

 1

The Tracefile Testbed - A Community Repository for Identifying and Retrieving

HPC Performance Data

Ken Ferschweiler1, Scott Harrah2, Dylan Keon1, Mariacarla Calzarossa3,
Daniele Tessera3, Cherri Pancake2

1Northwest Alliance for Computational Science & Engineering, Oregon State University
2Department of Computer Science, Oregon State University

3Dipartimento di Informatica e Sistemistica, Università di Pavia
kennino/keon@nacse.org, harrahsc/pancake@cs.orst.edu, mcc/tessera@alice.unipv.it

Abstract

 HPC programmers utilize tracefiles, which record
program behavior in great detail, as the basis for many
performance analysis activities. The lack of generally
accessible tracefiles has forced programmers to develop
their own testbeds in order to study the basic performance
characteristics of the platforms they use. Since tracefiles
serve as input to performance analysis and performance
prediction tools, tool developers have also been hindered
by the lack of a testbed for verifying and fine-tuning tool
functionality. We have created a community repository
that meets the needs of both application and tool develop-
ers. In this paper, we describe how the Tracefile Testbed
was designed to facilitate flexible searching and retrieval
of tracefiles based on a variety of characteristics. Its
Web-based interface provides a convenient mechanism
for browsing, downloading, and uploading collections of
tracefiles and tracefile segments, as well as viewing sta-
tistical summaries of performance characteristics.

1. Background and motivation

 A high-performance computing (HPC) application is
characterized by many variables that control its execution
and determine its performance. Variables such as algo-
rithm type, problem size, input parameters, programming
languages and paradigms, libraries, hardware architecture,
etc., can have very significant effects on program behav-
ior. It is important to understand the role played by each
variable and the ways they combine to influence the per-
formance achieved, or achievable, by the application.
 Two approaches are commonly used for the purpose of
understanding these effects: performance profiling and
performance prediction. Profiling [7, 8] captures the be-
havior of an application by monitoring its execution.
Monitoring can be based on hardware counter sampling

or it can require the instrumentation of the application's
source code or its binary executable. The data produced
by monitoring may be analyzed on-the-fly or stored as
tracefiles for post-mortem analysis. Many of the tools
currently available for HPC performance analysis are
based on tracefiles. Examples include:

• Jumpshot [10] analyzes tracefiles and provides
multiple time-space diagrams of program behav-
ior.

• Continuous Monitoring [6] captures logs of ap-
propriately instrumented applications while they
are being executed with the objective of
automating the testing of performance properties
of complex systems.

• Paradyn [4] employs historical performance
data, gathered in previous executions of an ap-
plication, to improve the effectiveness of auto-
mated performance diagnosis. The Paradyn's
Performance Consultant extracts knowledge
from all the performance data collected over the
life of an application [3].

 Performance prediction [2] takes a different approach.
These techniques attempt to provide estimates of the per-
formance achievable by an application by analyzing its
structure and the influences of compiler transformations
and the system architecture, using symbolic analysis,
simulation, or other model-based methods. Prediction
tools often rely directly or indirectly on tracefiles. The
data from tracefiles can serve as the basis for constructing
or validating the performance model, or can be used di-
rectly by the tool to adjust the model to the characteristics
of a particular application (e.g., [9]).
 Tracefiles are typically generated by the application
programmer as part of the performance tuning process.
Our field studies of HPC programmers indicate that many
experienced programmers also create suites of simple
pseudo-benchmark codes and generate tracefiles to help
establish basic performance characteristics when they

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 2

move to new HPC platforms. The intent in both cases is
to help the user better understand and tune his/her
applications.
 The developers of trace-based tools also generate
suites of tracefiles. In this case, the objective is to assist
in the process of testing and fine-tuning tool functionality.
According to the subjects interviewed in our field studies,
tool developers do not often have access to "real" applica-
tions for these activities; rather, they construct artificial
codes designed to generate tracefiles that will stress the
tool's boundary conditions or generate demonstration
visualizations.
 Tracefiles are a valuable source of information about
the properties and behavior both of applications and of the
systems on which they are executed. Tool users and de-
velopers alike have indicated in several public forums
(e.g., Parallel Tools Consortium meetings, BOF sessions
at the SC conference, community workshops on parallel
debugging and performance tuning tools) that it would be
useful to construct a generally accessible testbed for
tracefile data. This would make it possible for users to
see if tracefiles from related applications can be of use in
the design and tuning of their own application. It would
also provide a more realistic foundation for testing new
performance tools. Further, since tracefiles are typically
large and unwieldy to store (the recording of key program
events during one application run can generate gigabytes
of data), a centralized repository could encourage pro-
grammers to archive their tracefiles rather than deleting
them when they are no longer of immediate use.

