
User-Level Dynamic Page Migration for
Multiprogrammed Shared-Memory Multiprocessors

Dimitrios S. Nikolopoulosy, Theodore S. Papatheodorouy
Constantine D. Polychronopoulosz, Jesús Labartax and Eduard Ayguadéxy Department of Computer Engineering and Informatics

University of Patras, Greecefdsn,tspg@hpclab.ceid.upatras.grz Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

cdp@csrd.uiuc.edux Department of Computer Architecture
Technical University of Catalonia, Spainfjesus,eduardg@ac.upc.es

Abstract

This paper presents algorithms for improving the perfor-
mance of parallel programs on multiprogrammed shared-
memory NUMA multiprocessors, via the use of user-level
dynamic page migration. The idea that drives the algo-
rithms is that a page migration engine can perform accurate
and timely page migrations in a multiprogrammed system if
it can correlate page reference information with schedul-
ing information obtained from the operating system. The
necessary page migrations can be performed as a response
to scheduling events that break the implicit association be-
tween threads and their memory affinity sets. We present
two algorithms that use feedback from the kernel scheduler
to aggressively migrate pages upon thread migrations. The
first algorithm exploits the iterative nature of parallel pro-
grams, while the second targets generic codes without mak-
ing assumptions on their structure. Performance evaluation
on an SGI Origin2000 shows that our page migration algo-
rithms provide substantial improvements in throughput of
up to 264% compared to the native IRIX 6.5.5 page place-
ment and migration schemes.

1. Introduction

The commercial success of scalable cache-coherent
shared memory multiprocessors and their widespread use
in industrial and academic environments stimulate inten-
sive efforts for providing system software which enables

these systems to achieve high performance without sacrific-
ing programmability. One of the exceptional characteristics
of modern shared memory multiprocessors is that they are
often used as multiprogrammed compute servers, in which
users not only submit parallel CPU-intensive programs, but
also develop and debug programs, execute long sequential
simulations and commercial applications. The workloads
presented to modern multiprocessors pose an ever increas-
ing demand for throughput in parallel with the traditional
requirements of speedup and scalability. It is therefore cru-
cial to provide mechanisms that enable parallel programs
to have robust performance in multiprogrammed environ-
ments.

The most prominent problem of state-of-the-art scalable
shared memory systems is the non-uniformity of memory
access latency (NUMA). On cache-coherent systems with
distributed shared memory, each virtual memory page is
initially mapped on a single node in the system and pages
which are actively shared by processors in multiple nodes
incur remote accesses upon secondary cache misses. Re-
mote memory accesses cost three to eight times as much as
local memory accesses on state-of-the-art systems [2, 5].

The performance implications of multiprogramming on
NUMA multiprocessors make the problem of remote mem-
ory access latency harder to deal with, because the operat-
ing system may break the association between threads and
pages at runtime in an unpredictable manner. When par-
allel programs execute on multiprogrammed systems, their
threads may be arbitrarily preempted and migrated by the
operating system, in order to sustain high system through-
put and utilization. Thread preemptions and migrations in-

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in 
other works. DOI 10.1109/ICPP.2000.876083



cur the cost of cache reloads and compromise the mem-
ory performance of parallel programs. The problem on
NUMA systems is more pronounced because if a preempted
thread is migrated between different nodes in the system,
the working set of the thread must be reloaded from a re-
mote memory module, thus incurring a burst of expensive
remote memory accesses. Furthermore, if the pages that
the thread accesses more frequently reside on a node other
than the node to which the thread migrates, most L2 cache
misses incurred by the migrated thread will be satisfied by
remote memory.

The cost of cache reloads and remote memory accesses
due to thread migrations on a NUMA system can be re-
duced if the operating system forwards the pages which
are accessed mostly by a migrated thread to the new home
node of the thread. Dynamic page migration [14] is a tech-
nique which has the potential to alleviate this problem. A
NUMA system with dynamic page migration manages the
distributed shared memory in a competitive manner, so that
each virtual memory page is effectively moved to the node
that references the page more frequently. The purpose of
the page movement is to minimize the maximum latency
due to remote memory accesses by any node to this page.
The early results from simulations of dynamic page migra-
tion engines on NUMA multiprocessors were encouraging
[12, 14], however, the actual implementations of dynamic
page migration in two state-of-the-art systems, the SGI Ori-
gin2000 and the Sun Wildfire, have not exhibited the ex-
pected performance gains [3, 9]. In particular, we are not
aware of studies that utilized dynamic page migration to
improve throughput on an actual multiprogrammed NUMA
system. This fact motivated us to investigate in more depth
mechanisms and algorithms for effective dynamic page mi-
gration.

