
 1

Architecture and Performance Potential of STICS
 SCSI-To-IP Cache Storage

Xubin He1 and Qing Yang

Department of Electrical and Computer Engineering
University of Rhode Island, Kingston, RI 02881

 {hexb, qyang}@ele.uri.edu

Abstract

Data storage plays an essential role in today’s fast-growing data-intensive network
services. New standards and products emerge very rapidly for networked data storages.
Given the mature Internet infrastructure, overwhelming preference among IT community
recently is using IP for storage networking because of economy and convenience. iSCSI
is one of the most recent standards that allows SCSI protocols to be carried out over IP
networks. However, there are many disparities between SCSI and IP in terms of speeds,
bandwidths, data unit size, and design considerations that prevent fast and efficient
deployment of SAN (Storage Area Network) over IP. This paper introduces STICS
(SCSI-To-IP Cache Storage), a novel storage architecture that couples reliable and high-
speed data caching with low-overhead conversion between SCSI and IP protocols. A
STICS block consists of one or several storage devices such as disks or RAID, and an
intelligent processing unit with CPU and RAM. The storage devices are used to cache
and store data while the intelligent processing unit carries out caching algorithm, protocol
conversion, and self-management functions. Through efficient caching algorithm and
localization of certain unnecessary protocol overheads, STICS can significantly improve
performance, reliability, manageability, and scalability over current iSCSI systems.
Furthermore, STICS can be used as a basic plug-and-play building block for data storage
over IP. Analogous to “cache memory” invented several decades ago for bridging the
speed gap between CPU and memory, STICS is the first-ever “cache storage” for
bridging the gap between SCSI and IP making it possible to build efficient SAN over IP.
We have carried out a partial implementation and simulation experiments to study the
performance potential of STICS. Numerical results using popular PostMark benchmark
program and EMC’s trace have shown dramatic performance gain over the iSCSI
implementation.

Keywords: Cache, Disk I/O, Networked Storage, NAS, SAN, iSCSI

1 We would like the paper to be considered for best student paper nomination.

 2

1. Introduction

As we enter a new era of computing, data storage has changed its role from “secondary”
with respect to CPU and RAM to primary importance in today’s information world.
Online data storage doubles every 9 months [2] due to ever growing demand for
networked information services [12, 24]. While the importance of data storage is a well-
known fact, published literature is limited in the computer architecture research
community reporting networked storage architectures. We believe this situation should
and will change very quickly as information has surpassed raw computational power as
the important commodity. As stated in [4], “In our increasingly internet-dependent
business and computing environment, network storage is the computer”.

In general, networked storage architectures have evolved from network-attached storage
(NAS) [4, 6, 16], storage area network (SAN) [11, 17, 19], to most recent storage over IP
(iSCSI) [6, 9, 21]. NAS architecture allows a storage system/device to be directly
connected to a standard network, typically via Ethernet. Clients in the network can access
the NAS directly. A NAS based storage subsystem has built-in file system to provide
clients with file system functionality. SAN technology, on the other hand, provides a
simple block level interface for manipulating nonvolatile magnetic media. Typically, a
SAN consists of networked storage devices interconnected through a dedicated Fibre
Channel network. The basic premise of a SAN is to replace the current “point-to-point”
infrastructure of server to storage communications with one that allows “any-to-any”
communications. A SAN provides high connectivity, scalability, and availability using a
specialized network interface: Fibre Channel network. Deploying such a specialized
network usually introduces additional cost for implementation, maintenance, and
management. iSCSI is the most recent emerging technology with the goal of
implementing the SAN technology over the better-understood and mature network
infrastructure: the Internet (TCP/IP).

Implementing SAN over IP brings economy and convenience whereas it also raises issues
such as performance and reliability. