
Non-Strict Cache Coherence: Exploiting Data-Race Tolerance in Emerging
Applications

Siddhartha V. Tambat Sriram Vajapeyam
Dept. of Computer Science & Automation Supercomputer Education & Research Centre

and Dept. of Computer Science & Automation

Indian Institute of Science
Bangalore 56001 2 INDIA

(svtambat, sriram} @csa. iisc.emet. in

Abstract

Software distributed shared memory (DSM) pla@orms
on networks of workstations tolerate large network laten-
cies by employing one of several weak memory consistency
models. Data-race tolerant applications, such as Genetic
Algorithms (GAS), Probabilistic Inference, etc., offer an
additional degree of freedom to tolerate network latency:
they do not synchronize shared memory references, and be-
have correctly when supplied outdated shared data. How-
ever; these algorithms often have a high communication-
to-computation ratio and can jlood the network with mes-
sages in the presence of large message delays. We study
the performance of controlled asynchronous implementa-
tions of these algorithms via the use of our previously
proposed blocking GlobalRead memory access primitive.
GlobalRead iTplements non-strict cache coherence by
guaranteeing to return to the reader a shared datum value
from within a specified staleness range. Experiments on an
IBM SP2 multicomputer with an Ethernet show significant
performance improvements for controlled asynchronous im-
plementations. On a lightly loaded Ethernet network, most
of the GA benchmarks see 30% to 40% improvement over
the best competitor for 2 to 16 processors, while two of
the Probabilistic Inference benchmarks see more than 80%
improvement for 2 processors. As the network load in-
creases, the benejits of non-strict cache coherence increase
signijicantly.

1. Introduction

High performance networks of workstations are be-
coming increasingly popular as a parallel computing plat-
form. Both message-passing and software distributed
shared memory paradigms (DSMs) have been developed on

such distributed platforms [161. An important performance
bottleneck in these systems is the effective message trans-
mission latency, which is poorer than in high-speed parallel
computer interconnection networks. Software DSMs have
attempted to reduce both the quantity of data and the num-
ber of messages transferred by supporting weaker shared
memory models [16]. These models, however, are aimed
only at programs which have a synchronous model of com-
putation, i.e. data-race free programs.

A significant number of applications function correctly
in the presence of data races, for example, iterative equa-
tion solvers, genetic algorithms, probabilistic inference in
Bayesian belief networks etc. These applications offer an
additional degree of freedom to address large data trans-
mission latencies since they do not synchronize accesses
to shared memory locations, and behave correctly in the
presence of losses and delays in the propagation of shared
memory updates albeit requiring more computation (itera-
tions) to converge to the solution. This can give them a
performance advantage over their synchronous counterparts
since synchronization costs are avoided and communication
can be overlapped with further computation. Typical asyn-
chronous algorithms are iterative in nature, and their rate
of convergence to a solution is critically dependent on the
propagation delay of shared variables, though their correct-
ness is not. The asynchronous nature of the communica-
tion allows the DSM to tradeoff computational efficiency
(viz. the number of iterations executed) to (a) dynamically
adapt better to network load, via techniques such as buffer-
ing [181, and (b) amortize message transmission overheads,
by coalescing several updates of a single shared memory
location. This tradeoff is done at a potential cost: each
additional iteration needed to reach convergence results in
additional shared memory updates and thus additional net-
work traffic. When running on an already heavily loaded
network, uncontrolled asynchronous algorithms can poten-

0-7695-0768-9/00 $10.00 0 2000 IEEE
87

tially flood the network with messages, moving the network
to unstable conditions and thus unboundedly increasing the
communication delay.

We have previously proposed [9] a method of control-
ling asynchronous algorithms wherein the message genera-
tion rate is controlled indirectly by the receiver of shared up-
dates (rather than by the sender). The main idea is to enforce
an upper bound on the age of shared values read by a node.
This is done by the use of a system supported blocking read
primitive, termed GlobalRead, that is guaranteed to return
a value of acceptable age of the specified shared location.
The receiver process is throttled until its GlobalRead is sat-
isfied, thus implementing program-level flow control since
the receiver process cannot send its own messages. Eventu-
ally, this blocking of processes propagates to all nodes since
in typical applications processes exchange messages rather
than act exclusively as producers or consumers. In essence,
the use of GlobalRead converts a fully asynchronous algo-
rithm into a partially asynchronous algorithm [2].

