
The Effectiveness of Loop Unrolling for Modulo Scheduling
in Clustered VLIW Architectures

Jeslis Sainchez and Antonio Gonzailez

Dept. of Computer Architecture
UPC, Barcelona

E-mail: {fran,antonio)@ac.upc.es

Abstract
Clustered organizations are becoming a common trend in
the design of VLIW architectures. In this work we propose a
novel modulo scheduling approach for such architectures.
The proposed technique performs the cluster assignment
and the instruction scheduling in a single pass, which is
shown to be more effective than doing first the assignment
and later the scheduling. We also show that loop unrolling
signijicantly enhances the performance of the proposed
scheduler; especially when the communication channel
among clusters is the main performance bottleneck. By
selectively unrolling some loops, we can obtain the best per-
formance with the minimum increase in code size. Perfor-
mance evaluation for the SPECfp95 shows that the clustered
architecture achieves about the same IPC (Instructions Per
Cycle) as a unijied architecture with the same resources.
Moreover; when the cycle time is taken into account, a 4-
cluster configurations is 3.6 times faster than the unified
architecture.

1. Introduction
Semiconductor technology has experienced a continuous
improvement in the past and current projections anticipate
that this trend will continue in the forthcoming years [22].
By reducing the minimum feature size, new technologies
will pack more logic in a single chip but new problems may
arise. In particular, the delay of signals or data movement
from one part to another of the chip is becoming an impor-
tant factor. Current approaches to deal with this problem are
based on exploiting communication locality. The basic idea
is to divide the system into several “units” that can work
almost independently and at a very high frequency. Then,
some communication channels are needed in order to
exchange signalddata among “units”. This partition of the
processor in quasi-independent units is nowadays called
clustering.

An approach to enhance the processor performance is to
exploit more instruction-level parallelism (ILP). However,
this requires more functional units, registers and more
resources in general. This increment in resources can affect
the cycle time of the processor. For instance, Palacharla et al.
[16] showed that the bypass delay and the register file access
time are some of the critical delays of current microproces-
sors.

The degradation caused by increasing the number of
resources can be overcome by a clustered design. Current
trends in clustering focus on the partition of the register file.
Functional units are grouped and assigned to a register file
partition so they can only read their operands from their

0-7695-0768-9/00 $10.00 0 2000 IEEE

local register file. Values generated by one cluster and
needed by another must be communicated. In this way, both
bypasses among functional units and ports of the register file
are reduced as well as the number of registers of each local
register file. Clustered designs can be found in current
research proposals (multiscalar [7][23], multithreading [141,
trace processors [19][25], etc.) and even in some commer-
cial processors (superscalar such as the Alpha 21264 [8], or
VLIW such as the C6000 DSP of Texas Instruments [24]).

In this paper we focus on clustered VLIW architectures.
Software pipelining is a very effective technique to statically
schedule loops. The most popular scheme to perform soft-
ware pipelining is called modulo scheduling [IS][111. In this
paper we propose a cluster-oriented modulo scheduling
algorithm. By performing the cluster assignment and the
instruction scheduling at the same time and by using loop
unrolling, the proposed technique can hide practically all the
communication latency, resulting in an IPC very similar to
that of a unified architecture with the same resources, for dif-
ferent communication delays and bandwidths. When the
cycle time is factored in, the cluster architecture achieves an
average speed-up of 3.6 for the SPECfp95 on a 4-cluster
configuration.

The rest of the paper is organized as follows. Section 2
reviews the related work. The clustered VLIW architecture
is described in Section 3. Section 4 discusses the main moti-
vation for the proposed scheduling techniques, which are
presented in Section 5 and evaluated in Section 6. Finally,
Section 7 summarizes the main conclusions of this work.

2. Related Work
There are several works related with instruction scheduling
for clustered architectures. The first proposal for solving the
problem of scheduling instructions for partitioned register
files is in the work by Ellis in a compiler prototype called
Bulldog [4]. That work implements trace scheduling and
decides cluster assignments to the instructions in the trace.
In that algorithm cluster choice and list scheduling are
treated as two sequential phases. The cluster assignment step
uses a BUG algorithm (Bottom-Up Greedy). Communica-
tion operations are inserted during the scheduling step if
necessary.

Capitanio et al. present a scheduling algorithm [3]
whose objective is code partition when the VLIW clustered
architecture does not have full connectivity among all regis-
ters and functional units. The algorithm strategy is similar to
the one employed by Bulldog (i.e., cluster assignment for all
instructions in a dependence graph followed by instruction
scheduling).

Jang et al. [9] present another scheduling scheme that
uses separate assigninglscheduling phases. In their work, a

555

BUS

Fi

...

