
The Effectiveness of Loop Unrolling for Modulo Scheduling 
in Clustered VLIW Architectures 

Jeslis Sainchez and Antonio Gonzailez 

Dept. of Computer Architecture 
UPC, Barcelona 

E-mail: {fran,antonio)@ac.upc.es 

Abstract 
Clustered organizations are becoming a common trend in 
the design of VLIW architectures. In this work we propose a 
novel modulo scheduling approach for  such architectures. 
The proposed technique performs the cluster assignment 
and the instruction scheduling in a single pass, which is 
shown to be more effective than doing first the assignment 
and later the scheduling. We also show that loop unrolling 
signijicantly enhances the performance of the proposed 
scheduler; especially when the communication channel 
among clusters is the main performance bottleneck. By 
selectively unrolling some loops, we can obtain the best per- 
formance with the minimum increase in code size. Perfor- 
mance evaluation for  the SPECfp95 shows that the clustered 
architecture achieves about the same IPC (Instructions Per 
Cycle) as  a unijied architecture with the same resources. 
Moreover; when the cycle time is taken into account, a 4- 
cluster configurations is 3.6 times faster than the unified 
architecture. 

1. Introduction 
Semiconductor technology has experienced a continuous 
improvement in the past and current projections anticipate 
that this trend will continue in the forthcoming years [22]. 
By reducing the minimum feature size, new technologies 
will pack more logic in a single chip but new problems may 
arise. In particular, the delay of signals or data movement 
from one part to another of the chip is becoming an impor- 
tant factor. Current approaches to deal with this problem are 
based on exploiting communication locality. The basic idea 
is to divide the system into several “units” that can work 
almost independently and at a very high frequency. Then, 
some communication channels are needed in order to 
exchange signalddata among “units”. This partition of the 
processor in quasi-independent units is nowadays called 
clustering. 

An approach to enhance the processor performance is to 
exploit more instruction-level parallelism (ILP). However, 
this requires more functional units, registers and more 
resources in general. This increment in resources can affect 
the cycle time of the processor. For instance, Palacharla et al. 
[16] showed that the bypass delay and the register file access 
time are some of the critical delays of current microproces- 
sors. 

The degradation caused by increasing the number of 
resources can be overcome by a clustered design. Current 
trends in clustering focus on the partition of the register file. 
Functional units are grouped and assigned to a register file 
partition so they can only read their operands from their 
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local register file. Values generated by one cluster and 
needed by another must be communicated. In this way, both 
bypasses among functional units and ports of the register file 
are reduced as well as the number of registers of each local 
register file. Clustered designs can be found in current 
research proposals (multiscalar [7][23], multithreading [ 141, 
trace processors [19][25], etc.) and even in some commer- 
cial processors (superscalar such as the Alpha 21264 [8], or 
VLIW such as the C6000 DSP of Texas Instruments [24]). 

In this paper we focus on clustered VLIW architectures. 
Software pipelining is a very effective technique to statically 
schedule loops. The most popular scheme to perform soft- 
ware pipelining is called modulo scheduling [ IS][ 111. In this 
paper we propose a cluster-oriented modulo scheduling 
algorithm. By performing the cluster assignment and the 
instruction scheduling at the same time and by using loop 
unrolling, the proposed technique can hide practically all the 
communication latency, resulting in an IPC very similar to 
that of a unified architecture with the same resources, for dif- 
ferent communication delays and bandwidths. When the 
cycle time is factored in, the cluster architecture achieves an 
average speed-up of 3.6 for the SPECfp95 on a 4-cluster 
configuration. 

The rest of the paper is organized as follows. Section 2 
reviews the related work. The clustered VLIW architecture 
is described in Section 3. Section 4 discusses the main moti- 
vation for the proposed scheduling techniques, which are 
presented in Section 5 and evaluated in Section 6. Finally, 
Section 7 summarizes the main conclusions of this work. 