In this paper, we pursue the idea of executing timely page
migrations in a multiprogrammed NUMA system, by cor-
relating reference counting information with scheduling in-
formation provided by the operating system. Our technique
intercepts preemptions and thread migrations at user-level
and uses these events as triggers for activating aggressive
page migration algorithms that associate reference count-
ing information with the nodes to or from which threads
migrate. We present two algorithms for performing accu-
rate page migrations upon thread migrations without wait-
ing for the page reference counters to accumulate history
that would justify page migration according to a compet-
itive criterion. The first algorithm targets iterative parallel
programs, in the case of which a page migration mechanism
can make some safe assumptions on the expected memory
behavior of a program and detect anomalies due to thread
migrations. The second algorithm targets any kind of par-
allel computation, without making any assumptions on the
future memory behavior of the program.

We have implemented our mechanisms in UPMlib, a
runtime system that provides transparent facilities for dy-
namic page migration and memory performance monitor-
ing to OpenMP programs [8]. Our current prototype is im-
plemented on the SGI Origin2000, on top of IRIX 6.5.5.
We experimented with multiprogrammed workloads com-
posed of NAS benchmarks, using the dynamic space and
time-sharing scheduler of IRIX. Our experimental results
show that our page migration algorithms achieve sizeable
throughput improvements of up to 264% compared to the
IRIX page placement and migration schemes. The improve-
ments are observed both with plain dynamic space-sharing
and with space and time-sharing by the IRIX scheduler.

The rest of this paper is organized as follows. Section 2
establishes the problem framework. Section 3 presents our
page migration algorithms. Section 4 gives some imple-
mentation details. Section 5 provides experimental results
and Section 6 concludes the paper.

2. Problem Statement

This section establishes the problem framework for dy-
namic page migration in multiprogrammed shared-memory
NUMA multiprocessors. Section 2.1 discusses briefly the
performance implications of multiprogramming and job
scheduling on the performance of parallel applications on
NUMA multiprocessors. Section 2.2 discusses the role of
dynamic page migration on reducing memory latency in
multiprogrammed execution environments and overviews
some related work.

2.1. Job Scheduling and Memory Performance on
Multiprogrammed NUMA Multiprocessors

Sophisticated scheduling schemes for multiprogrammed
shared-memory multiprocessors such as dynamic space
sharing [13], require frequent changes of the scheduling
state of threads, namely preemptions and migrations. These
scheduling actions trigger cache reloads, which become
a major source of performance degradation on a shared-
memory multiprocessor. Although the performance impli-
cations of multiprogramming are to some extent similar
for all types of cache-coherent shared-memory multipro-
cessors, it has been shown that the memory performance
of parallel programs is more sensitive to multiprogramming
and job scheduling strategies on scalable NUMA systems
[1]. The first apparent reason is that the cost of a cache
reload on a NUMA multiprocessor depends on the distance
between the pages that contain the data to be reloaded and
the memory modules of the system in which these pages re-
side. Reloading the cache from remote memory modules
is significantly more expensive than reloading the cache
from local memory modules. A second reason is that on



a NUMA system, thread migrations break an implicit asso-
ciation between threads and pages for which threads have
memory affinity. On a cache-coherent NUMA system, each
virtual memory page is allocated on a single node which
serves as the home node of the page. It is desirable to align
threads and pages so that each thread is collocated with the
pages that the thread accesses more frequently. We call this
set of pages thememory affinity setof a thread. Maintain-
ing thread-to-memory affinity is important in order to avoid
forcing threads accessing remote memory upon L2 cache
misses.

In practical situations, the memory affinity set of each
thread is allocated on the node on which the thread is ex-
ecuted for the first-time, via a first-touch page placement
strategy [6], or in an application-specific manner which
is hardwired in the program. In both circumstances, the
memory allocation scheme assumes that each thread will
be bound to a specific node of the system throughout the
lifetime of the program. If a thread is migrated to a node
other than the node on which its memory affinity set is allo-
cated, the thread-to-memory affinity relationship is broken
and memory latency due to remote memory accesses is ex-
acerbated. The pages in the previously established memory
affinity set of the migrated thread becomeorphaned, in the
sense that they no longer belong to the memory affinity set
of any thread.

2.2. The Role of Dynamic Page Migration

Dynamic page migration based on information from
hardware reference counters is a technique that can po-
tentially alleviate the problem described in Section 2.1
[1, 6, 14]. The idea behind dynamic page migration is
to collect per-node reference information for each page in
memory and migrate a page to a remote node if: (1) the ref-
erence counters indicate that the remote node accesses the
page significantly more frequently compared to the home
node; (2) the benefits from migrating the page are likely
to outweigh the cost of copying the page and maintaining
memory coherence thereafter.

