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Abstract

In this paper a sufficient condition is given for minimal
routing in n-dimensional (n-D) meshes with faulty nodes
contained in a set of disjoint fault regions. It is based on
an early work of the author on minimal routing in low di-
mension meshes (such as 2-D meshes with faulty blocks).
Unlike many traditional models that assume all the nodes
know global fault distribution, our approach is based on
the concept oflimited global fault information. First, a fault
model calledfault regionis used in which all faulty nodes in
the system are contained in a set of disjoint regions. Fault
information is coded in a2n-tuple calledextended safety
levelassociated with each node of ann-D mesh to support
minimal routing. Specifically, we study the existence of min-
imal paths at a given source node, limited distribution of
fault information, minimal routing, and deadlock-free rout-
ing. Our results show that any minimal routing that is par-
tially adaptive can still be applied as long as the destination
node meets a certain safety condition. A dynamic planar-
adaptive routing scheme is presented that offers better fault
tolerance and adaptivity than the regular planar-adaptive
routing scheme inn-D meshes.

1 Introduction

In a multicomputer system, a collection of processors
(or nodes) work together to solve large application prob-
lems. These nodes communicate data and coordinate their
efforts by sending and receiving messages through the un-
derlying communication network. Thus, the performance
of such a multicomputer system depends on the end-to-end
cost of communication mechanisms. Routing time of mes-
sages is one of the key factors that are critical to the perfor-
mance of multicomputers. Themesh-connected topology
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is one of the most thoroughly investigated network topolo-
gies for multicomputers. Many multicomputers that use 2-
dimensional (2-D) meshes include the MIT J-machine, the
Symult 2010, and the Intel Touchstone. The CRAY T3D
and T3E systems use a 3-D torus.

As the number of nodes in a mesh-connected multicom-
puter increases, the chance of failure also increases. The
complex nature of networks also makes them vulnerable to
disturbances which can be either deliberate or accidental.
Therefore, the ability to tolerate failure becomes increas-
ingly important, especially in the communication subsys-
tem. Several studies have been conducted which achieve
fault tolerance by adding (or deleting) extra components of
the system. However, adding and deleting nodes and/or
links require modifications of network topologies which
may be expensive and difficult. We focus here on achiev-
ing fault tolerance using the inherent redundancy present in
the mesh-connected multicomputer, without adding spare
nodes and/or links.

An important and challenging issue is to extend com-
munication subsystems which include various routing algo-
rithms to cope with faulty components. To this end, fault
models and routing algorithms are the two keys to success-
fully extend the existing approaches. We use a convex type
of fault region as our fault model and propose a novelinfor-
mation modelin which each node in a mesh-connected mul-
ticomputer collects and distributes fault information con-
currently but in a decentralized way. To ensure that this
approach is scalable for a large and complex network, only
specially coded fault information is distributed rather than
detailed information. Unlike many existing information
models that require each node to have knowledge of the en-
tire network, the coded fault information associated with
each node represents limited-global information by explor-
ing locality of disturbances in the network. This approach
also reduces the memory requirement [6] to store fault in-
formation at each node. When a disturbance occurs, only
those affected nodes need to update local information to
keep it consistent.



The safety-level-based(or safety-vector-based) routing
[9, 11], a special form oflimited-global-information-based
routing, is a compromise between local-information- and
global-information-based approaches. In this type of rout-
ing, a routing function is defined based on current node,
destination node, and limited global fault information gath-
ered at the current node. This approach differs from many
existing ones where information is brought by theheaderof
the routing message [1], and the routing function is defined
based on header information and local state of the current
node [5]. In this approach, neighborhood fault information
is captured by an integer (safety level) or a binary vector
(safety vector) associated with each node. For example, in
a binary hypercube, if a node’s safety level ism (an inte-
ger), there is at least one Hamming distance (or minimal)
path from this node to any node within Hamming-distance-
m [11]. Using the safety level (or safety vector) associated
with each node, a routing algorithm can obtain an optimal or
suboptimal solution and requires a relatively simple process
to collect and maintain fault information in the neighbor-
hood. Therefore, limited-global-information-based routing
can be more cost effective than routing based on global or
local information. The safety-level-based routing has been
successfully applied to binary hypercubes but less efficient
when it is directly applied to mesh topologies such as 2-D
and 3-D meshes. In [10], the author introduced the concept
of extended safety levelwith its use in achieving minimal
routing in 2-D meshes with faulty nodes contained in a set
of faulty blocks.