A preliminary performance evaluation of GlobalRead
was reported in [lo]. The results showed that GlobalRead
enables us to prevent unstable network conditions, which
is achieved by specifying an appropriate amount of asyn-
chrony via the GlobalRead parameters. In this paper,
we present a detailed performance evaluation of non-strict
cache coherence implemented via GlobalRead for two
important, emerging applications: (i) genetic algorithms
(GAS) [5], and (ii) probabilistic inference in Bayesian be-
lief networks using an approximate search algorithm [151.
Experiments on an IBM SP2 multicomputer with an Eth-
ernet interconnect show significant performance improve-
ments for controlled asynchronous implementations. On
a lightly loaded network, most of the GA benchmarks see
30% to 40% improvement over the best competitor for 2
to 16 processors, while two of the Probabilistic Inference
benchmarks see more than 80% improvement for 2 proces-
sors. As the network load increases, the benefits of non-
strict cache coherence increase significantly.

The rest of the paper is organized as follows. In the
next section, we present the GlobalRead primitive, and
discuss related work. In section 3, we briefly describe
genetic algorithms and probabilistic inference in Bayesian
belief networks, which are used as the driver applications
in this work. Section 4 describes our experimental setup.
In section 5, we present performance results showing the
effectiveness of non-strict coherence implemented via the
GlobalRead primitive. Finally, section 6 summarizes the
paper.

2. The GlobalXead primitive

The GlobalRead primitive [9] was proposed as a shared-
memory access mechanism that enables the programmer to

control the amount of runtime asynchrony in asynchronous
applications. The GlobalRead primitive is visible to the
programmer and takes three arguments: the shared loca-
tion to be read, the current iteration number of the read-
ing process, and the maximum acceptable age of the shared
datum to be read. The maximum age is specified as the
maximum number of iterations prior to the current iteration
number that the shared datum could have been generated.
Thus, GlobalRead(locn, curriteG age) returns a value of
Iocn generated no earlier than in the 1 curriter - age I’th
iteration of the process that is generating successive val-
ues of locn. This implies that if the local copy of locn is
older than acceptable, the reading process is blocked until
an acceptable newer value of locn becomes available. Alter-
nately, when the local copy is within the age limit specified,
the GlobalRead degenerates to an ordinary read. The age
is chosen by the programmer based on the desired conver-
gence rate for the algorithm and the convergence rate fea-
tures of the algorithm.

The implementation of the GlobalRead primitive in a
DSM involves the maintenance of age information with
each local copy of a shared location. The age of each shared
variable has to be updated locally at every write, and prop-
agated along with every propagation of the variable. On a
GlobalRead, the DSM checks whether the age of its local
copy meets the specified requirements. If not, it blocks the
reading process until a value of suitable age is available,
and either broadcasts a request for a copy of suitable age,
or just waits until the required update arrives. In the for-
mer method, the receipt of a request for a new copy of a
shared variable can be interpreted as a hint that the process
is running slower than the process issuing the GlobalRead.
The hint can be used to increase the process’s immediate
network priority or local processor-scheduling priority, as
appropriate. The simple blocking implementation will gen-
erate fewer messages, and is more efficiently implemented
as a user-level library routine. We consider only the latter
implementation since dynamic load-balancing, which is a
key additional benefit of the former implementation, is be-
yond the scope of this paper.

2.1. Related work

We proposed GlobalRead as a mechanism for imple-
menting non-strict cache coherence in early 1996 [9]. Inde-
pendently and around the same time, the delta consistency
model was proposed [171 for applications that tolerate loose
notions of synchronization and consistency. Interestingly,
the use of GlobalRead results in a memory consistency
model that is very similar to delta consistency.

The performance potential of asynchronous algorithms
on workstation clusters had earlier motivated the develop-
ment of the software DSM system Mermera [18], which

88

supports non-coherent memory operations for usage by
asynchronous algorithms. Mermera supports slow mem-
ory [8], a very weak consistency model which does not
require much ordering constraints on the updates sent by
a processor, and on which totally asynchronous algorithms
are guaranteed to converge. The writes to slow memory re-
turn as soon as the writes have been submitted to the DSM
system for propagation, and are hence asynchronous in na-
ture. The asynchronous nature of the communication allows
the DSM system to reduce network load and amortize mes-
sage overheads by buffering updates,and transmitting the
multiple updates together in a single message.