2. Related Work 
There are several works related with instruction scheduling 
for clustered architectures. The first proposal for solving the 
problem of scheduling instructions for partitioned register 
files is in the work by Ellis in a compiler prototype called 
Bulldog [4]. That work implements trace scheduling and 
decides cluster assignments to the instructions in the trace. 
In that algorithm cluster choice and list scheduling are 
treated as two sequential phases. The cluster assignment step 
uses a BUG algorithm (Bottom-Up Greedy). Communica- 
tion operations are inserted during the scheduling step if 
necessary. 

Capitanio et al. present a scheduling algorithm [3] 
whose objective is code partition when the VLIW clustered 
architecture does not have full connectivity among all regis- 
ters and functional units. The algorithm strategy is similar to 
the one employed by Bulldog (i.e., cluster assignment for all 
instructions in a dependence graph followed by instruction 
scheduling). 

Jang et al. [9] present another scheduling scheme that 
uses separate assigninglscheduling phases. In their work, a 
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graph is partitioned using a k-way partitioning algorithm 
(where k is the number of clusters). Their main aim is to 
achive a balanced scheduling. In the dependence graph each 
node represents a register (or value) instead of an operation 
in order to provide flexibility in their retargetable compiler. 

These works differ from the approach presented in this 
paper in two basic aspects: they focus on scheduling instruc- 
tions in acyclic codes (more particularly, they do not deal 
with modulo scheduling) and follow an approach where the 
cluster assignment and the later instruction scheduling are 
perfo,Fed in two sequential phases. 

Ozer et al. [ 171 proposed a scheduling algorithm called 
unified-assign-and-scheduling (UAS) that differs from pre- 
vious approaches to scheduling instructions. Instead of first 
partitioning the instructions among the clusters and then 
scheduling them, these two steps are performed at the same 
time. The algorithm proposed in this paper follows the same 
strategy. However, our work focuses on modulo scheduling 
instead of list scheduling. 

There are a couple of works related to cluster assign- 
ment for modulo scheduling. Nystrom and Eichenberger 
[ 151 presents an algorithm to assign nodes to clusters when 
modulo scheduling is performed. Their algorithm deals with 
cases where the connection among the different register files 
is bus-based or grid-based. Their approach follows a strategy 
where the cluster assignment and node scheduling corre- 
spond to different phases. If any of them fails, the algorithm 
is re-started by incrementing the initiation interval. They 
focus on two main aspects: the impact of loop-carried 
dependences and the negative impact of aggressively filling 
clusters. The main drawback of their algorithm is that 
although they obtain good results for the loops evaluated, 
their architecture almost never saturates the communication 
channels (because they assume sufficient low-latency 
buses), and thereby the effect of communication is very low. 
However, as we will see in the motivation section, when the 
number of channels (buses in our case) decreases or the 
communication latency increases, the performance of this 
algorithm is significantly degraded. 

Femandes et al. [6] proposed an approach to perform 
both scheduling and partitioning in a single step for software 
pipelined loops. However, they assume an architecture with 
an unusual register file organization based on a set of local 
queues for each cluster and a queue file for each communi- 
cation channel. 

There are also some works that schedule instructions 
dynamically among the different clusters of functional units 
for a variety of architectures. Some interesting works are 
[101[5][21][14][2]. However, this dynamic scheduling is out 
of the VLIW philosophy of static scheduling, where each 
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Figure 2. Detailed architecture of a single cluster 

VLIW instruction has implicit the functional unit (and the 
cluster in this case) where each operation is executed. 

3. Clustered VLIW Architecture 
The clustered VLIW architecture that we assume in this 
work is shown in Figure 1 .  It is composed of different clus- 
ters, each one made up of different functional units and a 
local register file. Values generated by one cluster and con- 
sumed by another are communicated though a bus shared by 
all the clusters. The architecture may have of one or several 
buses in order to communicate values among the different 
clusters. When a value is communicated, the employed bus 
is busy during the latency of the communication. The cluster 
that writes onto the bus and the clusterls that read from the 
bus are codified in the VLIW instruction, as described 
below. All the clusters also share the memory hierarchy, 
starting from the L1 cache. In this work we have considered 
that all clusters are homogeneous (i.e., same number of reg- 
isters and typehumber of functional units) although the pro- 
posed scheduling techniques can easily be generalized for 
non-homogeneous configurations. 