In this paper, the extended safety level concept is fur-
ther extended for generaln-D meshes. The challenge is to
find a minimal path in ann-D mesh with faulty nodes con-
tained within a set of disjointfault regions(a fault model
extended from the commonly used faulty block model in
2-D meshes). The amount of limited-global-information
should be kept minimum and be easy to obtain and main-
tain. Specifically, we address the issues of the existence of a
minimal path at a given source node, limited distribution of
fault information, minimal routing, and deadlock-free rout-
ing. The concept of partial adaptive routing is defined and a
dynamic planar-adaptive routing approach is proposed that
trades routing adaptivity for a simple deadlock-free routing
with a better fault tolerance capability than Chien and Kim’s
regular planar-adaptive routing [2]. Our approach is the first
attempt to address the minimal routing inn-D meshes with
faulty nodes using limited fault information.

The collision-free routing in the presence of obstacles
is also studied in other fields such as routing urban vehi-
cles, motion planning in robotics, wire routing in VLSI and
logistics in operations research. The focus in these fields
are different. For example, given a set of obstacles and
two points in the plane, most studies try to find a shortest
path, not necessarily a minimal one, among all the avail-

able collision-free paths. In addition, most problems are
optimization problems associated with a certain optimiza-
tion function such as minimum number of bends as in VLSI
routing. See [7] for a survey of research results in these
fields. All proofs for the results in this paper are omitted
due to space limitation.

2 Preliminaries

A k-aryn-dimensional mesh withkn nodes (also called
n-D mesh) has an interior node degree of2n and a net-
work diameter ofn(k � 1). Each nodeu has an ad-
dress: (u1; u2; :::; un), whereui 2 f0; 1; :::; k � 1g cor-
responds to the location ofu in dimensiondi. Two nodes
v: (v1; v2; � � � ; vn) andu: (u1; u2; :::; un) are connected if
their addresses differ in one and only one element (dimen-
sion), say dimensiondi; moreover,jui � vij = 1. In the
subsequent discussion, ann-D mesh is considered without
specifying its size. A coordinate system in ann-D mesh
is defined in such a way that it has a “floating” origin in
node(0; 0; :::; 0) adjustable by constantc. A di-dimensional
axis (denoted asdi-axis) consists of nodes with addresses
(0; 0; ::0; ui; 0; :::; 0), whereui is an integer. Because of the
floating origin of the mesh, we can assume without loss of
generality that the source in a routing is(0; 0; :::; 0) and the
destination is(u1; u2; :::; un). Along each dimensiondi,
there are two directions: positivedi (alsodi+) and negative
di (di�). Along the positivedi (negativedi) dimension, the
coordinate in dimensiondi increases (decreases). Clearly,
there are2n directions in ann-D mesh.

A routing process isminimal if the length of the routing
path from source(0; 0; :::; 0) to destination(u1; u2; :::; un)
is the distance between these two nodes, i.e.,

Pn

i=1 juij.
Throughout this paper, we focus on minimal routing in an
n-D mesh with faulty nodes (link faults can be treated as
node faults by disabling the corresponding adjacent nodes).
To simplify the routing process, a labeling scheme is intro-
duced to quickly identify those nonfaulty nodes that cause
routing difficulty and disables them. As a result, a set of
convex-type offault regionsis formed.

Definition 1: In an n-D mesh, a nonfaulty node is either
marked enabled or disabled. Initially, all nonfaulty nodes
are marked enabled. A nonfaulty node is marked disabled
if there are two or more disabled or faulty neighbors along
different dimensions. A fault region contains all the con-
nected disabled and faulty nodes.

Based on Definition 1, there are three types of nodes:
faulty nodes, enabled nodes, and disabled nodes. The node
status can be easily determined through rounds of status ex-
changes among neighboring nodes. It is assumed that both
source and destination nodes in a routing process are non-
faulty and they are marked enabled. A fault region has the
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Figure 1. Fault regions in a 3-D mesh.

following desirable features that facilitate simple and mini-
mal routing.

Theorem 1: In ann-D mesh, a fault region defined by Def-
inition 1 has the following properties: (1) Every neighbor
of a fault region has one and only one faulty or disabled
neighbor (in the fault region). (2) The distance between any
two fault regions is at least two.