CACHE

aure 1. VLIW clustered architecture

graph is partitioned using a k-way partitioning algorithm
(where k is the number of clusters). Their main aim is to
achive a balanced scheduling. In the dependence graph each
node represents a register (or value) instead of an operation
in order to provide flexibility in their retargetable compiler.

These works differ from the approach presented in this
paper in two basic aspects: they focus on scheduling instruc-
tions in acyclic codes (more particularly, they do not deal
with modulo scheduling) and follow an approach where the
cluster assignment and the later instruction scheduling are
perfo,Fed in two sequential phases.

Ozer et al. [171 proposed a scheduling algorithm called
unified-assign-and-scheduling (UAS) that differs from pre-
vious approaches to scheduling instructions. Instead of first
partitioning the instructions among the clusters and then
scheduling them, these two steps are performed at the same
time. The algorithm proposed in this paper follows the same
strategy. However, our work focuses on modulo scheduling
instead of list scheduling.

There are a couple of works related to cluster assign-
ment for modulo scheduling. Nystrom and Eichenberger
[151 presents an algorithm to assign nodes to clusters when
modulo scheduling is performed. Their algorithm deals with
cases where the connection among the different register files
is bus-based or grid-based. Their approach follows a strategy
where the cluster assignment and node scheduling corre-
spond to different phases. If any of them fails, the algorithm
is re-started by incrementing the initiation interval. They
focus on two main aspects: the impact of loop-carried
dependences and the negative impact of aggressively filling
clusters. The main drawback of their algorithm is that
although they obtain good results for the loops evaluated,
their architecture almost never saturates the communication
channels (because they assume sufficient low-latency
buses), and thereby the effect of communication is very low.
However, as we will see in the motivation section, when the
number of channels (buses in our case) decreases or the
communication latency increases, the performance of this
algorithm is significantly degraded.

Femandes et al. [6] proposed an approach to perform
both scheduling and partitioning in a single step for software
pipelined loops. However, they assume an architecture with
an unusual register file organization based on a set of local
queues for each cluster and a queue file for each communi-
cation channel.

There are also some works that schedule instructions
dynamically among the different clusters of functional units
for a variety of architectures. Some interesting works are
[101[5][21][14][2]. However, this dynamic scheduling is out
of the VLIW philosophy of static scheduling, where each

Incoming
Register

\Value

CACHE

Figure 2. Detailed architecture of a single cluster

VLIW instruction has implicit the functional unit (and the
cluster in this case) where each operation is executed.

3. Clustered VLIW Architecture
The clustered VLIW architecture that we assume in this
work is shown in Figure 1 . It is composed of different clus-
ters, each one made up of different functional units and a
local register file. Values generated by one cluster and con-
sumed by another are communicated though a bus shared by
all the clusters. The architecture may have of one or several
buses in order to communicate values among the different
clusters. When a value is communicated, the employed bus
is busy during the latency of the communication. The cluster
that writes onto the bus and the clusterls that read from the
bus are codified in the VLIW instruction, as described
below. All the clusters also share the memory hierarchy,
starting from the L1 cache. In this work we have considered
that all clusters are homogeneous (i.e., same number of reg-
isters and typehumber of functional units) although the pro-
posed scheduling techniques can easily be generalized for
non-homogeneous configurations.

The detailed architecture of a single cluster is shown in
Figure 2. The inputs of each functional unit are multiplexed
among a value read from the local register file, values
obtained through bypasses from other functional units of the
same cluster, and finally the value that comes from a bus.
This last value is stored in a special register called incoming
value register (IRV), and can feed a functional unit and/or be
stored in the local register file (in the case that another
instruction scheduled in this cluster needs the value later).
On the other hand, the data that is placed on the bus can be
either obtained from the output of a functional unit or from
the local register file.

The VLIW instruction format is shown in Figure 3. One
of these instructions is read from memory every cycle, and
the different instructions (CLUSTERi) are distributed to the
appropriate clusters. A stall in one cluster affects all the oth-
ers, so that all the clusters work on the same VLIW instruc-
tion. Each instruction for a particular cluster consists of the
following fields. An operation for each functional unit in that
particular cluster (FUj) and the source (IN BUS) and target
(OUT BUS) of the bus. The IN BUS field indicates, if neces-
sary, the register in the local register file in which the value
in IRV has to be stored. The OUT BUS field indicates from
where a value has to be isgued to the bus, if any. It can be

556

VLIW Instruction C L U ~ S I C L ~ I I Z ... -1 9 = K

s i i
NOutput

-Register
*Null

Figure 3. VLIW instruction format

from a register in the local register file, or from the output of
a particular functional unit. As a bus is a resource shared by
all the clusters, when one particular cluster places a data on
the bus (OUT SUS), this bus will be busy during the entirety
of the communication latency. Therefore no other instruc-
tion can use this bus (a bus is considered by the scheduling
algorithm as another functional unit in the reservation table).