Previously proposed page migration mechanisms [12,
14] are solely based on competitive algorithms, which mi-
grate a page if the difference between the number of lo-
cal references and the number of remote references from at
least one node exceeds a predefined threshold. Applying
a competitive algorithm for orphaned pages in a multipro-
grammed system might be a poor decision, since the algo-
rithm must needlessly wait until the new home node of a
migrated thread issues a sufficiently large amount of refer-
ences to meet the competitive criterion. The timeliness of
page migrations can be very poor in this case, as it depends
on the past reference history of the page i.e. the number
of references from the previous home node of the migrated

thread. The past reference history is obsolete, since it is not
correlated with the actual status of the computation which
is reflected by the new mapping of threads to processors.
In the worst-case, the orphaned pages might not migrate at
all if the reference counters have accumulated so much ob-
solete history that the number of references from the new
home node of the thread does not exceed the number of past
references from the old home node of the thread.

The problem that has to be addressed by dynamic page
migration in the aforementioned case, is how to migrate or-
phaned pages as soon as possible, given that page migra-
tions are triggered with implicit information from the ref-
erence counters. This can be accomplished if the page mi-
gration engine captures the scheduling events that require
page migrations and associates the information from the
reference counters with these events, in order to identify
orphaned pages early without being biased from obsolete
page reference history. Based on this idea, in Section 3 we
propose two algorithms for performing effective page mi-
grations as a response to thread migrations on a multipro-
grammed NUMA system.

3. Page Migration Algorithms

In this section we propose two dynamic page migration
algorithms, designed to perform accurate and timely page
migrations upon migrations of threads in multiprogrammed
NUMA shared-memory multiprocessors. The algorithms
associate the reference information with the nodes to or
from which threads migrate and the observed reference rate
from these nodes to the resident set of pages. In this way,
the algorithms identify which pages belong to the memory
affinity set of migrated threads and move them earlier, ac-
cording to a non-competitive criterion. Both algorithms as-
sume compiler support for identifyinghot memory areas,
that is, memory areas which are likely to concentrate exces-
sive remote accesses and have several candidate pages for
migration. Such a scheme is described in [7].

The first algorithm targets iterative parallel programs, in
which the same parallel computation is repeated for a num-
ber of iterations. These programs represent the vast major-
ity of parallel codes. Iterative parallel programs have in-
herent properties that enable a page migration algorithm to
make some safe assumptions on the expected memory refer-
ence pattern of the program. The second algorithm is more
general and does not make any assumptions on the expected
memory reference pattern. Both algorithms assume that the
runtime system has a mechanism to intercept the changes
of the effective processor set1 on which a parallel program
runs. Changes of the effective processor set imply migra-

1We define aseffective processor set, the set of processors that execute
the running threads of a parallel program at any point of execution.



tion of computation and they are interpreted in the runtime
system as triggers for switching the page migration policy.

3.1. Predictive Algorithm

The predictive algorithm works with iterative parallel
programs, in which a page migration mechanism can be
based on the assumption that the page reference pattern of
one iteration will be repeated throughout the execution of
the program. Under this assumption, the page migration
mechanism can take snapshots of the reference counters at
the end of the outer iterations of the program and use these
snapshots to achieve an optimal page placement with re-
spect to the relationship between threads and memory affin-
ity sets. Optimal placement is attained when each page is
moved to a node so that the maximum latency due to remote
memory accesses by any node to this page is minimized.

In iterative codes, the page migration algorithm can eas-
ily detect anomalies in the reference pattern. If the page
reference rate from the home node of a given page in one
iteration appears to increase at a slower rate with respect to
previous iterations, while the reference rate from some other
node appears to increase at a faster rate with respect to pre-
vious iterations, the page migration algorithm can speculate
that this behavior is a result of a thread migration between
the two nodes. The algorithm can subsequently verify this
speculation with information provided by the operating sys-
tem. If the speculation is verified, the algorithm can infer
that the page belongs to the memory affinity set of the mi-
grated thread and migrate the page to the new home node of
the thread, regardless of the accumulated reference history
of the page.

The predictive algorithm uses by default a competitive
page migration criterion to accurately migrate pages at the
end of outer iterations of the parallel computation, as de-
scribed in [7]. The algorithm polls the effective processor
set at the beginning and the end of each parallel construct.
The runtime system checks if the number of processors that
execute parallel constructs changes at any point of execu-
tion and marks the processors to/from which threads mi-
grate. Both events are recorded by the runtime system to
trigger the predictive algorithm for migrating pages. In or-
der to avoid undesirable interference from temporary thread
migrations from the operating system, the algorithm checks
if the thread is migrated and stays on the same node for a
sufficiently long amount of time, typically at least for a cou-
ple of seconds. This check is done by time-stamping the ex-
ecution points at which the page migration library polls the
effective processor set. Since the cost of migrating pages
is substantially high (in the order of 1ms. on state-of-the-
art systems), it would be desirable to start migrating pages
close to a thread, only if the thread is likely to spend a sig-
nificant amount of time on the same node, in order to com-