With the first property of a fault region (also called the
convex feature), the address of a fault region can be simply
described by a range along each dimension, e.g.,fi : f

0

i ,
with fi � f

0

i , specifying the range along dimensiondi. A
general fault region can be represented by[f1 : f

0

1; f2 :
f

0

2; :::; fn : f
0

n] which covers
Qn

i=1(f
0

i � fi + 1) nodes.
When the range along a dimension is one, sayfi : fi, the
number of dimensions spanned by the corresponding region
is reduced by one.

For n-D meshes with boundary, we can add “ghost”
nodes around boundary nodes to change these nodes to reg-
ular interior nodes. Ghost nodes are assumed to be non-
faulty and are marked enabled. Note that in some models
such as the one proposed by Chien and Kim [2], a pes-
simistic fault model is used. Specifically, one of the ghost
nodes has to be marked disabled, and hence, generating
more disabled nodes in the given mesh.

In 3-D meshes, fault regions are calledfaulty cubes. Fig-
ure 1 shows a 3-D mesh with four faulty nodes (3,4,2),
(3,5,1), (3,5,2), and (5,4,2). Based on Definition 1, these
four faulty nodes generate two disjoint faulty cubes: [3:3,
4:5, 1:2] (also called afaulty block in 2-D meshes), and
[5:5, 4:4, 2:2], a single node.

3 Extended Safety Level

In this section, an information model representing fault
distribution is studied to represent fault distribution. We
first extend the safety level concept ton-D meshes. The
safety level[11] concept was originally proposed to capture
limited global information in a binary hypercube. It was
extended to 2-D meshes asextended safety level[10] which

includes four elements, each of which indicates the distance
to the closest faulty block to East (E), South (S), West (W),
and North (N) of the current node. The limited global in-
formation (captured by extended safety level) at each node
can be used to decide the feasibility of a minimal routing.
The following shows an important theorem that leads to our
extended safety level definition inn-D meshes and it serves
as a basis of our routing approach.

Theorem 2: Assume that node(0; 0; :::; 0) is the source
and node(u1; u2; :::; un) is the destination. If there is
no fault region that intersects with any of the axes, there
exists at least one minimal path between(0; 0; :::; 0) and
(u1; u2; :::; un). This result holds for any location of the
destination and any number and distribution of fault re-
gions.

The above result can be strengthened by including the
location of destination(u1; u2; :::; un).

Corollary 2 : If there is no fault region that intersects
with the sections of[0; ui] along thedi-axis for all i 2
f1; 2; :::; ng, there exists at least one minimal path between
the source and destination nodes.

Note that the role of source and destination can be inter-
changed if there exists a minimal path between them. That
is, if there exists a minimal path from a source to a destina-
tion, then there exists a minimal path from the destination to
the source. However, their roles cannot be interchanged in
Theorem 2 (and Corollary 2). If a source node is extended
safe with respect to a destination, it does not imply that the
destination is extended safe with respect to the source.

The following definition gives an extended safety level
definition forn-D meshes. Source node (0,0, ..., 0) is as-
sociated with a2n-tuple (p1; n1; p2; n2; :::; pn; nn), where
pi andni represent the distance to the closest fault region
along the positive and negativedi dimensions, respectively.
Basically, extended safety level is coded information about
fault distribution in the neighborhood. Such information
can be used to determine the existence of a minimal path
between a given pair of source and destination nodes. Sym-
bol “�” is used to represent the fact that there is no fault
region along the corresponding direction. A node is called
safeif its extended safety level is(�;�; :::;�); otherwise,
it is unsafe.

Definition 2: The extended safety level of node (0,0, ..., 0) in
a givenn-D mesh is a2n-tuple: (p1; n1; p2; n2; :::; pn; nn).
This node is extended safe with respect to a destination
(u1; u2; :::; un), if juij < pi (whenui > 0) and juij < ni
(whenui < 0) for all i 2 f1; 2; :::; ng; otherwise, it is ex-
tended unsafe.

In a 3-D mesh, each node is associated with a vector
(E;W;N; S; F;B) to represent the distance to the closest
faulty cube along East (positived1), West (negatived1),
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Figure 2. A faulty 8�8 2-D mesh with extended
safety levels associated with unsafe nodes.

North (positived2), South (negatived2), Front (positived3),
and Back (negatived3) directions. In a 2-D mesh, each node
is associated with a vector (E;W;N; S). Figure 2 shows a
faulty8�8 2-D mesh with extended safety levels associated
with unsafe nodes.