A previously proposed method [7] for controlling asyn-
chronous algorithms uses the Warp [14] flow control pro-
tocol to adaptively throttle message generation rate of the
asynchronous algorithm as a function of the current esti-
mate of network load. Throttling is implemented by either
not submitting a shared location update for transmission un-
til congestion is alleviated [7] or by entirely discarding the
update and proceeding with further computation [6]. How-
ever, asynchronous algorithms also have the problem that a
few lightly loaded nodes in the computation may run ahead
and generate unnecessary message traffic due to non-receipt
of updates from heavily loaded nodes which are slow in fin-
ishing their iterations. Adaptive throttling will kick in once
the network gets heavily loaded in this scenario but cannot
prevent the initial flooding.

3. Data-race tolerant applications

3.1. Genetic algorithms

A genetic algorithm (CA) [5] is a search procedure in-
spired by the “survival of the fittest” principle of natural
evolution. In a GA, a constant-sized population of individ-
uals, representing a possible solution to the given problem,
is iteratively evolved from generation to generation until
the solution is reached. Each individual is assigned afitness
score according to how good a solution to the problem it
is. The genetic search proceeds across generations by repli-
cating or weeding out individuals in a generation based on
some evaluation of their fitness, and thus transforming to a
new generation. Usually, these transformations involve two
operators: cmssover and mutation. The termination crite-
rion of the GA can be based either on a prespecified num-
ber of generations, on the amount of variation of individuals
between different generations, or on a prespecified level of
fitness achieved by some individual.

Parallel GAS are increasingly being used since GAS may
require a huge amount of time in order to find good solu-
tions to various hard problems in state space search and
optimization. In addition to reduction in the execution
time, parallel GAS can also explore different regions of the

search space simultaneously thus leading to a better quality
solution.

In this work, we consider a particular class of par-
allel GAS known as coarse-grained parallel or “island”
GAS [3]. The population of the CA is divided into multi-
ple sub-populations or demes that evolve isolated from each
other most of the time, but exchange individuals occasion-
ally. This exchange of individuals is called migration, and it
is controlled by several parameters: interval, rate, and topol-
ogy. Two important issues that arise in the design of island
GAS are the sub-population size and the migration of indi-
viduals between demes. Empirical studies [3] have shown
that an island GA with small to medium-sized demes, and
one in which each processor broadcasts the best individual
found in every generation to all other processors, finds the
global solution in fewer number of generations compared to
other island GAS.

The communication penalty and the overall execution
time of island GAS can be often substantially reduced
by means of an asynchronous implementation. An asyn-
chronous implementation of the island CA will not wait
for migrants from the previous generation to arrive. Each
processor will continue computing with the available indi-
viduals and incorporate migrants into its population as and
when they arrive. However, our experiments [20] indicate
that since the message generation rate of asynchronous GAS
is greater, they can create large network loads, resulting in
large queuing delays, in turn increasing the message gen-
eration of the asynchronous GAS, i.e. a positive feedback
loop leading to network overload. Moreover, the increase
in the number of generations supersedes the gains from the
removal of synchronization, especially when the communi-
cation penalties are high as in a low bandwidth Ethernet. In
addition, the solution quality is also adversely affected by
large message delays. A deme may converge quickly to its
local optimum in the absence of any migrants from other
demes for a long time, and so the overall solution quality
will be poorer.

We use GlobalRead to implement partially asyn-
chronous parallel GAS and thus alleviate all the above-
mentioned problems with synchronous and fully asyn-
chronous parallel GAS.

3.2. Probabilistic inference in Bayesian belief net-
works

Probabilistic inference [151 is an important technique for
reasoning under uncertainty. It answers a question about
event probabilities given information about other events.
The events and the dependencies among them are usually
represented by a directed acyclic graph, referred to as a
Bayesian belief network [15]. Nodes in the belief network
denote events. Edges denote the dependencies between

89

events. Each node has a finite number of values, which cor-
responds to the possible number of outcomes of that event.
The information about the dependencies among the out-
comes of events is expressed as conditional probabilities.
Real life Bayesian Networks tend to be large and complex,
and their use is often restricted by the time required to draw
inferences from such large networks [121, thus necessitating
parallel implementations.