The detailed architecture of a single cluster is shown in 
Figure 2. The inputs of each functional unit are multiplexed 
among a value read from the local register file, values 
obtained through bypasses from other functional units of the 
same cluster, and finally the value that comes from a bus. 
This last value is stored in a special register called incoming 
value register (IRV), and can feed a functional unit and/or be 
stored in the local register file (in the case that another 
instruction scheduled in this cluster needs the value later). 
On the other hand, the data that is placed on the bus can be 
either obtained from the output of a functional unit or from 
the local register file. 

The VLIW instruction format is shown in Figure 3. One 
of these instructions is read from memory every cycle, and 
the different instructions (CLUSTERi) are distributed to the 
appropriate clusters. A stall in one cluster affects all the oth- 
ers, so that all the clusters work on the same VLIW instruc- 
tion. Each instruction for a particular cluster consists of the 
following fields. An operation for each functional unit in that 
particular cluster (FUj) and the source (IN BUS) and target 
(OUT BUS) of the bus. The IN BUS field indicates, if neces- 
sary, the register in the local register file in which the value 
in IRV has to be stored. The OUT BUS field indicates from 
where a value has to be isgued to the bus, if any. It can be 
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Figure 3. VLIW instruction format 

from a register in the local register file, or from the output of 
a particular functional unit. As a bus is a resource shared by 
all the clusters, when one particular cluster places a data on 
the bus (OUT SUS), this bus will be busy during the entirety 
of the communication latency. Therefore no other instruc- 
tion can use this bus (a bus is considered by the scheduling 
algorithm as another functional unit in the reservation table). 

4. Motivation 
The two main parameters that characterize a modulo sched- 
uled loop [l I ]  are the initiation interval (IO and the stage 
count ( S o .  The former reflects the number of cycles that a 
kemel iteration takes (assuming no stalls), whereas the later 
shows how many iterations are overlapped, and determines 
the length of the prologue and epilogue. Thus, the total num- 
ber of cycles that a modulo scheduled loop takes to be exe- 
cuted on a VLIW machine can be determined as follows: 

NCYCLES = (NITER + SC -1) * II + tstall 
where NITER represents the number of iterations of a loop 
and tStall is the possible time that the processor is stalled 
(mainly due to memory misses). 

For a VLIW clustered architecture, both I f  and SC can 
be affected by inter-cluster communications. If the commu- 
nication buses become saturated, a higher I f  is required. On 
the other hand, communication operations may increase the 
length of the schedule, and therefore the SC may be 
increased. Thus, the IPC of a VLIW clustered architecture 
will be lower than that of a V L W  unified architecture with 
the same resources in general. On the other hand, a clustered 
architecture may reduce the critical delays such as the regis- 
ter file access time and the bypass latency [SI. 

In this section we first show how the number and 
latency of buses affect the final modulo scheduling in a 
VLIW clustered architecture compared to an hypothetical 
unified architectures with the same resources (functional 
units and registers). We also highlight the differences 
between approaches that perform first the partitioning of 
instructions among clusters and then compute the schedule 
for each cluster and approaches that do both tasks simulta- 
neously. In general, the latter type of methods will be better, 
since the partitioning may benefit from information obtained 
from the partial schedule. 

Figure 4 shows relative performance results obtained 
through simulation compared with an hypothetical unified 
machined with the same number of resources. It shows the 
performance of the basic algorithm we propose (see Section 
5.1) based on a unified assign-and-schedule strategy and the 
algorithm proposed by Nystrom and Eichenberger [ 151, 
which consists of a first phase for performing the graph par- 
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Figure 4. Relative performance of VLIW clustered archi- 
tectures assuming the same cycle time 

titioning and a second phase for scheduling each node in the 
corresponding cluster. For the latter approach we have used 
the cluster assignment algorithm that they proposed and 
then, we have used the instruction scheduler of the SMS 

Graphs on the left show the results for a 2-cluster con- 
figuration whereas on the right the results are for a 4-cluster 
configuration (see Section 6.1 for more details about each 
particular architecture and the bechmarks evaluated). In 
these figures, we can see the relative performance averaged 
for all evaluated benchmarks. In these two figures we can 
also see the results of our basic scheduling algorithm (BSA, 
lines marked with circles) and Nystrom et al. (N&E, lines 
marked with diamonds) assuming buses with a latency of 
one (L=l, solid line) and two (L=2, dotted line) cycles. 