2. The Tracefile Testbed

 With support from DOD's HPC Modernization Pro-
gram, we undertook the creation of a community reposi-
tory, the Tracefile Testbed. The objective was to develop
a database that not only supports convenient and flexible
searching of tracefile data generated on HPC systems, but
also maximizes the benefit to others of performance data
that was collected by a particular programmer or tool de-
veloper for his/her own purposes.
 The Tracefile Testbed was implemented as a joint pro-
ject of NACSE and the Università di Pavia. It was struc-
tured according to a data model that describes both the
static and dynamic behavior of parallel applications, as
captured in tracefiles. The tracefiles are maintained as
separate file units. The source code that generated the
tracefiles is also available (unless that code is proprie-
tary). Metadata encapsulating the performance behavior
and run-time environment characteristics associated with
the tracefiles are maintained in a relational database using
Oracle8i.
 A key aspect of tracefile storage is their size. While
our organization has committed to maintaining the reposi-
tory as a contribution to the HPC community, size was

also considered from the perspective of the users, who
will find that storing many downloaded copies is quite
resource-intensive. We accommodated this usability con-
sideration in the following way. Within the Tracefile
Testbed, all file locations are maintained in the metadata
database as URLs. This allows users – if they choose – to
"maintain" their own subsets of tracefiles by simply stor-
ing links or shortcuts to the files, rather than the files
themselves. A secondary advantage of this approach is
that it allows us to distribute the repository itself. That is,
the actual tracefiles may be located on multiple servers,
which can be different from the server(s) hosting the tool
interface and the metadata database. The initial imple-
mentation involves three servers: a Web server maintains
the interface, a relational database server hosts the meta-
data, and the tracefiles are stored on a separate file server.
The general architecture of the Tracefile Testbed browser
is illustrated in Figure 1.
 A Web-based interface allows users to navigate
through the repository, select tracefiles and segments
from one or more applications, browse their characteris-
tics, and download the data. Performance data can be
identified and extracted based on various selection crite-
ria, such as "all data related to a given application," "data
related to a class of applications," "data from programs
executed on a particular system architecture," "data from
runs that performed global broadcast operations," etc.
The Tracefile Testbed provides performance summaries
of selected trace data; alternatively, the tracefile data may
be downloaded for analysis using available tools in order
to derive detailed performance figures.

Figure 1. Architecture of the Tracefile Testbed

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 3

 There are several significant challenges to be ad-
dressed in creating a repository of this nature:

• How can we represent the characteristics of a
parallel application and its associated tracefile(s)
in such a way that testbed users can easily find
and select appropriate performance data?

• How much metadata can be gleaned from the
tracefiles themselves, versus supplied by the user
submitting the files?

• How can tracefiles be subdivided into smaller
segments to minimize the amount of data that
must be downloaded for a particular purpose?
What is the proper abstraction for those seg-
ments, given that we cannot guarantee events on
different processors occurred near-
simultaneously (or even that they occurred at
all)?

• How can we ensure that download operations
always yield useful data? How can we reduce
the need to download tracefiles? Can we allow
users to maintain shortcuts to the appropriate
files, without having to copy the files them-
selves?

• How can tracefile segments be structured so that
they can serve as input to trace-based tools when
the user hasn't downloaded the complete file?

• Can the repository reduce the need for program-
mers to write simple analysis routines? Is there a
way to provide a "snapshot" view that compares
the performance recorded in multiple tracefiles?

• How can the effort required to enter metadata be
minimized, in order to encourage fully annotated
submissions?

• What mechanisms for searching, selecting, and
browsing tracefile data are powerful and flexible
enough to help programmers understand applica-
tion behavior?

• Are the same mechanisms appropriate for use by
tool developers? If not, what type of specialized
support is required?

• To what extent can the user interface guide the
user through the repository, so that totally unfa-
miliar users can quickly arrive at the most useful
information?

Clearly, many of the issues are related to the usability of
the repository, rather than structural aspects of the data-
base itself. The sections below discuss how each issue
was addressed in developing the Tracefile Testbed.