pensate for the overhead.
The predictive algorithm identifies a page as potentially

orphaned if it detects that across two iterations of the par-
allel computation the number of references from the home
node of the page increases at a slower rate with respect to
previous iterations. The runtime system checks the effec-
tive processor set of the program to identify if any thread
that was running on the home node of the page migrated to
a noden, and looks also if the accesses from noden have
increased at a faster rate with respect to previous iterations.
If the check is verified the orphaned page is migrated to
noden. The algorithm switches back to the default compet-
itive criterion, if it detects that across two iterations ofthe
computation there are no pages that satisfy the predictive
criterion in the memory areas scanned by the page migra-
tion engine.

3.2. Aging Algorithm

We propose a second algorithm, called the aging algo-
rithm, which does not make any assumptions on the struc-
ture of the parallel computation or the status of the computa-
tion at the time when a thread migration occurs. The aging
algorithm uses a sampling-based mechanism for dynamic
page migration. Assuming that there are no apparent points
of execution at which the page migration engine can be ac-
tivated to perform accurate page movements, as in the case
of iterative programs, a sampling-based mechanism checks
periodically hot memory areas and migrates the pages with
excessive remote references, according to a competitive cri-
terion.

The aging algorithm intercepts changes of the effective
processor set of the program similarly to the predictive algo-
rithm and activates counter aging when it detects a change
in the processor set. When the algorithm scans the pages
in a memory area and aging is activated, the algorithm ages
the reference counters for the nodes from which threads mi-
grate, if there are no other threads of the program running on
these nodes. The latter condition is used to deal with cases
in which a node has more than one processor and a thread
migration from this node does not imply that the node will
not access the page in the future. After aging the coun-
ters the algorithm uses the competitive criterion to migrate
pages.

Aging a counter means simply resetting the counter to
0, or equivalently, record the contents of the counter and
subtract the recorded value from the actual contents of the
counter whenever the counter is accessed again in the fu-
ture. The intuition behind aging is that when a thread mi-
gration occurs the reference counters for the node from
which the thread migrated contain obsolete reference his-
tory, which should not bias the decisions for migrating
pages. Aging does not imply immediate page migrations as



the new home node of the migrated thread must still issue a
sizeable number of references to the page in order to meet
the competitive criterion. However, the reset of the counter
of the previous home node increases the chances for migrat-
ing the page away from this node. If the access pattern has
temporal locality and the migrated thread is likely to access
the orphaned pages more frequently than the other threads
in the near future, orphaned pages will eventually migrate
to the right place.

4. Implementation Details

This section provides implementation details for our dy-
namic page migration algorithms. Both algorithms are im-
plemented at user-level in UPMlib [8], a runtime system
which provides transparent services for dynamic page mi-
gration and memory performance monitoring to OpenMP
programs.

4.1. Intercepting Thread Migrations at User-Level

Our page migration algorithms require that the operat-
ing system provides information to the runtime system on
the instantaneous mapping of threads to physical proces-
sors, in order to detect thread migrations upon their occur-
rence. We use shared memory and an asynchronous com-
munication model between the programs and the operating
system, based on polling for informing programs of thread
migrations [10]. In this case, the kernel keeps the schedul-
ing information updated in a pinned region of the virtual
address space of the program and the program polls this in-
formation at user-level. The algorithms poll the thread map-
ping information before and after the execution of parallel
constructs. This choice is reasonable, in the sense that it
considers the macroscopic behavior of the program and op-
timizes page placement with respect to this behavior, rather
than being biased by temporary effects, such as momentary
thread migrations for one time quantum. A second reason
that motivates this polling frequency is the high cost of page
migrations which must be carefully amortized.

4.2. Implementation Details in IRIX

UPMlib is implemented using the IRIX 6.5.5 memory
management control interface (mmci) [11]. Themmci vir-
tualizes the physical memory of the system and allows the
user to customize its page placement schemes by associat-
ing regions of the virtual address space with Memory Lo-
cality Domains (MLDs). MLDs can be associated in turn
with physical nodes in the system, to enable NUMA-aware
placement and migration of pages. Reference counting in-
formation used for deciding what pages should migrate is
collected directly from the SGI Origin2000 hardware and

extended-software reference counters via the/proc inter-
face [11].

UPMlib polls thet cpu field of the thread-private data
area (prda) at the boundaries of parallel constructs, using
the schedctl(SETHINTS) call. Each thread polls its
ownprda and records the information in a table of thread-
to-CPU mappings in shared memory. In this way, UPM-
lib obtains information on the actual CPU on which each
thread executed during the last time quantum. The table is
scanned after each parallel construct in order to mark and
record thread migrations. Note that this implementation de-
tects migrations of threads with a hysteresis of at most one
parallel construct.