We can see in these figures that assuming the same con- 
figurations (clusters, buses and latencies) as used by 
Nystrom et al., our basic algorithm produces schedules that 
have an IPC about 7% higher. In that paper, the proposed 
algorithm is evaluated with the configurations 2-cluster/2- 
buses and 4-cluster/4-buses (and both assuming I-cycle 
latency buses). The results obtained there (even though for a 
set of programs different from ours) demonstrated that their 
scheduling algorithm obtained for 94% and 98% of the loops 
the same I1 as a unified machine with the same number of 
resources. We do not show our results in terms of I1 but in 
relative IPC, which is defined as the performance in IPC 
obtained by the clustered configurations with respect to the 
unified configuration (this measure is more realistic since 
prologue, epilogue and the actual number of iterations of 
each loop are taken into account). Looking at Figure 4, for 
the same configurations we can see that a strategy based on 
performing the cluster assignment and scheduling at the 
same time performs better than a scheme based on a two- 
step approach. 

The second important conclusion that we can draw from 
Figure 4 is that the performance of the clustered architecture 
significantly decreases when the number of buses decreases 
or the latency of the buses increases. This can be observed 
for both approaches although to a lesser extent for our pro- 
posal. This degradation is caused by the fact that the bus (or 
buses) becomes the bottleneck of the architecture. 

~ 3 1 .  

5. Scheduling 
In this section we present the proposed modulo scheduling 
algorithm for clustered VLIW architectures. We first present 
a basic scheduling algorithm, which tries to reduce the pen- 
alties of inter-cluster communications as its main goal, since 
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(1) NLIST = OrderNodes(G); 
foreach (n in NLIST) do { 

/ /  Check if it is a new subgraDh 
if (!SchedPred(n, G) && !Schedsucc(n, G ) )  
defcluster = NextCluster(defc1uster): 

/ I  Compute the profit contributed in outedges 
foreach (c in CLIST) do { 
tmpoutedges = TryNodeOnCluster(n, c, G); 
profit[c] = OufEdgesOnCluster(c) - tmpoutedges; 

1 
/ /  Build a list with the best ones 
candlist = ChooseBestProfit(profit); 
/ /  Choose the most appropriate 
if (ListLenght(cand1ist) == 0) { 
II++; 
ReInitializeO; 

1 
if (ListLenght(cand1ist == 1) 

else { 
chosen = ChooseCluster(cand1ist); 

if (n = ExistPredOrSuccInCand(cand1ist)) 

else { 
chosen = n; 

if (candlist[defclusterl == Ok) 

else 
chosen = defcluster; 

chosen = MinimizeRegRequirements(cand1ist); 
1 

1 
(10) ScheduleNode(n, chosen) ; 

1 

Figure 5. Basic scheduling algorithm 

the buses are the most constrained resource for many loops 
as we have previously seen. However, these kinds of algo- 
rithms are not sufficient for many loops (many communica- 
tions cannot be hidden). Therefore, we also present an 
algorithm for unrolling some loops in order to further reduce 
the impact of communications on the final scheduling. 

5.1. Basic Scheduling Algorithm 

The main objective of the basic scheduling algorithm is to 
reduce the number of communications or, in other words, 
obtain the same I1 as the unified architecture. Our algorithm 
employs a, unified assign-and-schedule approach, as pro- 
posed by Ozer et al. [17] for non-cyclic scheduling, where 
the cluster selection heuristics prioritize those clusters that 
minimize the number of communications. 