An intuitive explanation of the extended safe node is the
following: A node is extended safe to a destination node,
as long as there is no fault region that intersects with the
sections between the source and the destination along each
axis. Based on Corollary 2, there always exists a minimal
path between two nodes, as long as one node is extended
safe with respect to the other.

Like fault regions, the extended safety level of each node
can be calculated through iterative rounds of message ex-
changes among neighboring nodes. Assume that each node
knows the status of its neighbors (faulty, enabled, and dis-
abled). When a node identifies a faulty or disabled neighbor,
it passes information to the neighbor in the opposite direc-
tion. For example, if the neighbor to its positivedi dimen-
sion is faulty or disabled, the current node passes informa-
tion (distance: 2 and direction: positivedi) to its neighbor
at the negativedi dimension. Once a node receives fault in-
formation it keeps a copy and increments its distance value
by one before forwarding it to the neighbor in the opposite
direction. Clearly, each node will receive up to2n distance
values together with their directions from2n different di-
rections. The default value for each direction is�; that is,
there will be no overhead when there is no fault in ann-D
mesh. Since information is transmitted along one direction
in a dimension. The number of (synchronous) rounds of
message exchanges among neighboring nodes is bounded
by k in a k-aryn-D mesh; that is,O(k) in a kn-noden-D
mesh.

4 Routing Protocols

The fault-tolerant adaptive and minimal routing is based
on the following assumptions: (1) The fault region defined
early is used as the fault model. (2) The source knows
the extended safety level of the destination. (3) Each node
knows the status of its adjacent nodes. (4) Only the static
fault model is used, i.e., it is assumed that no new fault oc-
curs during a routing process.

Fully adaptive and minimal routing

For the convenience of feasibility checking of a routing pro-
cess,(0; 0; :::; 0) is now considered as a destination with
a 2n-tuple (p1; p2; :::; pn) and(u1; u2; :::; un) as a source
(still ui � 0 for all i 2 f1; 2; :::; ng). The way the safety
status of the destination is collected at the source is dis-
cussed in [10]. Although each node still holds a safety vec-
tor (p1; n1; p2; n2; :::; pn; nn), a subvector is used because
of the specific locations of source and destination in the as-
sumption.

The routing algorithm consists of two parts:feasibility
checkandrouting. Feasibility check at the source is applied
to check if it is possible to perform a minimal routing. This
can be easily done by comparing the relative coordinates
between the source and destination nodes with the safety
vector of the destination.

FEASIBILITY CHECK n-D-MESHES

fAt source(u1; u2; :::; un), destination(0; 0; :::; 0)
with safety vector(p1; p2; :::; pn)g
Minimal routing is feasible if(u1; u2; :::; un) �
(p1; p2; :::; pn) and returns YES;
otherwise, returns NO.

FT-ROUTING IN n-D-MESHES

fAt source(u1; u2; :::; un)g
if FeasibilityCheckn-D-Meshes = YES
then apply any fully adaptive and minimal routing in
regularn-D meshes.
elsethe proposed routing approach cannot be applied.

Instead of proving the correctness of the above approach,
let us look at its application in 2-D meshes. Again, assume
that(0; 0) is the destination and node(u1; u2) is the source,
with u1; u2 � 0. If there is no faulty block that intersects
with thed1-axis andd2-axis, then there exists at least one
minimal path from(u1; u2) to (0; 0), i.e., the length of this
path isju1j+ ju2j. Results in [10] show that any fully adap-
tive and minimal routing in a 2-D mesh can still be applied
if the above condition holds and there is no need of addi-
tional fault information during the routing process. When-
ever a message reaches a faulty block, it just goes around
the block towards the destination and it will never be forced
to a detour path or a trap where backtracking is required.



The correctness of the proposed algorithm can be de-
scribed as follows through induction on dimensionn.
Clearly, this algorithm works for 2-D meshes. Assume that
this algorithm works for meshes with up ton � 1 dimen-
sions. Inn-D meshes, we assume that a source (or an in-
termediate node) and destination pair spansn dimensions;
otherwise, the problem is reduced to minimal routing inl-
D meshes (withl < n) and its correctness follows directly.
In other word, at each intermediate node the message can
be forwarded along any one of then dimensions. When an
intermediate node is adjacent to a fault region, since each
neighbor of a fault region is adjacent to exactly one dis-
abled (or faulty) node in the fault region, the message can
still be forwarded along either one of the other directions (a
fully adaptive routing algorithm allows this). The disjoint
property of fault regions ensures that the routing process
can still enjoy(n � 1)-D freedom until it hits either a new
fault region or the offset along one dimensiondi is reduced
to zero, i.e.,ui = 0. Based on the induction, a minimal path
is guaranteed in the remaining routing process.