4. Motivation
The two main parameters that characterize a modulo sched-
uled loop [l I] are the initiation interval (IO and the stage
count (S o . The former reflects the number of cycles that a
kemel iteration takes (assuming no stalls), whereas the later
shows how many iterations are overlapped, and determines
the length of the prologue and epilogue. Thus, the total num-
ber of cycles that a modulo scheduled loop takes to be exe-
cuted on a VLIW machine can be determined as follows:

NCYCLES = (NITER + SC -1) * II + tstall
where NITER represents the number of iterations of a loop
and tStall is the possible time that the processor is stalled
(mainly due to memory misses).

For a VLIW clustered architecture, both I f and SC can
be affected by inter-cluster communications. If the commu-
nication buses become saturated, a higher I f is required. On
the other hand, communication operations may increase the
length of the schedule, and therefore the SC may be
increased. Thus, the IPC of a VLIW clustered architecture
will be lower than that of a V L W unified architecture with
the same resources in general. On the other hand, a clustered
architecture may reduce the critical delays such as the regis-
ter file access time and the bypass latency [SI.

In this section we first show how the number and
latency of buses affect the final modulo scheduling in a
VLIW clustered architecture compared to an hypothetical
unified architectures with the same resources (functional
units and registers). We also highlight the differences
between approaches that perform first the partitioning of
instructions among clusters and then compute the schedule
for each cluster and approaches that do both tasks simulta-
neously. In general, the latter type of methods will be better,
since the partitioning may benefit from information obtained
from the partial schedule.

Figure 4 shows relative performance results obtained
through simulation compared with an hypothetical unified
machined with the same number of resources. It shows the
performance of the basic algorithm we propose (see Section
5.1) based on a unified assign-and-schedule strategy and the
algorithm proposed by Nystrom and Eichenberger [151,
which consists of a first phase for performing the graph par-

10

z 0 8

+ " B E L =]
I -
$ 06

5 0 4

2 0 2

IO
:: 5 0 8

t
0 4

5 + 0 2

06

I

0 2 4 6 8 1 0 1 2
Number of buses Number of buses

AVERAGE AVERAGE

(a) 2-cluster configuration (b) 4-cluster configuration

Figure 4. Relative performance of VLIW clustered archi-
tectures assuming the same cycle time

titioning and a second phase for scheduling each node in the
corresponding cluster. For the latter approach we have used
the cluster assignment algorithm that they proposed and
then, we have used the instruction scheduler of the SMS

Graphs on the left show the results for a 2-cluster con-
figuration whereas on the right the results are for a 4-cluster
configuration (see Section 6.1 for more details about each
particular architecture and the bechmarks evaluated). In
these figures, we can see the relative performance averaged
for all evaluated benchmarks. In these two figures we can
also see the results of our basic scheduling algorithm (BSA,
lines marked with circles) and Nystrom et al. (N&E, lines
marked with diamonds) assuming buses with a latency of
one (L=l, solid line) and two (L=2, dotted line) cycles.

We can see in these figures that assuming the same con-
figurations (clusters, buses and latencies) as used by
Nystrom et al., our basic algorithm produces schedules that
have an IPC about 7% higher. In that paper, the proposed
algorithm is evaluated with the configurations 2-cluster/2-
buses and 4-cluster/4-buses (and both assuming I-cycle
latency buses). The results obtained there (even though for a
set of programs different from ours) demonstrated that their
scheduling algorithm obtained for 94% and 98% of the loops
the same I1 as a unified machine with the same number of
resources. We do not show our results in terms of I1 but in
relative IPC, which is defined as the performance in IPC
obtained by the clustered configurations with respect to the
unified configuration (this measure is more realistic since
prologue, epilogue and the actual number of iterations of
each loop are taken into account). Looking at Figure 4, for
the same configurations we can see that a strategy based on
performing the cluster assignment and scheduling at the
same time performs better than a scheme based on a two-
step approach.

The second important conclusion that we can draw from
Figure 4 is that the performance of the clustered architecture
significantly decreases when the number of buses decreases
or the latency of the buses increases. This can be observed
for both approaches although to a lesser extent for our pro-
posal. This degradation is caused by the fact that the bus (or
buses) becomes the bottleneck of the architecture.

~ 3 1 .