The scheduling algorithm is shown in Figure 5. In the 
first step of the algorithm (1) a list with all the nodes of the 
graph is built (which represent instructions). In this list, all 
nodes are sorted in order to reflect the sequence to follow 
during the scheduling phase. We have chosen the ordering 
performed by the SMS [13]. This ordering gives priority to 
the nodes in recurrences with the highest RecMII (that is, 
according to their criticallity). RecMfI stands for the mini- 
mum initiation interval constrained by recurrences. Besides, 
the resulting order ensures that a node in a particular position 
of the list only has predecessors or successors before it 
(except in the case of sorting a new subgraph). Moreover, 
nodes that are neighbors in the graph are placed close 
together in the ordering. 

Once the nodes have been sorted, and following this 
ordering, each one is scheduled in the appropriate cycle and 
cluster. If the current node does not have a predecessor nor a 
successor, the default cluster (def c l u s t e r  variable) is set 
to the next one according to a circular order (2). Other pos- 
sibilities for selecting the default cluster are feasible, such as 
choosing the least loaded one. 

The core of the algorithm is in fragment (3). In this loop 
we attempt to schedule the current node in each possible 

cluster (i.e. those clusters with an empty slot for the corre- 
sponding functional unit). Since no spill code algorithm is 
used, those clusters for which the insertion of this node 
would increase the register requirements above the number 
of available registers are discarded. The variable tmpout- 
edges represents the number of edges from the nodes 
scheduled in the candidate cluster (including the current 
node) to the rest of nodes. This measure represents the num- 
ber of communications needed in this cluster if the schedule 
would finish here. The idea of our algorithm is to schedule a 
node in the cluster that results in the best use of outedges. 
For this reason the profit in a cluster ( p r o f i t  [ c]  ) is defined 
as the difference between the outgoing edges before and 
after scheduling the current node in this cluster. Then, a list 
of the clusters with the highest profit is built (4). If no cluster 
is in the list (all the slots of the functional units are full, or 
none of the registers nor buses are available), then the initi- 
ation interval is increased and the whole process is reinitial- 
ized (5). Otherwise, one cluster is chosen according to the 
next prioritized criteria: the only one (6) ,  the cluster with any 
predecessor or successor (if any) of the current node (7), the 
d e f c l u s t e r  (8), or the one that minimizes the register 
requirements (9). Once the cluster is chosen, the node is 
scheduled in the appropriate cycle and both functional unit 
and bus (if needed) are marked as occupied in the reservation 
table (1  0). 

Note in particular the following cases: 
a) The first node of a new subgraph is being scheduled: 

as it has no successor nor predecessor already sched- 
uled, the benefit in outedges is the same for all the 
clusters. Therefore, the chosen cluster is the default 
one. 

b) If the loop has been unrolled and a node of a particu- 
lar iteration is being scheduled and the node does not 
have any dependence with nodes in other iterations, 
the benefit will be maximized if it is scheduled in the 
same cluster as the other nodes of the same iteration. 

Therefore, this algorithm tries to schedule subgraphs 
that are disconnected in different clusters, and in particular, 
iterations of an unrolled loop follow this trend. 

5.2. Applying Loop Unrolling 

As we have seen in Section 4, the communication buses may 
be the main performance bottleneck, even when the schedul- 
ing algorithm tries to reduce the number of communications 
among clusters. The altemative we propose to reduce the 
pressure on the buses is to apply the previous scheduling 
algorithm to an unrolled graph. Loop unrolling is a well- 
known technique. Using both loop unrolling and modulo 
scheduling was proposed by Lavery and Hwu [ 121 in order 
to reduce resource requirements and the length of critical 
paths. Their observation was that using loop unrolling the 
actual mfl  (minimum initiation interval) for the unrolled 
loop is closer to the real mll when the value is rounded. In 
our case, the reason for applying loop unrolling is that many 
times loop graphs present very few dependences among iter- 
ations (loop-carried dependences). Therefore, scheduling 
different iterations on different clusters require few commu- 
nication and in addition, the workload is balanced since all 
iterations perform the same amount of work. 