Figure 1 An example Bayesian network
Maastatic cancel

0

Figure 1 shows an illustrative belief network [15] for a
case study in medical diagnosis. Each node takes on a set of
values (herefalse or true) with probabilities that depend on
the values taken by its parents. Each node has a conditional
probability, which describes the probability that the node
takes each of its values given a combination of values for
its parents. For example, p (D = true I B = true, C =
true) = 0.80.

Probabilistic inference determines the conditional prob-
ability of query node(s), given the instantiation of evidence
of other nodes. Two types of approaches [151 are taken to
find the desired conditional probabilities: exact algorithms,
and approximate search algorithms. One of the approxi-
mate search algorithms is the logic sampling algorithm [151,
which we consider in this paper.

Logic sampling is a method of computing probabilities
by counting how frequently events occur in a series of sim-
ulation runs. For example, in the belief network of Figure 1,
we can generate samples by the following procedure: We
draw a random value a1 for A, using the probability P(u) .
Given a1 , we draw random values bl and c1 for the variables
B and C, using the probabilities P(b I u1) and P (c I a l) ,
respectively. And so on, for the entire network. This pro-
cess is repeated to obtain multiple samples. The probability
of any event or combination of events is then computed by
averaging the frequency of events over those cases in which
the evidence variables agree with the data observed.

An advantage offered by logic sampling is its inherent
parallelism. If we associate a processor with each of the
variables in the belief network, then the simultaneous occur-
rence of events within each run can be produced by concur-
rently activating the processors responsible for these events.
(In practice, a subset of the network is assigned to each pro-
cessor.) Each processor receives the values assigned to the

parents of its nodes, and sends the values assigned to its
nodes to the child nodes that belong to different processors.
This procedure iteratively converges to the posterior condi-
tional probability distribution of the query nodes in the be-
lief network. To alleviate the drawbacks of the synchronous
implementation, we implement an asynchronous version of
logic sampling using a modification of the synchronization
via rollback [2] technique. To the best of our knowledge,
there are no prior asynchronous implementations of logic
sampling.

In the asynchronous implementation, each processor
continuously updates the states of its nodes, and sends mes-
sages containing the values of the integace nodes I to other
processors, without blocking for messages from other pro-
cessors. Whenever a processor needs the value of some in-
terface node and the corresponding message has not been
received, the processor uses a default value for that node.
The default values for the interface nodes are determined
on the basis of the conditional probability distribution of
the nodes. For example, in the belief network of Figure 1,
since p (A = true) = 0.20 and p (A = f a l se) = 0.80, A
will sample the value false in four-fifths of a large number
of samples, which is therefore used as the default value for
A. In effect, each processor takes a gamble that the sampled
value will be equal to the default value. If this is true for all
iterations and for all the interface nodes, then it is evident
that the simulation is completed in the least possible time.

When a processor receives a value from a node that dif-
fers from the default value for that node, the value of the
child node and the values of all the nodes in the network
that are dependent on this node and that have already been
computed must be invalidated and recomputed. The pro-
cessor then has to roll back. We use standard rollback tech-
niques [2], such as sending antimessages, to implement the
rollback. The potential benefit of GlobalRead in this sce-
nario is to restrict the number of costly rollbacks by not
allowing any processor to stray far ahead (or to lag far be-
hind) of other processors. This results in a reduction in the
number of iterations required for convergence, leading to an
improvement in overall program completion time.

4. Experimental setup

4.1. Parallel computing platform

All our experiments were done on a multicomputer or-
chestrated by the PVM message passing library [4], rather
than on a real DSM implementation. A simple layer of soft-
ware on top of PVM provided a shared-memory abstrac-
tion for use with GlobalRead, without the optimizations
inherent in a real DSM implementation. The applications

' A node whose adjacent nodes belong to different partition(s) is called
an interface node

90

considered in our studies allow for simple message-passing
implementations of the shared-memory abstraction: since
the readers of each value are known at compile time, direct
sends and receives between processes suffice to implement
shared location writes and reads. For locations accessed via
GlobalRead, a local user-level buffer at each node main-
tains the latest copies of the locations received from corre-
sponding writers. GlobalRead first checks this buffer be-
fore initiating a receive (read) of the corresponding send
(write) when necessary. GlobalRead is implemented by
simply waiting for the required update to arrive, since this
method has lower message overhead than actively request-
ing a value of suitable age. In the experiments reported in
this work, all the primitives that provide the GlobalRead
abstraction are implemented as user-level macros.