3. Data model

 In order to categorize and maintain tracefile data, we
require a data model with the power to describe the char-
acteristics of parallel applications and the performance

measurements collected during their execution. In large
part, the framework chosen to describe tracefiles derives
from user needs in searching the tracefile collection.
Based on previous usability studies, we determined that
users wish to select entire tracefiles (or segments thereof)
on the basis of machine architecture types and parameters,
information related to the tracefile itself, and information
related to the tracefile segments. Users should also be
able to perform searches based on arbitrary keywords re-
flecting system platforms, problem types, and user-
defined events.
 The model must capture not just parallel machine
characteristics, but also the design strategies and imple-
mentation details of the application. For this purpose, the
information describing a parallel application has been
grouped into three layers: the system layer provides a
coarse-grained description of the parallel machine on
which the application is executed. The other two layers
comprise information derived from the application itself;
the application layer describes its static characteristics,
whereas the execution layer deals with the dynamic char-
acteristics directly related to measurements collected at
run time. Most of the information comprising the system
and application layers is not available in the tracefile, but
must be supplied by the application programmer in the
form of metadata. Execution layer information can be
harvested directly from the tracefiles.
 The system layer description includes machine archi-
tecture (e.g., shared memory, virtual shared memory, dis-
tributed memory, cluster of SMPs), number of processors,
clock frequency, amount of physical memory, cache size,
communication subsystem, I/O subsystem, communica-
tion and numeric libraries, and parallelization tools.
 The static characteristics of the application layer range
from the disciplinary domain (e.g., computational fluid
dynamics, weather forecasting, simulation of physical and
chemical phenomena) to the algorithms (e.g., partial dif-
ferential equation solvers, spectral methods, Monte Carlo
simulations) and programming languages employed.
They also include information about the application pro-
gram interface (e.g., MPI, OpenMP, PVM) and links to
the source code. Problem size, number of allocated proc-
essors, and work and data distributions are further exam-
ples of static characteristics.
 The execution layer provides a description of the be-
havior of a parallel application in terms of measurements
generated at run time. These measurements are typically
timestamped descriptions that correspond to specific
events (I/O operation, cache miss, page fault, etc.) or to
instrumentation of the source code (e.g., beginning or end
of an arbitrary section of code, such as a subroutine or
loop). The type and number of measurements associated
with each event depend on the event type and on the
monitoring methods used to collect the measurements.
Application behavior might be described by the time to

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 4

execute a particular program section or the number of
events recorded in a particular time span.

4. Describing tracefile content

 To maintain the system, application, and execution in-
formation describing the tracefile repository, we imple-
mented a database of descriptive metadata. These exist at
multiple levels: they include descriptions of individual
tracefiles, sets of tracefiles, and segments of tracefiles.
The use of off-the-shelf rDBMS software allows us to
maintain and search these metadata with a great deal of
power, flexibility, and robustness, and with a minimum of
investment in software development.
 As discussed previously, the choice of which metadata
to maintain – the data model – was based on our assess-
ment of user needs in searching the tracefile collection.
The Tracefile Testbed provides the ability to search on
machine, application, or execution parameters. The ver-
satility of the database allows us to search based on flexi-
ble combinations of these parameters, but careful data-
base design was required to make full use of the power of
the rDBMS. Figure 2 presents a conceptual view of the
database schema supporting user searches.

Figure 2. General structure of tracefile metadata

 Note that tracefiles do not typically stand alone; they
are usually generated as sets of related files pertaining to
a larger project, or experiment. The metadata database
allows us to maintain this information about the origin of
tracefiles. The sets of tracefiles provide a convenient
grouping mechanism, and allow users to view information
on all tracefiles generated during a physical experiment,
or suite of related executions. In other cases, a number of
tracefiles that were not generated together may still form
a naturally cohesive set (e.g., they may demonstrate a
common computational approach, or illustrate the effects
of varying a particular parameter). Since cohesion of
such sets would not always be apparent from the metadata
described above, the system allows specification of vir-
tual experiments – groups of tracefiles, which, though not
related in origin, have an ex post facto relationship that is