5. Scheduling
In this section we present the proposed modulo scheduling
algorithm for clustered VLIW architectures. We first present
a basic scheduling algorithm, which tries to reduce the pen-
alties of inter-cluster communications as its main goal, since

557

(1) NLIST = OrderNodes(G);
foreach (n in NLIST) do {

/ / Check if it is a new subgraDh
if (!SchedPred(n, G) && !Schedsucc(n, G))
defcluster = NextCluster(defc1uster):

/ I Compute the profit contributed in outedges
foreach (c in CLIST) do {
tmpoutedges = TryNodeOnCluster(n, c, G);
profit[c] = OufEdgesOnCluster(c) - tmpoutedges;

1
/ / Build a list with the best ones
candlist = ChooseBestProfit(profit);
/ / Choose the most appropriate
if (ListLenght(cand1ist) == 0) {
II++;
ReInitializeO;

1
if (ListLenght(cand1ist == 1)

else {
chosen = ChooseCluster(cand1ist);

if (n = ExistPredOrSuccInCand(cand1ist))

else {
chosen = n;

if (candlist[defclusterl == Ok)

else
chosen = defcluster;

chosen = MinimizeRegRequirements(cand1ist);
1

1
(10) ScheduleNode(n, chosen) ;

1

Figure 5. Basic scheduling algorithm

the buses are the most constrained resource for many loops
as we have previously seen. However, these kinds of algo-
rithms are not sufficient for many loops (many communica-
tions cannot be hidden). Therefore, we also present an
algorithm for unrolling some loops in order to further reduce
the impact of communications on the final scheduling.

5.1. Basic Scheduling Algorithm

The main objective of the basic scheduling algorithm is to
reduce the number of communications or, in other words,
obtain the same I1 as the unified architecture. Our algorithm
employs a, unified assign-and-schedule approach, as pro-
posed by Ozer et al. [17] for non-cyclic scheduling, where
the cluster selection heuristics prioritize those clusters that
minimize the number of communications.

The scheduling algorithm is shown in Figure 5. In the
first step of the algorithm (1) a list with all the nodes of the
graph is built (which represent instructions). In this list, all
nodes are sorted in order to reflect the sequence to follow
during the scheduling phase. We have chosen the ordering
performed by the SMS [13]. This ordering gives priority to
the nodes in recurrences with the highest RecMII (that is,
according to their criticallity). RecMfI stands for the mini-
mum initiation interval constrained by recurrences. Besides,
the resulting order ensures that a node in a particular position
of the list only has predecessors or successors before it
(except in the case of sorting a new subgraph). Moreover,
nodes that are neighbors in the graph are placed close
together in the ordering.

Once the nodes have been sorted, and following this
ordering, each one is scheduled in the appropriate cycle and
cluster. If the current node does not have a predecessor nor a
successor, the default cluster (def c l u s t e r variable) is set
to the next one according to a circular order (2). Other pos-
sibilities for selecting the default cluster are feasible, such as
choosing the least loaded one.

The core of the algorithm is in fragment (3). In this loop
we attempt to schedule the current node in each possible

cluster (i.e. those clusters with an empty slot for the corre-
sponding functional unit). Since no spill code algorithm is
used, those clusters for which the insertion of this node
would increase the register requirements above the number
of available registers are discarded. The variable tmpout-
edges represents the number of edges from the nodes
scheduled in the candidate cluster (including the current
node) to the rest of nodes. This measure represents the num-
ber of communications needed in this cluster if the schedule
would finish here. The idea of our algorithm is to schedule a
node in the cluster that results in the best use of outedges.
For this reason the profit in a cluster (p r o f i t [c]) is defined
as the difference between the outgoing edges before and
after scheduling the current node in this cluster. Then, a list
of the clusters with the highest profit is built (4). If no cluster
is in the list (all the slots of the functional units are full, or
none of the registers nor buses are available), then the initi-
ation interval is increased and the whole process is reinitial-
ized (5). Otherwise, one cluster is chosen according to the
next prioritized criteria: the only one (6) , the cluster with any
predecessor or successor (if any) of the current node (7), the
d e f c l u s t e r (8), or the one that minimizes the register
requirements (9). Once the cluster is chosen, the node is
scheduled in the appropriate cycle and both functional unit
and bus (if needed) are marked as occupied in the reservation
table (1 0).

Note in particular the following cases:
a) The first node of a new subgraph is being scheduled:

as it has no successor nor predecessor already sched-
uled, the benefit in outedges is the same for all the
clusters. Therefore, the chosen cluster is the default
one.

b) If the loop has been unrolled and a node of a particu-
lar iteration is being scheduled and the node does not
have any dependence with nodes in other iterations,
the benefit will be maximized if it is scheduled in the
same cluster as the other nodes of the same iteration.

Therefore, this algorithm tries to schedule subgraphs
that are disconnected in different clusters, and in particular,
iterations of an unrolled loop follow this trend.