The benchmark parallel programs used in our studies
are written in C and C++. The platform consisted of an
IBM SP2 multicomputer having both a high-speed intercon-

, . I I

-7 C l -2% sin(d\/lx,I) -500 5 xz 5 500 (-4189.83
8 x.’!, x7/4000- -600 5 2% 5 600 I 0

Table 1 Eight function test bed for GAS

I I - A C O S / ~ T ~ X ;) I I I

nect and a lOMbps Ethernet. Each IBM SP2 node had an
RS/6000 591 processor operating at 77 MHz. AIX 4.3, an
IBM version of Unix, ran on each SP2 node. The C and
C++ compilers, xlc and xlC respectively, available on AIX

Tab,e Four Bayesian belief networks

2.2 2.4 2.0 1.2

4

Edges per node 4.3 were used for compiling the programs. All the programs
used the -02 optimization of these compilers. We used the
IBM SP2’s LoadLeveler, which schedules userjobs in batch
mode, to run our programs so that the nodes were ensured to
be relatively free from background load during the experi-
ments. For the applications available to us, the IBM SP2
with the Ethernet provided the most suitable platform for
illustrating the benefits of non-strict cache coherence when
the network latencies are relatively high compared to the
applications’ communication demands. Hence we report all
our results for this platform. We expect that applications
with higher communication requirements will see similar
benefits from non-strict coherence even on faster intercon-
nects such as the IBM SP2’s high-speed switch.

4.2. Benchmarks

4.2.1. Genetic algorithms. We use the function minimiza-
tion problem to evaluate the performance of our GA bench-
marks. Table 1 shows the test functions [5, 131 that we use
in this work. Our experiments are limited to a particular
class of GAS characterized by the following six parame-
ters [5]: population size (N), crossover rate (C), mutation
rate (M), generation gap (G), scaling window (W), selec-
tion strategy (S). Based on DeJong’s work [5] , the parame-
ter settings which we use in our experiments are: N = 50,
C = 0 . 6 , M = O . O O l , G = l , W = l , a n d S = E .

The standard notion of speedup with increasing number
of processors for a constant problem size is not a meaning-
ful metric for parallel GAS. Since different processors in a
parallel CA can be used to explore different regions of the

I inferencetimecsecs) 11.12 11.19 11.81 3.15 I

search space simultaneously, it is interesting to determine
any improvement in the solution quality as more processors
become available. Therefore, in all the experiments with
parallel GAS, we linearly scale the total population size with
increasing number of processors. Each subpopulation in the
parallel GA is initialized with individuals that are different
from those in other subpopulations. Each processor broad-
casts the best fit N/2 individuals found in each generation
to all other processors. Each processor then replaces the
worst individuals in its subpopulation with these migrants.

4.2.2. Probabilistic inference in Bayesian belief networks.
Table 2 lists the parameters of the four belief networks
we used in our performance evaluations. The first three
networks-A, AA, and C-are randomly generated [121,
i.e., a completely interconnected graph of a given number
of nodes was first built and then edges were removed ran-
domly until it had a required number of edges. The infer-
ence time for these randomly generated networks was from
11.12 to 11.81 seconds with the sequential program. There-
maining network is a belief network model of the diagnostic
system Hailfinder developed at the Decision Systems Labo-
ratory of the University of Pittsburgh [11. The uniprocessor
inference time for this network is 3.15 seconds. Though this

91

network is small like the randomly generated networks, we
wanted to include this network because it was the only real
network accessible to us. As mentioned in [121, most real,
large Bayesian networks are proprietary and thus we have
to make do with small, synthetic networks.

The table also lists the edge-cut of the partitions obtained
by the graph partitioning program [1 11 that we use. Since
the edges of the belief networks do not reflect the true in-
formation exchange requirements of the underlying compu-
tations, this edge-cut is only an approximation of the true
communication cost resulting from the partitioning.

4.3. Evaluation metrics

The chief metrics of interest in all our experiments are
program completion time and the number of iterations re-
quired for convergence.