Partially adaptive and minimal routing

Deadlockdue to dependencies on consumption resources
(such as channels) is a fundamental problem in routing. A
deadlock involving several routing processes occurs when
there is a cyclic dependency for consumption channels. To
ensure freedom of deadlock and to support a “truly” fully
adaptive routing without using the flow control mechanism,
Linder and Harden [8] showed avirtual networkapproach
that requiresO(2n) virtual channels[3] in an n-D mesh.
In this approach, each physical channel may support sev-
eral logical or virtual channels multiplexed across the phys-
ical channel. The reason for using multiple channels is to
avoid cyclic dependencies among channels to prevent dead-
lock. Other simpler approaches [4] exist that support fully
adaptive routing using constant number of virtual channels.
However, routing decisions have to be made based on accu-
rate buffer status, i.e., routing and flow control have to be
coupled.

Planar-adaptive routing[2] is one of the popular par-
tially adaptive routings that requires few virtual channels
(three), and at the same time, allowing flow control and
routing to be decoupled. It offers cost-effectiveness in pre-
venting deadlock while still keeps a certain degree of adap-
tivity. Planar-adaptive routing restricts the way the rout-
ing message is routed. Specifically, the routing message is
routed following a series of 2-D planesA1, A2, ... An in
ann-D mesh. Each 2-D planeAi is formed by two dimen-
sionsdi anddi+1. PlaneAn consists of dimensionsdn and
d1. PlanesAi andAi+1 share dimensiondi+1. However,
the order of dimensions is arbitrary. If the offset in dimen-
sion di is reduced to zero, then routing can be immediat-
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Figure 3. Planar-adaptive routing.

edly shifted to planeAi+1. Apply this routing approach to
3-D meshes, we first construct two planesA1 andA2. As-
sume thatA1 contains dimensionsd1 andd2 and planeA2

containsd2 andd3 (see Figure 3 (a)). Again, the source
is (u1; u2; u3) and the destination is(0; 0; 0). The rout-
ing starts from(u1; u2; u3) along planeA1 which is plane
d3 = u3, once the offset in dimensiond1 is reduced to zero
it switches to planeA2 which is planed1 = 0 (see Fig-
ure 3 (a)).

Unfortunately, planar-adaptive-routing cannot be di-
rectly applied to achieve fault-tolerant and minimal routing
using our model. Consider a routing example in a 3-D mesh
with source(3; 3; 3) and destination(0; 0; 0). Assume that
there is a faulty cube[1 : 2;�1 : 4; 2 : 4]. Clearly, all the
minimal paths from(3; 3; 3) in planeA1 : d3 = 3 to any
node along adjacent line,d3 = 3 andd1 = 0, ofA1 andA2

are all blocked by the faulty cube.

Theorem 3: Consider ann-D mesh with fault regions. If
there is no fault region that intersects with 2-D planesd

0

1 =
d

0

2 = ::: = d
0

n�2 = 0, wherefd
0

iji 2 f1; 2; :::; n � 2gg is
a subset offdiji 2 f1; 2; :::; ngg then the planar-adaptive
routing can be applied inFT-ROUTING IN n-D-MESHES

to any source(u1; u2; :::; un) to generate a minimal path at
(0; 0; :::; 0).

The above result shows the planar-adaptive routing can
still be applied in ann-D mesh with fault regions under a
strengthened constraint (i.e., a weaker sufficient condition
associated with the destination node). Note that there are�
n

2

�
2-D planes defined in Theorem 3, compared withn

axes in Theorem 2. That is, it is less likely for a destina-
tion to meet the strengthened constraint than the one based
on the extended safety level. Moreover, it is more difficult
and expensive for each node to calculate its safety status un-
der the strengthened constraint: each node needs to collect
information in

�
n
2

�
adjacent planes instead of nodes along

n dimensions. Clearly, the above problem stems from the
planar-adaptive routing itself which is too restrictive. The
question is the existence of other partially adaptive and min-
imal routing that can still be used in FT-ROUTING IN n-



D-MESHES. Before considering other possible solutions
based on partially adaptive approaches, let us formally de-
fine concepts of fully and partially adaptive routing.