5.2. Applying Loop Unrolling

As we have seen in Section 4, the communication buses may
be the main performance bottleneck, even when the schedul-
ing algorithm tries to reduce the number of communications
among clusters. The altemative we propose to reduce the
pressure on the buses is to apply the previous scheduling
algorithm to an unrolled graph. Loop unrolling is a well-
known technique. Using both loop unrolling and modulo
scheduling was proposed by Lavery and Hwu [121 in order
to reduce resource requirements and the length of critical
paths. Their observation was that using loop unrolling the
actual mfl (minimum initiation interval) for the unrolled
loop is closer to the real mll when the value is rounded. In
our case, the reason for applying loop unrolling is that many
times loop graphs present very few dependences among iter-
ations (loop-carried dependences). Therefore, scheduling
different iterations on different clusters require few commu-
nication and in addition, the workload is balanced since all
iterations perform the same amount of work.

However, a drawback of loop unrolling is code expan-
sion, which may be a critical issue in some systems such as
embedded processors. Thus, it should be used only for those

558

/ / Compute scheduling for the original graph

/ / Check if unroll is beneficious
(1) sched = ScheduleGrah(G);

(2) if (LimitedByBus(sched)) (
(3) ufactor = ncluster;
(4) comneeded = NDepsNotMult(G) * ufactor;
(5) cycneeded = (comneeded/nbuses) * latbus;
(6) if (cycneeded < II(sched)) (
(7) G' = UnrollLoop(G, ufactor);

return (ScheduleGraph(G')) ;
1

>
return (sched);

Figure 6. Selective unrollina alaorithm

cases in which it provides a clear net benefit. For instance, if
the performance of the non-unrolled loop is not limited by
communications, unrolling may not provide any additional
benefit. For this reason we propose an algorithm to perform
loop unrolling only when it increases performance.

The selective unrolling algorithm is shown in Figure 6.
First of all, the schedule of the graph without unrolling is
computed. If the resulting schedule is limited by communi-
cations (i.e., the initiation interval was increased because the
buses become saturated) then a schedule with the unrolled
loop is tried. Our schedule algorithm presented in the previ-
ous section tends to schedule different iterations into differ-
ent clusters. Therefore, the unroll factor is set to the number
of clusters. Scheduling one iteration in each cluster results in
a number of communications (comneeded) equal to the
number of dependences at distance greater than zero (and
not multiple of the unrolling factor) multiplied by the unroll-
ing factor itself. Thus, the cycles needed to communicate the
values (cycneeded) can be computed by dividing the total
number of cycles needed for communications (comeeded
* latbus) by the number of buses (nbuses). If this value
does not increase the initiation interval of the unrolled loop
(which can be determined without performing the schedul-
ing), then the loop is finally unrolled and the scheduling of
the new graph is performed.

An example of the unrolling process for a loop is shown
in Figure 7. The resulting graph has two dependences
between the iteration subgraphs. The table in Figure 7 shows
the scheduling process for the graph without unrolling. Sup-
pose the architecture has two general-purpose functional
units per cluster, each instruction is 1 -cycle latency and one
bus with one-cycle latency. The minimum 11 is computed as
2 (ResMII = r 6 / 4 1 = 2, and RecMII = r 3 / 2 1 = 2), and
thus the maximum number of communications is 2. The
nodes are scheduled following the computed ordering. In the
table, tmp is the tmpoutedges value in our scheduling
algorithm (see Section 5.1). We can see that nodes D, 6, A
and C are scheduled on cluster 0. However, node E and F
cannot be scheduled in this cluster because it is already full
(there are no free functional units). For node E, two commu-
nications are needed (values from A and C), and therefore
the communication needed for F (value from D - value from
A was previously brought) cannot be allocated. Therefore
the I1 has to be increased to 3 in order to find a feasible
scheduling. On the other hand, looking at the unrolled graph,
the minimum I1 is 4 in this case, and thus 4 communications
of 1 cycle are available. However, following our algorithm
just 2 communications are needed (from A' to E and from A
to E'), because different iterations are scheduled in different
clusters. In this case, unrolling hides the communication
latency even if the latency of the bus was 2 cycles.

Unroll x2 ___,
mnll= 2

minll = 4

2
/

2
2
/

I

Figure 7. Example of how to unroll a loop

6. Results
In this section we first show the different clustered VLIW
configurations evaluated and list the set of benchmarks used
to evaluate the performance of the scheduling algorithm.
Then, some performance figures comparing unified and
clustered architectures are shown including timing consider-
ations. Finally, some results about the impact on code size of
the unrolling technique is shown.

6.1. Benchmarks and Configurations Evaluated

The scheduling algorithm has been evaluated for three dif-
ferent configurations of the VLIW architecture. This config-
urations are shown in Table 1.