An important metric for evaluating the performance of
the parallel GA programs is the solution quality. Since the
solution found by a GA is highly dependent on the choice of
the initial population, we run all the programs for 25 runs,
wherein the initial population in each run is initialized with
a different set of individuals. The numbers reported are the
average of the results of these 25 runs. The number of runs
(out of 25) in which the global optimum is found and the
average fitness of the population at the end of each of the 25
runs determines the solution quality.

For the probabilistic inference application, we run the
programs to estimate the posterior conditional probability
distribution of the query nodes in the belief network with
90% confidence intervals to a precision of f O . O 1 . The num-
bers reported are the average of the results for 10 runs.

Measurements of warp [7] were done above PVM, for
all the messages, to quantify the network load during the
experiments. A particular measurement of warp at node i
with respect to node j is given by the ratio of the difference
in arrival times of two consecutive messages from node j
to the difference in their sending times. Warp measures the
rate of change of network load. The warp measured would
be 1 when the network load is stable; warp values much
higher than 1 indicate increasing load on the network.

We also studied the usefulness of GlobalRead under
heavy network traffic conditions by running the GA pro-
grams for 4 nodes on the IBM SP2 along with a network
loader program running on two other nodes. The network
loader created intense traffic in the network. So, the results
reported show the benefits of GlobalRead under loaded
network conditions.

5. Results

In this section, we report results from a systematic study
of the synchronous, fully asynchronous, and partially asyn-

chronous (i.e. GlobalRead based) implementations of the
GAS and Bayesian Networks benchmarks discussed in sec-
tion 4. Speedups for the parallel programs are reported
with respect to corresponding sequential programs, which
we optimized to a good extent (e.g. for the sequential GA
programs, we developed a software caching technique [191
to reduce the recomputation of fitness values of surviving
individuals). Thus the speedups observed can be directly
attributed to the exploitation of parallelism. Due to space
constraints, we do not report results for other metrics dis-
cussed in section 4.3 (these results are reported in [21]).

All the results reported are for program runs on ded-
icated nodes, and hence the results do not reflect multi-
programming effects. All experiments have realistic back-
ground network load, generated by other nodes on the net-
work not allocated to the programs under study. But warp
measurements have shown this network load to be quite low.
We also report results for highly loaded networks by run-
ning a network loader program in parallel to generate de-
sired network load levels.

To separate out the benefits of GlobalRead into ben-
efits due to the elimination of synchronization overhead
and benefits due to the tolerance of network loads, we re-
port speedups for GlobalRead with age = 0. This setting
removes the barrier synchronization overhead of the syn-
chronous program but does not exploit any asynchrony in
the algorithm, thus exposing the benefits of removing syn-
chronization overheads alone.

We first present results for an unloaded network and then
present results for heavily loaded networks.

5.1. Lightly loaded networks.

5.1.1. Genetic algorithms. Figure 2 shows speedups over
the serial programs for the synchronous, asynchronous, and
different age settings (0, 5, 10, 20, and 30) of the partially
asynchronous parallel programs for the best case (function
1), and the average performance over all the eight functions.
(We measure the average performance by the ratio of the
sum of the execution times for the serial program for all
the benchmarks to that for the parallel programs.) The last
white bar in Figure 2 shows the speedup of the best par-
tially asynchronous program over the best competitor (i.e.
the best age value for the GlobalRead implementation ver-
sus the best of the synchronous, asynchronous, and serial
programs). Results are shown for 2 to 16 processors.

We observe that the best partially asynchronous program
is 42% faster than the best competitor in, the best case (func-
tion l), and 34% faster on average. The base speedups of the
parallel programs over the corresponding serial programs
are significant and scale well with the number of proces-
sors. We also observe that the age value 0 is typically not the
best performer among the different partially asynchronous

92

Figure 2 Performance of the
loaded network

-1
11, , .

~ ~ ~ _ _ _ _

GA benchmarks on the un-

implementations. This indicates that most of the benefits
due to GlobalRead are because of the tolerance of network
delay and load skew, and not just due to the elimination
of synchronization overheads. We observe from the figures
that both the synchronous and asynchronous versions do not
scale well when the number of workstations rises above 8,
whereas GlobalRead scales significantly better.