In the implementation of the algorithms we use the mas-
ter thread of each program to execute UPMlib code. In order
to avoid having the working set of UPMlib erase the cache
footprint of the master thread which participates in the ex-
ecution of parallel code, we used stripmining to reduce the
working set size of UPMlib to approximately half the size of
the primary data cache. The working set of UPMlib is basi-
cally comprised of buffers into which the reference counters
are read. Furthermore, we multiplexed the reference coun-
ters in one small 8-Kbyte buffer, at the cost of needing more
accesses to the/proc filesystem for reading all hardware
counters into the buffer.

5. Experimental Results

We experimented on a 32-node (64-processor) SGI Ori-
gin2000. Each node had two MIPS R10000 processors
clocked at 250 MHz and 4 Mbytes of L2 cache per pro-
cessor; the system had a total of 8 Gbytes of main mem-
ory equidistributed across the nodes. The operating system
on which we performed the experiments was IRIX 6.5.5.
We used two application benchmarks from the NAS bench-
mark suite, namely BT and SP, both implemented with
OpenMP and customized to the Origin2000 architecture by
their providers [4]. In particular, the programs were tunedto
exploit the first-touch page placement strategy of IRIX on
Origin2000 systems. The benchmarks are iterative in na-
ture and this was the case for all OpenMP codes that were
available to us. Although experimenting with non-iterative
codes would be desirable to evaluate the aging algorithm,
iterative benchmarks can also serve this purpose, by com-
paring the aging algorithm to the predictive algorithm. The
latter is expected to perform better with iterative codes.

5.1. Impact of Thread Migrations

In the first experiment we executed BT and SP individ-
ually on a dedicated system, after modifying the code to
artificially reduce the number of threads used for execut-
ing parallel loops after the first half of the iterations in each



benchmark. The benchmarks were executing the first half
of the iterations with 32 threads bound to 32 processors that
occupied exactly 16 nodes of the system. The last half of
the iterations were executed on 16 processors bound to 8
nodes of the system, which were a subset of the 16 nodes
on which the benchmark started to run. This synthetic ex-
periment forced the benchmarks to migrate the computa-
tion performed by one half of the threads to the other half.
The artificial thread migrations implicitly required the mi-
grations of the pages in half of the memory affinity sets of
the programs.

The left chart in Figure 1 shows the histogram of remote
references to one of the most heavily referenced shared ar-
rays in the NAS BT benchmark (arrayrhs), as a func-
tion of the iteration number in our synthetic experiment.
The numbers are averages of 10 independent experiments.
The variance was less than 2%. The purpose of the his-
togram is to demonstrate the effect of thread migrations on
memory latency. Each triplet of bars in the histogram cor-
responds to the accumulated number of remote references
from all threads to arrayrhs, when the benchmark is ex-
ecuted with first-touch page placement and without page
migration (ft-IRIX), with first-touch and the IRIX page
migration engine enabled (ft-IRIXmig) and with first-
touch and our predictive page migration algorithm (ft-
predmig).

If the experiments were executed on 32 dedicated pro-
cessors without preemptions, the expected behavior would
be a linear increase of the number of remote references with
respect to the number of iterations at a constant rate. Indeed,
this is the observed behavior in the benchmark in the first
200 iterations, during which the number of processors that
execute the benchmark remains unchanged. Simple linear
regression shows that without page migrations the number
of remote references increases at the rate of approximately
160 per iteration. The rate is somewhat lower if a page mi-
gration engine is used, because the first-touch strategy sub-
optimally places several pages in the benchmark and these
pages are competitively migrated in the course of execution,
thus reducing the number of remote references. When half
of the threads executing the benchmark are preempted and
no page migration is used, the rate of the increase of remote
references raises sharply to approximately 554 per iteration,
3.5 times as much as when the benchmark was executed on
32 processors. This is the consequence of having the pages
in the memory affinity sets of half of the threads being ac-
cessed remotely.

The impact of thread migrations on execution time is
shown in the right chart in Figure 1. The leftmost bar in the
chart shows the theoretical optimal execution time of BT in
the experiment, under the assumption that when the number
of threads is reduced from 32 to 16, the program executes
exactly twice as slowly as when executed on 32 processors.

