2 lists the parameters of the four belief networks 
we used in our performance evaluations. The first three 
networks-A, AA, and C-are randomly generated [ 121, 
i.e., a completely interconnected graph of a given number 
of nodes was first built and then edges were removed ran- 
domly until it had a required number of edges. The infer- 
ence time for these randomly generated networks was from 
11.12 to 11.81 seconds with the sequential program. There- 
maining network is a belief network model of the diagnostic 
system Hailfinder developed at the Decision Systems Labo- 
ratory of the University of Pittsburgh [ 11. The uniprocessor 
inference time for this network is 3.15 seconds. Though this 
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network is small like the randomly generated networks, we 
wanted to include this network because it was the only real 
network accessible to us. As mentioned in [ 121, most real, 
large Bayesian networks are proprietary and thus we have 
to make do with small, synthetic networks. 

The table also lists the edge-cut of the partitions obtained 
by the graph partitioning program [ 1 11 that we use. Since 
the edges of the belief networks do not reflect the true in- 
formation exchange requirements of the underlying compu- 
tations, this edge-cut is only an approximation of the true 
communication cost resulting from the partitioning. 

4.3. Evaluation metrics 

The chief metrics of interest in all our experiments are 
program completion time and the number of iterations re- 
quired for convergence. 

An important metric for evaluating the performance of 
the parallel GA programs is the solution quality. Since the 
solution found by a GA is highly dependent on the choice of 
the initial population, we run all the programs for 25 runs, 
wherein the initial population in each run is initialized with 
a different set of individuals. The numbers reported are the 
average of the results of these 25 runs. The number of runs 
(out of 25) in which the global optimum is found and the 
average fitness of the population at the end of each of the 25 
runs determines the solution quality. 

For the probabilistic inference application, we run the 
programs to estimate the posterior conditional probability 
distribution of the query nodes in the belief network with 
90% confidence intervals to a precision of f O . O 1 .  The num- 
bers reported are the average of the results for 10 runs. 

Measurements of warp [7] were done above PVM, for 
all the messages, to quantify the network load during the 
experiments. A particular measurement of warp at node i 
with respect to node j is given by the ratio of the difference 
in arrival times of two consecutive messages from node j 
to the difference in their sending times. Warp measures the 
rate of change of network load. The warp measured would 
be 1 when the network load is stable; warp values much 
higher than 1 indicate increasing load on the network. 

We also studied the usefulness of GlobalRead under 
heavy network traffic conditions by running the GA pro- 
grams for 4 nodes on the IBM SP2 along with a network 
loader program running on two other nodes. The network 
loader created intense traffic in the network. So, the results 
reported show the benefits of GlobalRead under loaded 
network conditions. 

5. Results 

In this section, we report results from a systematic study 
of the synchronous, fully asynchronous, and partially asyn- 

chronous (i.e. GlobalRead based) implementations of the 
GAS and Bayesian Networks benchmarks discussed in sec- 
tion 4. Speedups for the parallel programs are reported 
with respect to corresponding sequential programs, which 
we optimized to a good extent (e.g. for the sequential GA 
programs, we developed a software caching technique [ 191 
to reduce the recomputation of fitness values of surviving 
individuals). Thus the speedups observed can be directly 
attributed to the exploitation of parallelism. Due to space 
constraints, we do not report results for other metrics dis- 
cussed in section 4.3 (these results are reported in [21]). 

All the results reported are for program runs on ded- 
icated nodes, and hence the results do not reflect multi- 
programming effects. All experiments have realistic back- 
ground network load, generated by other nodes on the net- 
work not allocated to the programs under study. But warp 
measurements have shown this network load to be quite low. 
We also report results for highly loaded networks by run- 
ning a network loader program in parallel to generate de- 
sired network load levels. 

To separate out the benefits of GlobalRead into ben- 
efits due to the elimination of synchronization overhead 
and benefits due to the tolerance of network loads, we re- 
port speedups for GlobalRead with age = 0. This setting 
removes the barrier synchronization overhead of the syn- 
chronous program but does not exploit any asynchrony in 
the algorithm, thus exposing the benefits of removing syn- 
chronization overheads alone. 

We first present results for an unloaded network and then 
present results for heavily loaded networks. 

5.1. Lightly loaded networks. 

5.1.1. Genetic algorithms. Figure 2 shows speedups over 
the serial programs for the synchronous, asynchronous, and 
different age settings (0, 5,  10, 20, and 30) of the partially 
asynchronous parallel programs for the best case (function 
1), and the average performance over all the eight functions. 
(We measure the average performance by the ratio of the 
sum of the execution times for the serial program for all 
the benchmarks to that for the parallel programs.) The last 
white bar in Figure 2 shows the speedup of the best par- 
tially asynchronous program over the best competitor (i.e. 
the best age value for the GlobalRead implementation ver- 
sus the best of the synchronous, asynchronous, and serial 
programs). Results are shown for 2 to 16 processors. 