Minimal routingonly consider minimal paths between a
given source and destination pair. Apreferred directionis
one along which the neighbor is closer to the destination.
In ann-D mesh, there are at mostn preferred directions,
out of 2n possible directions, for a routing process. Actu-
ally, the number of preferred directions is equal to the num-
ber of dimensions spanned by the source and destination
pair. For example, suppose in a routing in a 3-D mesh the
source is(2;�2;�4) and the destination is(1; 2;�3), then
preferred dimensions at the source are West (negatived1),
North (positived2), and Front (positived3). During a mini-
mal routing, the number of preferred directions from an in-
termediate node to the destination reduces and it eventually
becomes zero upon reaching the destination.

Definition 3: A minimal routing is fully adaptive if it can
select any preferred direction at any step of the routing pro-
cess. A minimal routing is partially adaptive if it can select
from at least two preferred directions at any step whenever
there are two or more preferred directions.

The traditional X-Y routing in 2-D meshes is not a par-
tially adaptive routing, since at any step the routing process
can have only one choice. The planar-adaptive routing also
fails to meet the partially adaptive routing requirement. In
2-D planeAi, when it happens that the offset in dimension
di+1 is first reduced to zero. It is forced to reduce offset of
di before switching to 2-D planeAi+1. That is, only one
preferred direction can be selected even though more than
one exists.

Minimal and partially adaptive routing can also be
ranked in terms of degree of adaptivity. A set of preferred
directions that can be selected at an intermediate node (in-
cluding the source) is called a set oflegitimate preferred
directionsat this node. A partially adaptive routingR1 is
more restrictivethan another oneR2 if at any intermediate
node (including the source) the set of legitimate preferred
directions ofR1 is a subset of the one ofR2; in addition,
the set of legitimate preferred directions ofR1 is a proper
subset of the one ofR2 at at least one intermediate node (in-
cluding the source). Note that the relation “more restrictive”
is a partial order; that is, not every two partially adaptive
routing algorithms can be compared under this relation.

We introduce here a most restrictive partially adaptive
routing, calleddynamic planar-adaptive routing. Like reg-
ular planar-adaptive routing, the routing message is routed
through a series of 2-D planes. Two adjacent planes still
share a common dimension. The difference is that the
planes in the series are dynamically generated. Again we
use 3-D meshes to illustrate this approach. Suppose we se-
lect dimensionsd1 andd2 in A1, then there are two possi-
bles choices in selecting dimensions inA2. One possibility

is dimensionsd1 andd3 and the other one is dimensionsd2
andd3. Again, the routing starts from planeA1 : d3 = u3,
and within this plane, randomly reduces offsets in dimen-
siond1 and dimensiond2. If the offset in dimensiond1 is
reduced to zero before one in dimensiond2, A2 that spans
dimensionsd2 andd3 is selected (see Figure 3 (a)); oth-
erwise,A2 that spans dimensionsd1 andd3 is used (see
Figure 3 (b)). Assuming that destination(0; 0; :::; 0) is ex-
tended safe with respect to the source), we have the follow-
ing result.

Theorem 4: Consider ann-D mesh with fault regions. If
there is no fault region that intersects with any axisdi,
i 2 f1; 2; :::; ng, then the dynamic planar-adaptive rout-
ing can be applied inFT-ROUTING IN n-D-MESHES to
any source(u1; u2; :::; un) to generate a minimal path to
(0; 0; :::; 0)

5 Extensions

An enhanced sufficient condition

Before considering possible extensions of the proposed
model, we first re-examine the sufficient condition in Theo-
rem 2. We first show that the sufficient condition associated
with the source cannot be further relaxed. Again, we start
with 3-D meshes. Suppose two axes (out of possible three
axes) are clear of faulty cubes, we show that a minimal path
may not exist for a given destination. For example, in a
system with only one faulty cube [u1 � 2: u1 � 1, �1:
u2 + 1, �1: u3 + 1] that goes through thed1 axis, this
faulty cube blocks all the possible minimal paths between
(u1; u2; u3) and(0; 0; 0) (assumingu1 > 2, u2; u3 � 0).
On the other hand, there are cases when faulty cubes inter-
sect one or more axis, a minimal path still exists as in the
case of Figure 4 (a) where two faulty cubesF1 andF2 inter-
sect thed2 andd1 axes, respectively. However, a minimal
path exists between nodes(10; 9; 7) and(0; 0; 0). Clearly, a
stronger condition cannot be directly associated with node
(0; 0; 0).