useful to a researcher. This structure allows tracefiles to
belong to multiple sets that cut across each other, allow-
ing individual users to superimpose organizational
schemes that fit their particular needs.
 A key requirement for the Tracefile Testbed is that it
be easy for members of the HPC community to add new
tracefiles to the repository. We were fortunate in having
access to a sizeable collection of tracefiles, from a variety
of machine and problem types, to use as the initial popu-
lation of the repository. We have gathered on the order of
100 files over the last few years in our benchmarking
work with the SPEC suite [1]. Given the number of files
we anticipate gathering from the APART (Automated
Performance Analysis: Resources and Tools) working
group and other members of the HPC community, it was
important to be able to parse the files in batch mode, and
our initial parser reflects this bias. A Web-based tool for
uploading tracefiles has also been implemented.
 To ensure that metadata are available for all tracefiles
in the Testbed, they must be supplied as part of the up-
loading mechanism. As discussed previously, informa-
tion such as system- and application-level metadata does
not exist a priori in the tracefiles, but must be provided
by the programmer or benchmarker. The originator of the
tracefiles is also the source of descriptive information
about user-defined events in the execution-level metadata.
To facilitate the input of that information, we developed a
tracefile metadata format and a corresponding parser.
Most of the metadata elements are likely applicable to a
whole series of tracefiles, so the format and uploading
tools were designed to facilitate metadata reuse and ease
the task of uploading multiple tracefiles.

5. Identifying tracefile events and segments

 While tracefiles are typically quite large, the portion of
a tracefile that is of interest for a particular purpose may
be only a small fragment of the file. For instance, a re-
searcher wishing to compare the performance of FFT im-
plementations may want to work with a fragment that
brackets the routine(s) in which the FFT is implemented.
Similarly, a tool developer may be interested in testing
tool functionality in the presence of broadcast operations;
the remainder of the trace may be largely irrelevant. If
the source code is appropriately instrumented at the time
of tracefile creation, the sections of interest will be easily
identifiable, but locating them in a large corpus of trace-
file data may still be an onerous task. In order to simplify
identification of tracefile fragments that are of interest, it
is convenient to maintain a description of the internal
structure of tracefiles. Some of this structure may be
automatically generated from information in the tracefile,
but the remainder must be supplied as metadata, typically
by the programmer who contributes the file to the reposi-
tory.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 5

 Since a tracefile is essentially a list of timestamped
events (with some descriptive header information), it is
easy to identify a subset of a tracefile corresponding to
the events occurring during a particular time interval.
The obvious choice for definition of such a time interval
are the begin and end timestamps of a user-defined event
(such as the FFT routine mentioned above). We discuss
user-defined events because system-defined events in
MPI are atomic; that is, they do not have start and end
markers. However, such a view may be an oversimplifi-
cation that does not capture the behavior of interest during
the time interval. Since the tracefile is a straightforward
list of per-processor events, it is considerably more diffi-
cult to define events that pertain to the entire parallel ma-
chine. The idealized view of a data-parallel application
would have all processors participating in all events (i.e.,
executing the same segment of code) approximately si-
multaneously; however, there is no guarantee in an actual
application that any event will include all processors, si-
multaneously or not.
 Consequently, a user who wishes to extract a subset of
a tracefile to capture system performance during a par-
ticular event is faced with a difficulty. Although the user
may know that particular events on one processor corre-
spond to events on other processors, it is not clear from
the tracefile how these correspondences can be automati-
cally inferred. We have used a heuristic approach to iden-
tifying machine-wide events. A machine-wide event in-
cludes all of the same-type per-processor events whose
starting markers in the tracefile are separated by fewer
than K*N events, where N is the number of processors in
the machine, and K is a definable constant (currently set
to 4). The per-processor events that comprise a machine-
wide event may or may not overlap in time, but discus-
sion with users of parallel performance evaluation sys-
tems indicate that they expect this criterion to effectively
capture the corresponding events.
 The machine-wide event, defined as a starting time-
stamp (and, for user-defined events, an ending timestamp)
in a particular tracefile, is the basic unit of tracefile data
that our system maintains; we allow users to attach de-
scriptions, keywords, and source code references to these
events. Further, it is possible to search, browse, and
download just the portions of a tracefile that are of inter-
est to a particular user. A tracefile segment is defined as
the portion of the tracefile between where a machine-wide
event begins and ends. A given tracefile may have thou-
sands of segments; they can be accessed individually or in
groups sharing some characteristic (e.g., all segments cor-
responding to global summation operations).

6. Using tracefile segments

 The principal reason many HPC users create and main-
tain tracefiles is to be able to use them as input to per-

formance-analysis software. To support this requirement,
the Tracefile Testbed provides single-keystroke opera-
tions for downloading tracefiles to the user's local ma-
chine via http or ftp.
 The issue of tracefile segments introduces problems
with respect to tool compatibility. Trace-based perform-
ance tools require "legal" tracefiles as input; while there is
no single standard for tracefile format, we assume that a
tracefile that is usable by popular performance analysis
packages will also be suitable for HPC users who write
their own analysis tools. A fragment naively extracted
from a tracefile will not, in general, be of a legal format.
In particular, it will lack header information and will
probably contain unmatched markers of entry to and exit
from instrumented program regions. To make segments
useful, the Tracefile Testbed modifies the fragment in or-
der to generate a legal tracefile that describes as closely as
possible the behavior of the application in the region that
the user has selected.