The optimal execution time was computed by measuring the
execution time of the first half of the iterations and pro-
jecting the execution time of the rest of the iterations on
16 processors. The next five bars correspond to the execu-
tion times with the IRIX first-touch page placement strategy
(ft-IRIX), with first-touch and the IRIX page migration
engine enabled (ft-IRIXmig), with first-touch and our
predictive page migration algorithm (ft-predmig) and
first-touch and our aging page migration algorithm (ft-
agingmig). In the case of the aging algorithm, we pro-
vide results for two different sampling frequencies used in
the page migration engine, a frequency of one hot memory
area (i.e. one read/write shared array in the program) per
3 seconds (ft-agingmig/3) and a frequency of one hot
memory area per 5 seconds (ft-agingmig/5).

The right chart in Figure 1 shows that the burst of re-
mote references due to the change of the number of running
threads results in a slowdown of 1.44 for BT. Using page
migration in the IRIX kernel reduces the slowdown factor
to 1.28. The left chart shows that the remote accesses start
increasing at the rate of approximately 400 per iteration, af-
ter the 200th iteration. Although page migration in the IRIX
kernel provides a sizeable reduction of remote references,
the observed behavior is still far from the desirable one.
The rightmost bars in the left chart in Figure 1 show that
our predictive page migration mechanism reduces the rate
of remote references from 160 to 119 per iteration, thus ex-
hibiting the desirable behavior. The execution time with the
predictive page migration mechanism is only 2.4% higher
than the theoretical optimal execution time. The aging page
migration algorithm achieves performance close to the pre-
dictive algorithm, within 10% with a sampling frequency of
one area per 3 seconds and 17% with a sampling frequency
of one area per 5 seconds. Overall, considering the fact that
the aging algorithm does not take into account the structure
of the parallel program and its performance is within 17%
off the performance of the more accurate predictive algo-
rithm, we conclude that the aging algorithm constitutes a
quite attractive alternative.

5.2. Impact of Dynamic Space-Sharing

In the second set of experiments, our goal was to evalu-
ate the page migration algorithms in a dynamically space-
shared environment, in which the processors of the system
are distributed among the running programs. For this pur-
pose, we executed workloads consisting of two copies of
BT or two copies of SP, plus a background load of a sequen-
tial I/O-intensive C program. Each copy of the benchmarks
requested 32 processors and the workload was submitted
for execution on a dedicated 32-processor partition of the
system. Initially we executed the workloads after setting
the OMP SET DYNAMIC flag in the benchmarks, to acti-



40 80 120 160 200 240 280 320 360 400

iterations 

0

50000

100000

150000

re
m

ot
e 

re
fe

re
nc

es
 

NAS BT, Class A, 32 processors, synthetic experiment

remote references with ft-IRIX 

remote references with ft-IRIXmig 

remote references with ft-predmig 

op
tim

al
 

ft-
IR

IX

ft-
IR

IX
m

ig

ft-
pr

ed
m

ig

ft-
ag

in
gm

ig
/3

ft-
ag

in
gm

ig
/5

0

20

40

60

80

100

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

NAS BT, Class A, 32 processors, synthetic experiment.

Figure 1. Results from the synthetic experiment.

vate dynamic adjustment of the number of threads that ex-
ecute parallel constructs by the IRIX MP library. With this
modification, we would expect the native IRIX scheduler to
somehow partition the 32 processors among the two pro-
grams, according to the space-sharing scheduling scheme
followed by the IRIX kernel. However, tracing of the ex-
ecution of the experiments revealed that the IRIX sched-
uler allocated 32 threads to each program at the beginning
of execution and then performed an unbalanced distribu-
tion of processors. Therefore, we modified the benchmarks
by hand to adaptively self-tune their number of threads ac-
cording to the total load presented to the system in the ex-
periments. We used a page of virtual memory shared be-
tween the programs in the workload and each program up-
dated a global system load index within this page. The
programs polled the load index before entering a parallel
construct and adjusted the number of threads to implement
an equipartitioning processor allocation strategy, usingthe
IRIX mp suggested numthreads() call [13]. This
modification affected only the number of threads used in
parallel constructs by the benchmarks. The actual proces-
sor on which each thread was scheduled was still controlled
by the IRIX scheduler.

Figure 2 shows the average execution time of the bench-
marks in the workloads. Since the workloads are homoge-
neous, the average execution time is also a direct indica-
tion of throughput. Each bar in the charts is an average of
10 independent experiments. The variance was less than
5%. The leftmost bar and the dashed line correspond to the
theoretical optimal execution time of the benchmark in the
workload, which is measured as the standalone execution
time on 32 processors, divided by two, i.e. the degree of
multiprogramming in the workload.

We instrumented UPMlib to collect statistics (not shown)
on the number of thread and page migrations during the exe-
cution of the workloads with our page migration algorithms.
The workloads incur a significant amount of thread mi-

grations, primarily because of the background load, which
competed for processor time with threads from the bench-
marks. The thread of the sequential background load mi-
grated continuously between processors due to the I/O op-
erations that forced the thread to block and unblock in the
kernel frequently. Due to this interference, the IRIX sched-
uler forced on average 554 thread migrations per experi-
ment, of which more than 200 werepermanent, in the sense
that the migrated thread stayed on the same node for at least
one second. Therefore, there was significant room for im-
provement from dynamically migrating orphaned pages.