However, a drawback of loop unrolling is code expan- 
sion, which may be a critical issue in some systems such as 
embedded processors. Thus, it should be used only for those 
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/ /  Compute scheduling for the original graph 

/ /  Check if unroll is beneficious 
(1) sched = ScheduleGrah(G); 

( 2 )  if (LimitedByBus(sched)) ( 
( 3 )  ufactor = ncluster; 
( 4 )  comneeded = NDepsNotMult(G) * ufactor; 
(5) cycneeded = (comneeded/nbuses) * latbus; 
(6) if (cycneeded < II(sched)) ( 
( 7 )  G' = UnrollLoop(G, ufactor); 

return (ScheduleGraph(G') ) ;  
1 

> 
return (sched); 

Figure 6. Selective unrollina alaorithm 

cases in which it provides a clear net benefit. For instance, if 
the performance of the non-unrolled loop is not limited by 
communications, unrolling may not provide any additional 
benefit. For this reason we propose an algorithm to perform 
loop unrolling only when it increases performance. 

The selective unrolling algorithm is shown in Figure 6. 
First of all, the schedule of the graph without unrolling is 
computed. If the resulting schedule is limited by communi- 
cations (i.e., the initiation interval was increased because the 
buses become saturated) then a schedule with the unrolled 
loop is tried. Our schedule algorithm presented in the previ- 
ous section tends to schedule different iterations into differ- 
ent clusters. Therefore, the unroll factor is set to the number 
of clusters. Scheduling one iteration in each cluster results in 
a number of communications (comneeded) equal to the 
number of dependences at distance greater than zero (and 
not multiple of the unrolling factor) multiplied by the unroll- 
ing factor itself. Thus, the cycles needed to communicate the 
values (cycneeded) can be computed by dividing the total 
number of cycles needed for communications (comeeded 
* latbus) by the number of buses (nbuses). If this value 
does not increase the initiation interval of the unrolled loop 
(which can be determined without performing the schedul- 
ing), then the loop is finally unrolled and the scheduling of 
the new graph is performed. 

An example of the unrolling process for a loop is shown 
in Figure 7. The resulting graph has two dependences 
between the iteration subgraphs. The table in Figure 7 shows 
the scheduling process for the graph without unrolling. Sup- 
pose the architecture has two general-purpose functional 
units per cluster, each instruction is 1 -cycle latency and one 
bus with one-cycle latency. The minimum 11 is computed as 
2 (ResMII = r 6 / 4 1  = 2, and RecMII = r 3 / 2 1  = 2), and 
thus the maximum number of communications is 2. The 
nodes are scheduled following the computed ordering. In the 
table, tmp is the tmpoutedges value in our scheduling 
algorithm (see Section 5.1). We can see that nodes D, 6, A 
and C are scheduled on cluster 0. However, node E and F 
cannot be scheduled in this cluster because it is already full 
(there are no free functional units). For node E, two commu- 
nications are needed (values from A and C), and therefore 
the communication needed for F (value from D - value from 
A was previously brought) cannot be allocated. Therefore 
the I1 has to be increased to 3 in order to find a feasible 
scheduling. On the other hand, looking at the unrolled graph, 
the minimum I1 is 4 in this case, and thus 4 communications 
of 1 cycle are available. However, following our algorithm 
just 2 communications are needed (from A' to E and from A 
to E'), because different iterations are scheduled in different 
clusters. In this case, unrolling hides the communication 
latency even if the latency of the bus was 2 cycles. 

Unroll x2 ___, 
mnll= 2 

minll = 4 

2 
/ 

2 
2 
/ 

I 

Figure 7. Example of how to unroll a loop 

6. Results 
In this section we first show the different clustered VLIW 
configurations evaluated and list the set of benchmarks used 
to evaluate the performance of the scheduling algorithm. 
Then, some performance figures comparing unified and 
clustered architectures are shown including timing consider- 
ations. Finally, some results about the impact on code size of 
the unrolling technique is shown. 

6.1. Benchmarks and Configurations Evaluated 

The scheduling algorithm has been evaluated for three dif- 
ferent configurations of the VLIW architecture. This config- 
urations are shown in Table 1. 