The following result provides an enhanced sufficient
condition for the existence of a minimal path between nodes
(0; 0; 0) and(u1; u2; u3). The condition is associated with
nodev in region[0 : u1; 0 : u2; 0 : u3] (see Figure 4 (b)).

Theorem 5: Consider two nodes(0; 0; 0) and (u1; u2; u3)
in a 3-D mesh. If there exists a nodev : (v1; v2; v3) with
0 � vi � ui, such that nodes along three line sections
d1 = v1 andd2 = v2, d1 = v1 andd3 = v3, d2 = v2 and
d3 = v3 within region[0 : u1; 0 : u2; 0 : u3] are fault-free,
a minimal path exists between(0; 0; 0) and(u1; u2; u3).

Theorem 5 can be easily proved by applying Corollary 2
twice: one at the source-destination pair(v; s) and another
one at the(v; d). In the following, we use(v1; v2; :::; vi�1;
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Figure 4. (a) A failure condition. (b) An en-
hanced sufficient condition.

�; vi+1; :::; vn) to represent a line section(d1 = v1) ^
(d2 = v2) ^ ... ^ (di�1 = vi�1) ^ (di+1 = vi+1) ^ ...
^ (dn = vn), that is, this line section is along dimensiondi.

Corollary 5 : Consider two nodes(0; 0; :::; 0) and
(u1; u2; :::; un) in an n-D mesh. If there exists a nodev:
(v1; v2; :::; vn) with 0 � vi � ui, such that nodes along
n line sections(�; v2; :::; vn), (v1; �; :::; vn), ..., (v1; v2; :::;
vn�1; �) within region[0 : u1; 0 : u2; :::; 0 : un] are fault-
free, a minimal path exists between(0; 0; :::; 0) and(u1; u2;
:::; un).

Clearly, Corollary 2 is a special case of Corollary 5 with
nodes being chosen as nodev.

Extensions ton-D tori

Our results here can be easily extended to ann-D torus. A
torus is a mesh with wraparound connections. Because an
n-D mesh is a subgraph of ann-D torus, any solutions for
n-D meshes can be directly applied ton-D tori. However,
since ann-D torus has extra connections, solutions can be
simplified and cost can be reduced. Another difference is
that a fault region in ann-D torus may affect the safety level
of a node in both directions of a dimension because of the
wraparound links.

Once the extended safety level has been decided at each
node of ann-D mesh, the same sufficient condition (Theo-
rem 2 and Corollary 2) can be extended and applied in the
n-D torus. Specifically, when the source and destination
nodes are randomly distributed, say source (u1; u2; :::; un)
with safety vector(p1; n1; p2; n2; :::; pn; nn) and destina-
tion (0; 0; :::; 0), the conditions in the Corollary 2 can be
changed to the following:juij < pi (if ui mod k �
�ui mod k) or juij < ni (if ui mod k � �ui mod k) for
all i, where1 � i � n.

Deadlock- and livelock-freedom

Unlike many non-minimal fault-tolerant routing algorithms,
the deadlock issue in the proposed model can be easily
solved through the use ofvirtual network[8], where a given
physical network consists of several virtual networks. Each
virtual network is partitioned into several virtual channels
arranged in such a way that no cycle exists among channels,
i.e., there is nointra-virtual-network cycle.