The results in Figure 2 show trends similar to the results
of the synthetic experiment. Plain first-touch page place-
ment incurs a slowdown of 71% for BT and 44% for SP,
compared to the theoretical optimal execution time of the
benchmarks in the specific workloads. The IRIX page mi-
gration engine provides a moderate performance improve-
ment of 13% for the BT workload and 20% for the SP
workload, compared to plain first-touch page placement.
The predictive page migration algorithm achieves solid im-
provements over first-touch, namely 63% for the BT work-
load and 40% for the SP workload. The aging algorithm
with a sampling frequency of 3 seconds achieves also size-
able improvements of 41% and 32% respectively. The per-
formance of the predictive algorithm is within 5% of the
theoretical optimal performance in these experiments. The
sensitivity of the aging algorithm to the sampling frequency
is once again observed in the experiments.

5.3. Results with the IRIX scheduler

In the final set of experiments we constructed mul-
tiprogrammed workloads, in which we executed concur-
rently four instances of each benchmark and our sequen-
tial I/O-intensive background load. Each instance of the
parallel benchmarks started with 32 threads and the work-
load was executed on all 64 processors of an idle sys-



op
tim

al
 

ft-
IR

IX

ft-
IR

IX
m

ig

ft-
pr

ed
m

ig

ft-
ag

in
gm

ig
/3

ft-
ag

in
gm

ig
/5

0

50

100

150

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

NAS BT, Class A, 32 processors, dynamic space-sharing

op
tim

al
 

ft-
IR

IX

ft-
IR

IX
m

ig

ft-
pr

ed
m

ig

ft-
ag

in
gm

ig
/3

ft-
ag

in
gm

ig
/5

0

50

100

150

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

NAS SP, Class A, 32 processors, dynamic space-sharing

Figure 2. Average execution time of NAS BT and SP, in workload s executed with a dynamic space-
sharing scheduler.

tem. The workload execution was controlled completely
by the native IRIX scheduler and the processors were space
and time-shared by the operating system, after setting the
OMP SET DYNAMIC flag in the benchmarks.

Tracing of the experiments revealed that initially, IRIX
started executing all 128 threads of the parallel programs,
relying on time-sharing for distributing the system re-
sources fairly. In the course of execution, each program was
detecting via the IRIX MP runtime library that the load of
the system was high and processor utilization was low and
started to progressively reduce the number of active threads.
Towards the end of execution of the workloads, the schedul-
ing strategy reverted to a space-sharing scheme, in which
there was little time-sharing of processors mostly due to the
background load.

Figure 3 illustrates the results from these experiments.
The results are averages of 10 experiments in which the
variance in execution time was less than 10%. The main
observation is that in this set of experiments in which the
processors were space and time-shared by the IRIX sched-
uler, parallel programs are much more sensitive to multipro-
gramming and the impact of thread migrations to memory
performance can be severe. Each program suffers thousands
of thread migrations during its execution and the associated
slowdown factor compared to the theoretical optimal exe-
cution time is as much as 2.1 for BT and 3.3 for SP. The
performance improvements from using our dynamic page
migration algorithms are much more pronounced in this
case, ranging from 70% to 264% compared to plain first-
touch page placement and from 52% to 237% compared to
first-touch combined with the IRIX page migration engine.
These experiments mainly show that under unpredictable
scheduling conditions, a powerful page migration mecha-
nism can be very effective in alleviating the performance
implications of thread-to-memory affinity. Satisfactory per-

formance can be sustained without necessitating a special-
purpose scheduler to establish isolated processor sets, orin-
tervention from the system administrator.

6 Conclusions

This paper presented two algorithms for effective dy-
namic page migration on multiprogrammed NUMA shared-
memory multiprocessors. The algorithms exploited the idea
of correlating the scheduling actions of the operating sys-
tem with information obtained from dynamic monitoring of
memory activity of a parallel program. Both algorithms ex-
hibited significant performance improvements with multi-
programmed workloads of OpenMP programs compared to
the IRIX page placement and migration mechanisms. To
our knowledge, this paper is the first to present results with
dynamic page migration for multiprogrammed workloads
on an actual NUMA platform.

We are currently investigating ways to enhance the
multiprogramming-conscious page migration algorithms in
UPMlib, primarily for making them less sensitive to tempo-
rary thread migrations performed by the operating system.
We are also attempting to improve the selectivity of our al-
gorithms, in order to limit the cost of page migrations by
migrating only the most critical pages. Finally, we inves-
tigate alternative strategies for identifying memory affinity
sets through UPMlib and apply forms of page forwarding
upon thread migrations, without relying on reference count-
ing information.