L I 

Table 1. Clustered VLIW configurations and latencies 

The first configuration is called uniJied and it is com- 
posed of a single cluster with four functional units of each 
type (integer, floating point and memory) and a unique reg- 
ister file of 64 general-purpose registers. This configuration 
represents our baseline. Both the 2-cluster and 4-cluster 
configurations have the register file partitioned (into two and 
four partitions respectively). The former has 2 functional 
units of each type and 32 register per cluster and the latter 
corresponds to 1 functional unit of each type and a register 
file of 16 registers per cluster (note that both, in total, are 12- 
way issue). For the clustered configurations we will show 
results for different number of buses (1 or 2) and with differ- 
ent latencies (1, 2, or 4 cycles). 

For all configurations the memory hierarchy is shared 
by all the clusters and considered perfect (i.e., always hits 
with minimum latency). In the case of considering a real 
memory, techniques to reduce the impact of cache misses 
when modulo scheduling is applied should be used [20]. 

The modulo scheduling algorithm has been imple- 
mented in the ICTINEO compiler [ 11 and all the SPECfp95 
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benchmarks have been evaluated. The programs were run 
until completion using the test input data set. The perfor- 
mance figures shown in this section refer to the modulo 
scheduling of innermost loops with a number of iterations 
greater than four. We have measured that code inside such 
innermost loops represent about 95% of all the executed 
instructions, and then the statistics for innermost loops are 
quite representative of the whole program. 

6.2. IPC Performance Figures 

The results shown in this section refer to the IPC (Instruc- 
tions committed Per Cycle) obtained for the unified and 
clustered configurations for different values of the number 
of buses and latency. The IPC has been obtained taking into 
account the prologue, the kemel and the epilogue as well as 
the number of iterations and the times each loop is executed. 
Both non-unrolled and unrolled versions of the loops are 
evaluated. 

The IPC results for all the SPECfp95 programs as well 
as average figures are shown in Figure 8. Graphs on the left 
compare the unijied configuration with the 2-cluster, 
whereas graphs on the right compare the unijied with the 4- 
cluster configuration. Each graph is divided into three sets of 
bars: 

No unrolling: results when the loops are not unrolled. 
Unrolling: results when all the loops of the program 
have been unrolled. In the case of the 2-cluster config- 
uration, the unroll factor is 2. In the case of the 4-clus- 
ter configuration this factor is 4. 
Selective unrolling: results using the selective unroll- 
ing algorithm presented in Section 5.2. 

Each one of these sets if composed of different bars. 
White bars show the IPC obtained by the unified configura- 
tion. Grey bars show the IPC obtained with the clustered 
configuration with just 1 bus. Finally, black bars are the IPC 
achieved with clustered configurations and 2 buses. For clus- 
tered configurations, different latencies for the buses have 
been considered (L = 1 , 2  or 4 cycles). 

When we look at the first set of bars (No unrolling), and 
as motivated in Section 4, we can see that the IPC achieved 
by clustered architectures compared with the unified archi- 
tecture decreases when the number of buses decreases or the 
bus latency increases. We can see that this problem is over- 
come when loop unrolling is applied to all loops (Unrolling). 
The performance obtained for clustered architectures is the 
same (or even better) for most of the programs and configu- 
rations (except for tomcatv in the 4-cluster configuration). 
Note that when all loops are unrolled our scheduling algo- 
rithm is less sensitive to the number of buses and their 
latency. The reason why clustered architectures perform bet- 
ter than unified architectures for some programs and config- 
urations when all loops are unrolled is due to our scheduling 
algorithm. When loop unrolling is applied, the different iter- 
ations of the loop are scheduled in different clusters, using 
their resources equally. However, in the unified architecture, 
all the resources are available when scheduling the first sub- 
graph of the unrolled loop. As the scheduling phase tries to 
schedule operations as close as possible to their predeces- 
sors and successors in order to minimize register pressure, a 
very good scheduling is obtained for the subgraph of the first 
iteration sometimes at the expense of the other iterations. 

The results for the selective unrolling presented in Sec- 
tion 5.2 are shown in the third set of bars (Selective unroll- 
ing). We can see that using this selective unrolling algorithm 

the performance obtained is very similar to the one obtained 
when all loops are unrolled. However, as we will see in Sec- 
tion 6.4, the code size is significantly reduced for this algo- 
rithm. 