L I

Table 1. Clustered VLIW configurations and latencies

The first configuration is called uniJied and it is com-
posed of a single cluster with four functional units of each
type (integer, floating point and memory) and a unique reg-
ister file of 64 general-purpose registers. This configuration
represents our baseline. Both the 2-cluster and 4-cluster
configurations have the register file partitioned (into two and
four partitions respectively). The former has 2 functional
units of each type and 32 register per cluster and the latter
corresponds to 1 functional unit of each type and a register
file of 16 registers per cluster (note that both, in total, are 12-
way issue). For the clustered configurations we will show
results for different number of buses (1 or 2) and with differ-
ent latencies (1, 2, or 4 cycles).

For all configurations the memory hierarchy is shared
by all the clusters and considered perfect (i.e., always hits
with minimum latency). In the case of considering a real
memory, techniques to reduce the impact of cache misses
when modulo scheduling is applied should be used [20].

The modulo scheduling algorithm has been imple-
mented in the ICTINEO compiler [11 and all the SPECfp95

559

benchmarks have been evaluated. The programs were run
until completion using the test input data set. The perfor-
mance figures shown in this section refer to the modulo
scheduling of innermost loops with a number of iterations
greater than four. We have measured that code inside such
innermost loops represent about 95% of all the executed
instructions, and then the statistics for innermost loops are
quite representative of the whole program.

6.2. IPC Performance Figures

The results shown in this section refer to the IPC (Instruc-
tions committed Per Cycle) obtained for the unified and
clustered configurations for different values of the number
of buses and latency. The IPC has been obtained taking into
account the prologue, the kemel and the epilogue as well as
the number of iterations and the times each loop is executed.
Both non-unrolled and unrolled versions of the loops are
evaluated.

The IPC results for all the SPECfp95 programs as well
as average figures are shown in Figure 8. Graphs on the left
compare the unijied configuration with the 2-cluster,
whereas graphs on the right compare the unijied with the 4-
cluster configuration. Each graph is divided into three sets of
bars:

No unrolling: results when the loops are not unrolled.
Unrolling: results when all the loops of the program
have been unrolled. In the case of the 2-cluster config-
uration, the unroll factor is 2. In the case of the 4-clus-
ter configuration this factor is 4.
Selective unrolling: results using the selective unroll-
ing algorithm presented in Section 5.2.

Each one of these sets if composed of different bars.
White bars show the IPC obtained by the unified configura-
tion. Grey bars show the IPC obtained with the clustered
configuration with just 1 bus. Finally, black bars are the IPC
achieved with clustered configurations and 2 buses. For clus-
tered configurations, different latencies for the buses have
been considered (L = 1 , 2 or 4 cycles).

When we look at the first set of bars (No unrolling), and
as motivated in Section 4, we can see that the IPC achieved
by clustered architectures compared with the unified archi-
tecture decreases when the number of buses decreases or the
bus latency increases. We can see that this problem is over-
come when loop unrolling is applied to all loops (Unrolling).
The performance obtained for clustered architectures is the
same (or even better) for most of the programs and configu-
rations (except for tomcatv in the 4-cluster configuration).
Note that when all loops are unrolled our scheduling algo-
rithm is less sensitive to the number of buses and their
latency. The reason why clustered architectures perform bet-
ter than unified architectures for some programs and config-
urations when all loops are unrolled is due to our scheduling
algorithm. When loop unrolling is applied, the different iter-
ations of the loop are scheduled in different clusters, using
their resources equally. However, in the unified architecture,
all the resources are available when scheduling the first sub-
graph of the unrolled loop. As the scheduling phase tries to
schedule operations as close as possible to their predeces-
sors and successors in order to minimize register pressure, a
very good scheduling is obtained for the subgraph of the first
iteration sometimes at the expense of the other iterations.

The results for the selective unrolling presented in Sec-
tion 5.2 are shown in the third set of bars (Selective unroll-
ing). We can see that using this selective unrolling algorithm

the performance obtained is very similar to the one obtained
when all loops are unrolled. However, as we will see in Sec-
tion 6.4, the code size is significantly reduced for this algo-
rithm.

6.3. Timing considerations

We have shown that the proposed scheduling algorithm
applied to clustered architectures achieves about the same
IPC as the unified configuration. However, the real benefit of
clustered architectures comes when the cycle time is consid-
ered in the total performance. Using the delay models pro-

Table 2. Cycle times according to Palacharla model

posed by Palacharla [161, we show in Table 2 the cycle time
(in picoseconds, for a technology of 0.18pm) obtained for
the different configurations of the VLIW machine. In each
case, we have assumed that the cycle time is determined by
the maximum between the bypass delay and the access time
to the register file. The former depends on the number of
functional units per cluster, whereas the later depends on
both the number of ports (2RD/lWR per functional units
plus lRD/lWR per bus) and the number of registers per
cluster. Using the numbers of this table, Figure 9 shows the
average speed-up achieved by some clustered configurations
with respect to the unified one. In this figure, NU stands for
No Unrolling, whereas SU means Selective Unrolling. For
both cases, there are results for one (B=l) and two (B=2)
buses.