7. Performance summaries

 In many cases, the information that a user wants from
a tracefile or set of tracefiles may be easily summarized
without recourse to other performance analysis software.
This is particularly the case when an application pro-
grammer wishes to compare some measure of "overall"
performance across several different tracefiles. To sim-
plify such tasks, the Tracefile Testbed provides some
simple performance summary functions that may be per-
formed on selected sets of tracefiles or tracefile segments.
Available summary functions include:

• Mean and standard deviation of segment length
(in elapsed time, in a particular set of tracefile
segments)

• Identification and length of the shortest and
longest segments (in a particular set of tracefile
segments)

• Number of identifiable segments in a tracefile
• Elapsed time of a tracefile
• Per-processor mean and standard deviation of

the elapsed time of a particular type of event
(e.g., I/O operation, cache miss)

• Processor utilization during a parallel event (e.g.,
how much processor time is spent waiting during
a barrier synchronization)

8. The user interface

 The user interface to the Tracefile Testbed was imple-
mented using Web technology to emphasize portability
and convenience. Two interfaces were created: one for
searching the Testbed and downloading performance data,
the other for uploading tracefiles and corresponding

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 6

metadata. Perhaps the most important concern in the de-
sign of the interfaces was scalability to the potential size
of the testbed; our goal was to enable users to search and
locate performance data in the most efficient manner pos-
sible, then seamlessly download the appropriate files or
segments.
 The search and upload interfaces both permit users to
move freely among querying, downloading, uploading,
and help activities. Definitions for all operations are
available in pop-up windows activated when the mouse is
positioned over instances of the term in the interface. Al-
though the relational nature of the Testbed would allow
users to query and view the values of all data fields, our
previous experiences in usability of database interfaces
[5] indicated that presenting the user with so many
choices at once would be confusing. Instead, we applied
a "drill-down" approach, where users are presented with a
subset of the selectable fields at each step, allowing us to
develop a comprehensive, yet concise and intuitive user
interface.
 Throughout the interface, users have the option of re-
turning to previous stages in their search by using the
“Return” buttons. The advantage of providing these
rather than simply using the “Back” button provided by
the Web browser is that we can provide a descriptive la-
bel for the button (e.g., “Return to Tracefile Listing”) so
that users can know to exactly which step in the search
sequence they will be moved.
 The search interface was developed using QML
(Query Markup Language), a Web-to-database middle-
ware package developed and distributed by NACSE.
QML facilitates the dynamic generation of selectable lists
by pre-fetching values from the Testbed, meaning that the
interface does not require updating to accommodate addi-
tions to the database. The initial query screen is displayed
in Figure 3.
 The selection criteria available on the initial query in-
terface page are those identified by representative users as
the most useful in terms of facilitating discrimination
among tracefiles in the Testbed. Criteria are displayed in
three logical groupings to improve legibility and selection
efficiency. Tracefile-related choices include tracefile
format and event types. Selectable machine environment
variables are machine type, number of processors, mem-
ory per processor, processor speed, and cache size. The
query choices relating to the application are experiment
name (both physical and virtual experiments are dis-
played), source code language, and algorithm. The user
can make multiple selections from any of the lists, in
which case the union (logical OR) of the matching re-
cords will be returned. After making arbitrary selections,
the user can choose to narrow the search by eliminating
choices that are unavailable due to constraints imposed by
other selections. This drill-down operation repopulates
the lists with data reflecting the selected constraints. The

procedure can be repeated as many times as the user
chooses before the actual search is activated.
 In subsequent screens, the user can browse the search
results. Tracefiles are grouped into tracefile classes based
on the unique combinations of language, source size, ma-
chine type, algorithm, compiler, and number of proces-
sors found. This helps users restrict the number of results
before they view individual tracefiles, since queries may
easily return hundreds of tracefiles (see Figure 4).

Figure 3. Query interface starting page

Figure 4. Search results, grouped by class

 When one or more tracefiles have been selected, the
user may download them for use with a performance
analysis tool. To allow users to view summary informa-

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 7

tion without special tools, and to allow users to download
tracefiles exhibiting particular performance characteris-
tics, three types of performance summaries can be gener-
ated. One compares performance across tracefile classes,
while the other two present timing information on indi-
vidual events and segments within the selected trace-
file(s). The performance summary screen for tracefile
classes is shown in Figure 5. From this point, the user
can choose to download one or more entire classes or
view more information on tracefiles within the class(es).