In all the above runs, we ran the synchronous program
for 1000 generations, and the asynchronous and controlled
versions for enough generations so that the subpopulation
converged further (i.e. better) than the synchronous version.
Since the value reached by the asynchronous and controlled
versions for any particular number of generations will dif-
fer across runs (since convergence rate is determined by
run-time conditions also), the program trials were repeated
25 times and convergence beyond the required point was
ensured for every trial.

5.1.2. Probabilistic inference in Bayesian belief networks.
Figure 3 shows speedups for the different parallel imple-
mentations of Probabilistic Inference on a 2-node configu-
ration of the IBM SP2, and the average performance over all
the belief networks. The small networks available to us did
not exhibit enough parallelism to be run on larger configu-
rations. We use the small networks to predict performance
benefits of GlobalRead for larger networks.

From Figure 3 we observe that the best partially asyn-
chronous implementation is more than 80% faster than the
best competitor for the real Hailfinder network, and 78%
faster on average. Again, we observe that the benefit due
to removal of synchronization alone (Globallead with age
set to 0) does not account for all of the benefits of using
Globallead.

5.2. Loaded networks

Figure 4 shows speedups for the GA benchmark
function 1, and the average performance over all bench-
marks when the network is loaded. Network loads of 0.5
Mbps, 1 Mbps, and 2 Mbps are generated by a network

Figure 3 Performance of the Bayesian belief networks on
the unloaded network

NdxatHuU*r
2, . . . , I

I S . . .

Figure 4 Performance of the GA benchmarks on the loaded
network

F- I I, . . . I

loader program that runs in parallel with the benchmarks,
on a separate pair of nodes. Due to node allocation policies,
we were restricted to studying only a 4-node configuration
(plus 2 nodes for the network loader program) for these ex-
periments. Since the small Bayesian Networks available to
us do not scale well, we do not report results for them.

We observe that the benefits of partial asynchrony are
generally more when the network load is higher, touching
as much as 70% for the GA benchmarks compared to 40%
benefit on an unloaded network (for the best case). As one
goes from an unloaded network to a network with 2Mbps
load, the benefits of GlobalRead over the best competitor
generally tend to increase. This buttresses our conclusion
that GlobalRead helps tolerate network delay for data-race
tolerant applications.

6. Summary and conclusions

We have studied the benefits of non-strict cache coher-
ence for two emerging data-race tolerant applications -
Genetic Algorithms (GAS) and Probabilistic Inference in
Bayesian Belief Networks - in this paper. We evaluated the
efficacy of the previously proposed memory access primi-
tive, Globalllead, in implementing partially asynchronous
parallel programs that exploit non-strict cache coherence.
Partial asynchrony, i.e. controlled asynchrony, has been
found useful in improving program performance, especially

93

on a network of workstations where message delays are
larger. Naturally, programs with higher communication
to computation ratio stand to benefit more from partial
asy nchrony.

On lightly loaded networks, the best partially asyn-
chronous implementations had speedups between 30% and
40% over the best competitor for several of the GA bench-
marks. For two of the Probabilistic Inference benchmarks,
the corresponding speedups were more than 80%. We also
conducted experiments on loaded networks, with loads of
0.5 Mbps, 1 Mbps, and 2 Mbps. The results for the GA
benchmarks indicate that as the network becomes more con-
gested, the benefits of non-strict cache coherence increase
significantly.

Controlled asynchrony trades off communication for in-
creased computation to dynamically adapt to system load
conditions, thus providing improved performance. We
believe that such program level control of asynchrony
promises to be superior to the previously proposed Warp
control mechanism [7] that throttles message generation
based on estimates of network load. The latter kicks in af-
ter the network load exceeds a threshold whereas program
level control can prevent the initial setting in of congestion.

Future work includes a system-level implementation of
GlobalRead that allows the underlying system to exploit
knowledge of staleness tolerance to dynamically adapt net-
work and processor allocation policies. We also hope to
study larger, real-life Bayesian Networks, and other emerg-
ing applications such as neural-network based approaches.
Also, to better understand and exploit the fact that different
degrees of asynchrony are best for different programs and
network loads, we are experimenting with dynamic (run-
time) setting of tolerable age (staleness) levels when using
GlobalRead.