The main conclusion we can draw from this figure is
that all configurations significantly outperform the unified
configuration and the best performance is always obtained
for the 4-cluster configuration with 1 bus when the selective
unrolling algorithm is used, achieving an speed-up of 3.6 on
average for the SPECfp95.

6.4. Effect on Code Size

Although loop unrolling is beneficial for modulo scheduled
loops in a clustered VLIW architecture, code expansion in a
major drawback of this technique. For those applications
where code size in a major constraint, loop unrolling can
bring another kind of problems (for instance, when code
does not fit in the memory of an embedded processor). The
selective unrolling proposed in Section 5.2 tries to unroll
only those loops for which the bus is the main performance
bottleneck.

The size of the code in a VLIW is a measure hard to
obtain because compression techniques are commonly used.
The compressed code size depends on the number of useful
operations, the number of NOP operations and how they are
distributed in the code. However, this topic is beyond the
scope of this paper, and therefore we show just some mea-
sures in order to approximate the size of the code.

The effect of unrolling on the code size is shown in Fig-
ure 10. The different bars in the graphs correspond to the
same scenarios as in Figure 8. The graph on the left shows
the results for the 2-cluster configuration, whereas the graph
on the right is for the 4-cluster configuration. For each graph,
each column in normalized to the size of the code for the uni-

560

IO IO

i

I

L . 8 . .,I.. , . ,a.. , . . ,.,<.A,..

103 su2cor 1 0 4 hydro2d

I

P ,

2

111

8

%llanllb. L""lb~. . Llalum*mq

AWRAGE

(b) 4-cluster configuration

Figure 8. IPC results for all the SPECfp95 benchmarks

fied configuration and without unrolling (first bar). White
bars represent the amount of operations taking into account
NOP operations, and black bars show just useful operations.

We can conclude from this figure that when loops are
not unrolled, the number of NOP operations tends to
increase when the latency increases or the number of buses
decreases since the I1 augments. This trend does not appear
when unrolling is performed. We can see that the selective
unrolling algorithm decreases the total size of the code in

terms of both useful and NOP operations. The decrement is
better for configurations with higher communication band-
width (i.e., 2 buses with 1-cycle latency).

7. COnClUSiOnS

We have presented an effective approach to perform modulo
scheduling for a clustered VLIW architecture. The perfor-
mance of the proposed technique comes from using a single

56 1

AVERAGE

Figure 9. Speedup of clustered architectures with respect
the unified one (bus latencv=l cvcle)

step to perform cluster assignment and instruction schedul-
ing as well as from the use of a selective loop unrolling. We
have shown that the resulting algorithm is very effective for
a variety of configurations with different communication
latency and bandwidth. Besides, the selective unrolling pol-
icy minimizes the impact of unrolling on the code size.

Performance evaluation for the SPECfp95 shows that
the IPC of the clustered architecture is not degraded in com-
parison with a unified architecture with the same resources.
Moreover, when the cycle time of each architecture is con-
sidered, we have shown that a 4-cluster architecture is on
average 3.6 times faster than a unified configuration.

Acknowledgements
This work has been supported by the Spanish Ministry of
Education under contract CICYT-TIC 51 1/98 and the
ESPRIT Project MHAOTEU (EP24942).