Again, we use a 3-D mesh as an example. Partition a 3-D
mesh into eight subnetworks:d1+d2+d3+, d1+d2+d3�,
d1 + d2 �d3+, d1 + d2 �d3�, d1 � d2 +d3+, d1 � d2+
d3�, d1 � d2 � d2+, d1 � d2 �d3�. Depending on the
relative location of the source and destination nodes, one
of the eight virtual subnetworks is selected and the corre-
sponding routing can be completed within the selected sub-
network without using any other subnetwork. In this way,
any inter-virtual-network cycleis avoided. Converting to
virtual channel usage, this approach needs four virtual chan-
nels. For example, if source and destination are (u1; u2; u3)
and(0; 0; 0), respectively, ifu1 > 0, u2 < 0, andu3 > 0,
subnetworkd1 � d2 + d3� is selected. To reduce the num-
ber of virtual channels, eight subnetworks can be pairwised
to form four subnetworks:d1 � d2 � d3�, d1 � d2 + d3�,
d1 � d2 + d3+, d1 + d2 � d3�, where� stands for+ and�,
i.e., a bidirectional channel supported by one virtual chan-
nel. Clearly, at most three virtual channels are needed along
each dimension. It has been shown in [12] that three virtual
channels are required for dynamic planar adaptive routing
for minimal routing. Therefore, within the context of min-
imal routing in 3-D meshes, dynamic planar-adaptive rout-
ing offers better fault tolerance and adaptivity without using
extra virtual channels compared with planar-adaptive rout-
ing.

In general, the adjacent 2-D planes in the dynamic
planar-adaptive routing form a tree as shown in Figure 5 (a).
Each routing process start from the root and reaches the
destination through a branch in the tree. Here,ij (i; j 2
f1; 2; :::; ng and i < j) represents a 2-D plane that in-
cludes dimensionsd1 andd2. Clearly, 2-D planes that have
the same dimensions can be combined to form a directed
acyclic graph (DAG) as shown in Figure 5 (b). Based on
Figure 5 (b), a series of virtual subnetworksV SNij is con-
structed, with one subnetwork for each nodeij of the DAG
in Figure 5 (b). Specifically,V SNij : di + dj+; di + dj�;
di� dj+; di� dj � : Clearly, two virtual channels are used
in V SNij . Because eachi 2 f1; 2; :::; ng appears exactly
n � 1 times in the DAG of Figure 5 (b),2(n � 1) virtual
channels are needed. A total order onV SN can be de-
fined based on the partial order defined in Figure 5 (b). The
use of these subnetworks strictly follows the total order to
avoid cyclic dependency among virtual subnetworksV SN .
To reduce the overall number of virtual channels,V SNij

can be defined asV SNij : di + dj�; di � dj � : Three vir-



12

13 23

14 24 34

1(n-1) 2(n-1) (n-2)(n-1)(n-3)(n-1)

1n 2n (n-3)n (n-2)n (n-1)n

(b)

12

13

14 34 24 34

15

23

45 35 45 25 45 35 45

(a)

Figure 5. (a) The tree structure of adjacent 2-D
planes. (b) The directed acyclic graph (DAG).

tual channels are used forV SNij with one fordi and two
for dj . Because there aren(n�1)2 V SN ’s andn dimensions,

based on the principle of pigeon hole, at least3(n�1)
2 virtual

channels are needed. The following theorem shows that us-
ing another way of virtual network formation, it is possible
to further reduce the number of virtual channels ton (n+1
if n is even) in ann-D mesh.

Theorem 6: It is possible to construct a set of virtual net-
works withn (n + 1 whenn is even) virtual channels for
ann-D mesh to ensure freedom of deadlock using dynamic
planar-adaptive routing.

This theorem can be proved by constructingn virtual
networksV SNi: di+di+1�di+2� :::�di+k�, di�di+1�di+2
� :::� di+k� for i 2 f1; 2; :::; ng, wheredi+j (including
j = 0) should be interpreted asd(i+j�1) mod n+1. We as-
sume that dimensionn is odd (if the given dimension is
even, add one to it to make it odd) andk = n�1

2 . V SNi

coversk nodesdidi+1, didi+2, ..., didi+k of Figure 5 (b).
SequenceV SN1, V SN2, ...,V SNn also respects the par-
tial order of Figure 5 (b) starting from the root of the DAG.
In V SN ’s eachdi� appears2k times,di+ anddi� each
once; therefore,2k + 1 = n virtual channels are used.

6 Conclusions

We have proposed a general theory of minimal routing
in n-D meshes with fault regions. Unlike many traditional
models that assume all the nodes know global fault dis-
tribution or only adjacent fault information, our approach
is based on the limited distribution of fault information.
Specifically, we have proposed a fault-tolerant adaptive and
minimal routing algorithm based on the proposed extended
safety level information associated with each node inn-D
meshes. Our approach is the first attempt to provide insight
on the design of fault-tolerant and minimal routing inn-D
meshes. Our future work will focus on extending the ap-
proach in a system with dynamic faults.
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