Acknowledgements

This work was supported by the European Commission,
through the TMR Contract ERBFMGECT-950062 and in



op
tim

al
 

ft-
IR

IX

ft-
IR

IX
m

ig

ft-
pr

ed
m

ig

ft-
ag

in
gm

ig
/3

ft-
ag

in
gm

ig
/5

0

50

100

150

200

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

NAS BT, Class A, 32 processors, IRIX scheduler 

op
tim

al
 

ft-
IR

IX

ft-
IR

IX
m

ig

ft-
pr

ed
m

ig

ft-
ag

in
gm

ig
/3

ft-
ag

in
gm

ig
/5

0

100

200

300

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

NAS SP, Class A, 32 processors, IRIX scheduler 

Figure 3. Average execution time of the NAS BT and SP, in workl oads executed with the native IRIX
scheduler.

part through the ESPRIT IV Project No. 21907 (NANOS),
the Greek Secretariat of Research and technology through
project No. E.D.-99-566 and the Ministry of Education
of Spain through projects No. TIC-98-511 and TIC97-
1445CE. The experiments presented in this paper were con-
ducted with resources provided by the European Center for
Parallelism of Barcelona (CEPBA).

References

[1] R. Chandra et. al. Scheduling and Page Migration for Mul-
tiprocessor Compute Servers.Proc. of the 6th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 12–24, San Jose, CA,
October 1994.

[2] E. Hagersten and M. Koster. Wildfire: A Scalable Path for
SMPs.Proc. of the 5th International Symposium on High
Performance Computer Architecture, pp. 172–181, Orlando,
FL, January 1999.

[3] D. Jiang and J. P. Singh. Scaling Application Performance
on a Cache-Coherent Multiprocessor.Proc. of the 26th In-
ternational Symposium on Computer Architecture, pp. 305–
316, Atlanta, GA, May 1999.

[4] H. Jin, M. Frumkin and J. Yan. The OpenMP Implementa-
tion of NAS Parallel Benchmarks and its Performance. Tech-
nical Report NAS-99-011, NASA Ames Research Center,
1999.

[5] J. Laudon and D. Lenoski. The SGI Origin2000: A cc-
NUMA Highly Scalable Server.Proc. of the 24th Interna-
tional Symposium on Computer Architecture, pp. 241–251,
Denver, CO, June 1997.

[6] M. Marchetti, L. Kontothanassis, R. Bianchini and M. Scott.
Using Simple Page Placement Policies to Reduce the Cost
of Cache Fills in Coherent Shared-Memory Systems.Proc.

of the 9th International Parallel Processing Symposium, pp.
480–485, Santa Barbara, CA, April 1995.

[7] D. Nikolopoulos et.al. A Case for User-Level Dynamic Page
Migration.Proc. of the 14th ACM International Conference
on Supercomputing, pp. 119–130, Santa Fe, NM, May 2000.

[8] D. Nikolopoulos et.al. UPMlib: A Runtime System for
Tuning the Memory Performance of OpenMP Programs on
Cache-Coherent NUMA Multiprocessors.Proc. of the 5th
ACM Workshop on Languages, Compilers and Runtime Sys-
tems for Scalable Computers, Rochester, NY, May 2000.

[9] L. Noordergraaf and R. Van der Pas. Performance Experi-
ences on Sun’s Wildfire Prototype.Proc. of Supercomput-
ing’99, Portland, OR, November 1999.

[10] C. Polychronopoulos, N. Bitar and S. Cleiman. Nano-
Threads: A User-Level Threads Architecture. CSRD Tech-
nical Report No. 1297, University of Illinois at Urbana-
Champaign, 1993.

[11] Silicon Graphics Inc. IRIX 6.5 Operating System Man
Pages. http://techpubs.sgi.com, Accessed November 1999.

[12] V. Soundararajan et.al. Flexible Use of Memory for Repli-
cation/Migration in Cache-Coherent DSM Multiprocessors.
Proc. of the 25th International Symposium on Computer Ar-
chitecture, pp. 342–355, Barcelona, Spain, June 1998.

[13] A. Tucker and A. Gupta. Process Control and Scheduling
Issues for Multiprogrammed Shared-Memory Multiproces-
sors.Proc. of the 12th ACM Symposium on Operating Sys-
tem Principles, pp. 159–166, Litchfield Park, December
1989.

[14] B. Verghese, S. Devine, A. Gupta and M. Rosenblum. Oper-
ating System Support for Improving Data Locality on CC-
NUMA Compute Servers.Proc. of the 7th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 279–289, Cambridge,
MA, October 1996.