We observe that the best partially asynchronous program 
is 42% faster than the best competitor in, the best case (func- 
tion l), and 34% faster on average. The base speedups of the 
parallel programs over the corresponding serial programs 
are significant and scale well with the number of proces- 
sors. We also observe that the age value 0 is typically not the 
best performer among the different partially asynchronous 
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Figure 2 Performance of the 
loaded network 
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GA benchmarks on the un- 

implementations. This indicates that most of the benefits 
due to GlobalRead are because of the tolerance of network 
delay and load skew, and not just due to the elimination 
of synchronization overheads. We observe from the figures 
that both the synchronous and asynchronous versions do not 
scale well when the number of workstations rises above 8, 
whereas GlobalRead scales significantly better. 

In all the above runs, we ran the synchronous program 
for 1000 generations, and the asynchronous and controlled 
versions for enough generations so that the subpopulation 
converged further (i.e. better) than the synchronous version. 
Since the value reached by the asynchronous and controlled 
versions for any particular number of generations will dif- 
fer across runs (since convergence rate is determined by 
run-time conditions also), the program trials were repeated 
25 times and convergence beyond the required point was 
ensured for every trial. 

5.1.2. Probabilistic inference in Bayesian belief networks. 
Figure 3 shows speedups for the different parallel imple- 
mentations of Probabilistic Inference on a 2-node configu- 
ration of the IBM SP2, and the average performance over all 
the belief networks. The small networks available to us did 
not exhibit enough parallelism to be run on larger configu- 
rations. We use the small networks to predict performance 
benefits of GlobalRead for larger networks. 

From Figure 3 we observe that the best partially asyn- 
chronous implementation is more than 80% faster than the 
best competitor for the real Hailfinder network, and 78% 
faster on average. Again, we observe that the benefit due 
to removal of synchronization alone (Globallead with age 
set to 0) does not account for all of the benefits of using 
Globallead. 

5.2. Loaded networks 

Figure 4 shows speedups for the GA benchmark 
function 1, and the average performance over all bench- 
marks when the network is loaded. Network loads of 0.5 
Mbps, 1 Mbps, and 2 Mbps are generated by a network 

Figure 3 Performance of the Bayesian belief networks on 
the unloaded network 
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Figure 4 Performance of the GA benchmarks on the loaded 
network 
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loader program that runs in parallel with the benchmarks, 
on a separate pair of nodes. Due to node allocation policies, 
we were restricted to studying only a 4-node configuration 
(plus 2 nodes for the network loader program) for these ex- 
periments. Since the small Bayesian Networks available to 
us do not scale well, we do not report results for them. 

We observe that the benefits of partial asynchrony are 
generally more when the network load is higher, touching 
as much as 70% for the GA benchmarks compared to 40% 
benefit on an unloaded network (for the best case). As one 
goes from an unloaded network to a network with 2Mbps 
load, the benefits of GlobalRead over the best competitor 
generally tend to increase. This buttresses our conclusion 
that GlobalRead helps tolerate network delay for data-race 
tolerant applications. 

6. Summary and conclusions 

We have studied the benefits of non-strict cache coher- 
ence for two emerging data-race tolerant applications - 
Genetic Algorithms (GAS) and Probabilistic Inference in 
Bayesian Belief Networks - in this paper. We evaluated the 
efficacy of the previously proposed memory access primi- 
tive, Globalllead, in implementing partially asynchronous 
parallel programs that exploit non-strict cache coherence. 
Partial asynchrony, i.e. controlled asynchrony, has been 
found useful in improving program performance, especially 
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on a network of workstations where message delays are 
larger. Naturally, programs with higher communication 
to computation ratio stand to benefit more from partial 
asy nchrony. 

On lightly loaded networks, the best partially asyn- 
chronous implementations had speedups between 30% and 
40% over the best competitor for several of the GA bench- 
marks. For two of the Probabilistic Inference benchmarks, 
the corresponding speedups were more than 80%. We also 
conducted experiments on loaded networks, with loads of 
0.5 Mbps, 1 Mbps, and 2 Mbps. The results for the GA 
benchmarks indicate that as the network becomes more con- 
gested, the benefits of non-strict cache coherence increase 
significantly. 

Controlled asynchrony trades off communication for in- 
creased computation to dynamically adapt to system load 
conditions, thus providing improved performance. We 
believe that such program level control of asynchrony 
promises to be superior to the previously proposed Warp 
control mechanism [7] that throttles message generation 
based on estimates of network load. The latter kicks in af- 
ter the network load exceeds a threshold whereas program 
level control can prevent the initial setting in of congestion. 

Future work includes a system-level implementation of 
GlobalRead that allows the underlying system to exploit 
knowledge of staleness tolerance to dynamically adapt net- 
work and processor allocation policies. We also hope to 
study larger, real-life Bayesian Networks, and other emerg- 
ing applications such as neural-network based approaches. 
Also, to better understand and exploit the fact that different 
degrees of asynchrony are best for different programs and 
network loads, we are experimenting with dynamic (run- 
time) setting of tolerable age (staleness) levels when using 
GlobalRead. 
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