References

Decisions Systems Laboratory, University of Pittsburgh:
The Hailfinder Project. Available on the WWW at
http://www.sis.pi tt.edu/-dsl/hailfinder/.
D. P. Bertsekas and J. N. Tsitsikilis. Parallel and Distributed
Computation: Numerical Methods. Prentice Hall Inc., 1989.
E. Cantli-Paz. A Survey of Parallel Genetic Algorithms.
Technical Report 97003, Illinois Genetic Algorithms Lab-
oratory, University of Illinois, May 1997.
A. Geist, A. Begeulin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam. PVM : Parallel Virtual Machine, A User’s
Guide and Tutorial for Networked Parallel Computing. The
MIT Press, 1994.
D. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.
A. Heddaya and K. Park. Mapping Parallel Iterative Algo-
rithms onto Workstation Networks. In Proc. of the Int’l Sym-
posium on High-Pe$ormance Distributed Computing, Au-
gust 1994.

A. Heddaya, K. Park, and H. Sinha. Using Warp to Con-
trol Network Contention in Mermera. In Proc. of the 27th
Hawaii Int’l Conference on System Sciences, January 1994.
P. W. Hutto and M. Ahamad. Slow Memory: Weakening
Consistency to Enhance Concurrency in Distributed Shared
Memories. In Proc. of the 10th IEEE Int’l Conference on
Distributed Computing Systems, June 1990.
P. J. Joseph and S. Vajapeyam. Program-Level Control of
Network Delay for Parallel Asynchronous Iterative Appli-
cations. In Proc. of the 3rd Int’l Conference on High Perfor-
mance Computing, December 1996.
P. J. Joseph and S. Vajapeyam. Program-Level Con-
trol of Network Delay for Parallel Asynchronous Iter-
ative Applications. Technical report, Dept. of Com-
puter Science and Automation, Indian Institute of Sci-
ence, August 1996. Available on the WWW at
http://www.csa.iisc.emet.in/-sriram/techrep/JoVa96- 1 .ps.
G. Karypis and V. Kumar. METIS: A Software Package
for Partitioning Unstructured Graphs, Partitioning Meshes,
and Computing Fill-Reducing Orderings of Sparse Matrices
(Version 3.0.3). Technical Report 97-061, Dept. of Com-
puter Science, University of Minnesota, 1997.
A. Kozlov and J. P. Singh. Parallel Implementations of Prob-
abilistic Inference. IEEE Computer, December 1996.
H. Muhlenbein, M. Schomisch, and J. Bom. The Parallel
Genetic Algorithm as Function Optimizer. In Proc. of the 4th
Int ’1 Conference on Genetic Algorithms. Morgan Kaufmann
Publishers Inc., 1991.
K. Park. Warp Control: A Dynamically Stable Congestion
Control Protocol and its Analysis. In Proc. of ACM SIG-
COMM, September 1993.
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers
Inc., 1988.
J. Protic, M. Tomasevic, and V. Milutinovic, editors. Dis-
tributed Shared Memory Concepts and Systems. IEEE Com-
puter Society Press, August 1997.
A. Singla, J. Hodgins, and U. Ramachandran. Temporal No-
tions of Synchronization and Consistency in Beehive. In
Proc. of the Symposium on Parallel Algorithms and Archi-
tectures, June 1997.
H. Sinha. MERMERA: Non-coherent Distributed Shared
Memory for Parallel Computing. PhD thesis, Boston Uni-
versity, Boston, MA, May 1993.
S. V. Tambat. Study of Parallel Genetic Algorithms and
Non-Strict Cache Coherence. M.E Project Report, Dept of
Computer Science & Automation, Indian Institute of Sci-
ence, January 1999.
S. V. Tambat and S. Vajapeyam. A Case for Non-Strict
Cache Coherence: Partially Asynchronous Genetic Algo-
rithms on a Workstation Cluster. In Proc. of the 8th Int’l
Workshop on Scalable Shared Memory Multiprocessors,
May 1999.
S. V. Tambat and S. Vajapeyam. Non-Strict Cache
Coherence: Exploiting Data-Race Tolerance in Emerg-
ing Applications. Technical report, Dept. of Com-
puter Science and Automation, Indian Institute of Sci-
ence, August 2000. Available on the WWW at
http://www.csa.iisc.emet.in/-sriram/techrep/TaVaOO- 1 .ps.

94

http://www.sis.pi
http://www.csa.iisc.emet.in/-sriram/techrep/JoVa96
http://www.csa.iisc.emet.in/-sriram/techrep/TaVaOO