References
[11 E. AyguadC, C. Barrado, A. Gonzilez et al., “Ictineo: a Tool
for Research on ILP’, in SC’96, Research Exhibit “Polaris at
Work”, 1996
[2] R. Canal, J.M. Parcerisa and A. Gonzilez, “Dynamic Clus-
ter Assigment Mechanisms”, in Procs. of 6th Int. Symp. on High-
Pegormance Computer Architecture, pp. 133-142, Jan. 2000
[3] A. Capitanio, D. Dytt and A. Nicolau, “Partitioned Register
Files for VLIWs: A Preliminary Analysis of Tradeoffs”, in
Procs. of 25th. Int. Symp. on Microarchitecture, pp. 192-300,
1992
[4] J. R. Ellis, “Bulldog: A Compiler for VLIW Architectures”,
MITPress, pp. 180-184, 1986
[5] K.I. Farkas, P. Chow, N.P. Jouppi and Z. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time Through Parti-
tioning”, in Procs. of 30th. Int. Symp. on Microarchitecture, pp.
149-159, Dec. 1997
[6] M.M. Femandes, J. Llosa and N. Topham, “Distributed
Modulo Scheduling”, in Procs. of Int. Symp. on High-Perform-
ance Computer Architecture, pp. 130-1 34, Jan. 1999
[7] M. Franklin, “The Multiscalar Architecture”, PhD Thesis,
Technical Report TR-1196, Computer Science Dept., UW-Madi-
son, 1993
[8] L. Gwennap, “Digital 21264 Sets New Standard”, Micro-
processor Report, 10(14), Oct. 1996
[9] S. Jang, S. Can, P. Sweany and D. Kuras, “A Code Genera-
tion Framework for VLIW Architectures with Partitioned Regis-
ter Banks”, in Procs. of 3rd. Int. Con$ on Massively Parallel
Computing Systems, April 1998
[lo] G.A. Kemp and M. Franklin, “PEWS: A Decentralized
Dynamic Scheduler for ILP Processing”, in Procs. on Int. Con$

L-,L.,L.. L . I L . I I . . L . I L . I I . 4

N..u.n1uq c””m”gxa Sm.“Ya”mq

AVERAGE

(a) 2-cluster configuration

N . 8 Y n n * l l q U””dlng.. Jdd“ “””*“.I

AVERAGE

(b) 4-cluster configuration

Figure 1o.lmpact of loop unrolling in the code size

on Parallel Processing, pp. 239-246, Aug. 1996
[l 11 M. Lam, “Software pipelining: An Effective scheduling
technique for VLIW Machines”, in Procs. on Con$ on Program-
ming Languages and Implementation Design, pp. 258-267, June
1993
[12] D.M. Lavery and W.W. Hwu, “Unrolling-Based Optimiza-
tions for Modulo Scheduling”, in Procs. of 28th. Int. Sypp. on
Microarchitecture, pp.. 1995
[13] J. Llosa, A. GonzBlez, E. AyguadC and M. Valero, “Swing
Modulo Scheduling: A Lifetime-Sensitive Approach”, in Procs.
of Int. Con5 on Parallel Architectures and Compilation Tech-
niques, pp. 80-86, Oct. 1996
[14] P. Marcuello and A. Gonzilez, “Clustered Speculative Mul-
tithreaded Processors”, in Procs. on the 13th Int. Conference on
Supercomputing, pp. 365-372, June 1999
[15] E. Nystrom and A. E. Eichenberger, “Effective Cluster Ass-
ingment for Modulo Scheduling”, in Procs. of 31th. Int. Symp. on
Microarchitecture, pp.103-114, 1998
[16] S . Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, in Procs. of the 24th. Int.
Symp. on Computer Architecture, pp. 1 - 13, June 1997
[17] E. Ozer, S. Banerjia and T.M. Conte, “Unified Assign and
Schedule: A New Approach to Scheduling for Clustered Register
File Microarchitectures”, in Procs. of 3Ist Int. Symp. on Microar-
chitecture, pp. 308-3 15, Nov. 1998
[18] B.R. Rau and C.D. Glaeser, “Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High Per-
formance Scientific Computing”, in Procs. on the 14th Ann.
Workshop on Microprogramming, pp. 183-198, Oct. 1981
[19] E. Rotenberg, Q. Jacobson, Y. Sazeides and J.E. Smith,
“Trace Processors”, in Procs. of the 30th Int. Symp. on Microar-
chitecture, pp. 138-148, Dec. 1997
[20] J. SBnchez and A. Gonzilez, “Cache Sensitive Modulo
Scheduling”, in Procs. of 30th. Int. Symp. on Microarchitecture,
pp. 338-348, Dec. 1997
[21] S.S. Sastry, S. Palacharla and J.E. Smith, “Exploting Idle
Floating-point Resources for Integer Execution”, in Procs. oflnt.
Con$ on Programming Languages Design and Implementation,
pp. 118-129, June 1998
[22] Semiconductor Industry Association, “The National Tech-
nology Roadmap for Semiconductors: Technology Needs”, 1997
[23] G. Sohi, S.E. Breah and T.N. Vijaykumar, “Multiscalar
Processors”, in Procs. of the 22nd. Int. Symp. on Computer
Architecture, pp.414-425, June 1995
[24] Texas Instruments Inc., “TMS320C62x/67x CPU and
Instruction Set Reference Guide”, 1998
[25] S . Vajapeyam and T. Mitra, “Improving Superscalar Instruc-
tion Dispatch and Issue by Exploiting Dynamic Code
Sequences”, in Procs. of Int. Symp. on Computer Science, pp. 1 -
12, June 1997

562