6.3. Timing considerations 

We have shown that the proposed scheduling algorithm 
applied to clustered architectures achieves about the same 
IPC as the unified configuration. However, the real benefit of 
clustered architectures comes when the cycle time is consid- 
ered in the total performance. Using the delay models pro- 

Table 2. Cycle times according to Palacharla model 

posed by Palacharla [ 161, we show in Table 2 the cycle time 
(in picoseconds, for a technology of 0.18pm) obtained for 
the different configurations of the VLIW machine. In each 
case, we have assumed that the cycle time is determined by 
the maximum between the bypass delay and the access time 
to the register file. The former depends on the number of 
functional units per cluster, whereas the later depends on 
both the number of ports (2RD/lWR per functional units 
plus lRD/lWR per bus) and the number of registers per 
cluster. Using the numbers of this table, Figure 9 shows the 
average speed-up achieved by some clustered configurations 
with respect to the unified one. In this figure, NU stands for 
No Unrolling, whereas SU means Selective Unrolling. For 
both cases, there are results for one (B=l) and two (B=2) 
buses. 

The main conclusion we can draw from this figure is 
that all configurations significantly outperform the unified 
configuration and the best performance is always obtained 
for the 4-cluster configuration with 1 bus when the selective 
unrolling algorithm is used, achieving an speed-up of 3.6 on 
average for the SPECfp95. 

6.4. Effect on Code Size 

Although loop unrolling is beneficial for modulo scheduled 
loops in a clustered VLIW architecture, code expansion in a 
major drawback of this technique. For those applications 
where code size in a major constraint, loop unrolling can 
bring another kind of problems (for instance, when code 
does not fit in the memory of an embedded processor). The 
selective unrolling proposed in Section 5.2 tries to unroll 
only those loops for which the bus is the main performance 
bottleneck. 

The size of the code in a VLIW is a measure hard to 
obtain because compression techniques are commonly used. 
The compressed code size depends on the number of useful 
operations, the number of NOP operations and how they are 
distributed in the code. However, this topic is beyond the 
scope of this paper, and therefore we show just some mea- 
sures in order to approximate the size of the code. 

The effect of unrolling on the code size is shown in Fig- 
ure 10. The different bars in the graphs correspond to the 
same scenarios as in Figure 8. The graph on the left shows 
the results for the 2-cluster configuration, whereas the graph 
on the right is for the 4-cluster configuration. For each graph, 
each column in normalized to the size of the code for the uni- 
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Figure 8. IPC results for all the SPECfp95 benchmarks 

fied configuration and without unrolling (first bar). White 
bars represent the amount of operations taking into account 
NOP operations, and black bars show just useful operations. 

We can conclude from this figure that when loops are 
not unrolled, the number of NOP operations tends to 
increase when the latency increases or the number of buses 
decreases since the I1 augments. This trend does not appear 
when unrolling is performed. We can see that the selective 
unrolling algorithm decreases the total size of the code in 

terms of both useful and NOP operations. The decrement is 
better for configurations with higher communication band- 
width (i.e., 2 buses with 1-cycle latency). 

7. COnClUSiOnS 

We have presented an effective approach to perform modulo 
scheduling for a clustered VLIW architecture. The perfor- 
mance of the proposed technique comes from using a single 
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Figure 9. Speedup of clustered architectures with respect 
the unified one (bus latencv=l cvcle) 

step to perform cluster assignment and instruction schedul- 
ing as well as from the use of a selective loop unrolling. We 
have shown that the resulting algorithm is very effective for 
a variety of configurations with different communication 
latency and bandwidth. Besides, the selective unrolling pol- 
icy minimizes the impact of unrolling on the code size. 

Performance evaluation for the SPECfp95 shows that 
the IPC of the clustered architecture is not degraded in com- 
parison with a unified architecture with the same resources. 
Moreover, when the cycle time of each architecture is con- 
sidered, we have shown that a 4-cluster architecture is on 
average 3.6 times faster than a unified configuration. 
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