Figure 5. Performance summary, by tracefile class

 Performance tool developers will want to use the trace-
files for testing their own tool functionalities; they may
also be interested in graphical or more detailed perform-
ance summary information than the Testbed offers. The
Tracefile Testbed provides facilities for downloading
tracefiles or relevant segments of tracefiles. Download-
ing entire tracefiles is accomplished through the “Individ-
ual Tracefiles” portion of the interface, which provides a
link to the tracefile in the Testbed’s ftp server. Addition-
ally, users may download selected tracefile segments. To
download selected segments, users mark the appropriate
segments in the Segment Performance screen and select
“Download Segments.” This prompts a cgi program to
parse the tracefile and create a new file containing only
the original file’s header information and the desired
segments.
 An upload interface was designed with the goal of en-
couraging users to supply adequate amounts of quality
metadata, without being discouraged by the level of effort
required. This was a challenge, given the number of
metadata elements required for the Testbed. While creat-
ing a virtual experiment is easy, since most metadata are
already available in the database, the uploading of new
tracefiles requires a significant amount of new metadata

to be entered. In addressing this problem, we chose to put
the form on as few pages as possible, rather than breaking
it into smaller components over multiple pages. That
way, it is immediately clear how much information is re-
quired. In addition, we endeavored to minimize the
amount of typing required by allowing users to copy and
modify the metadata from an existing tracefile.

9. Summary

 Responding directly to a requirement that has been ex-
pressed in a variety of community forums, the Tracefile
Testbed provides HPC programmers and tool developers
with Web access to a repository of tracefiles. A database
of metadata describing the systems, applications, and exe-
cution-level information of each tracefile supports a vari-
ety of search approaches. Performance summaries assist
users to assess the relevance of files and segments before
they are examined in detail. Individual files and/or seg-
ments may be downloaded to the user's local system for
further analysis and comparison. Application program-
mers should find this community repository useful both in
predicting the behavior of existing programs and in the
development and optimization of new applications. De-
velopers of performance analysis and prediction tools will
find the Tracefile Testbed to be a convenient source of
tracefiles for testing the functionality and display
capabilities of their tool.

10. Bibliography

[1] R. Eigenmann and S. Hassanzadeh. Benchmarking with
Real Industrial Applications: The SPEC High-Performance
Group. IEEE Computational Science and Engineering, Spring
Issue, 1996.

[2] T. Fahringer and A. Pozgaj. P3T+: A Performance Estimator
for Distributed and Parallel Programs. Journal of Scientific Pro-
gramming, 7(1), 2000.

[3] K.L. Karavanic and B.P. Miller. Improving Online Perform-
ance Diagnosis by the Use of Historical Performance Data. In
Proc. SC'99, 1999.

[4] B.P. Miller et al. The Paradyn Parallel Measurement Per-
formance Tool. IEEE Computer, 28(11):37-46, 1995.

[5] M. Newsome, C.M. Pancake and J. Hanus. ‘Split
Personalities’ for Scientific Databases: Targeting Database
Middleware and Interfaces to Specific Audiences. Future
Generation Computing Systems, 6:135-152, 1999.

[6] S.E. Perl, W.E. Weihl, and B. Noble. Continuous Monitoring
and Performance Specification.Technical Report 153, Digital
Systems Research Center, June 1998.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

 8

[7] D.A. Reed et al. Performance Analysis of Parallel Systems:
Approaches and Open Problems. In Joint Symposium on Paral-
lel Processing, pages 239-256, 1998.

[8] S. Shende and A. Malony and J. Cuny and K. Lindlan and P.
Beckman and S. Karmesin, Portable Profiling and Tracing for
Parallel Scientific Applications using C++. In Proc. SPDT'98:
ACM SIGMETRICS Symposium on Parallel and Distributed
Tools, pages 134-145, 1998.

[9] J. Yan, S. Sarukhai, and P. Mehra, "Performance Measure-
ment, Visualization and Modeling of Parallel and Distributed
Programs Using the AIMS Toolkit," Software - Practice and
Experience, 25(4):429-461, 1995.

[10] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward Scal-
able PerformanceVisualization with Jumpshot. The Interna-
tional Journal of High Performance Computing
Applications, 13(2):277-288, 1999.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

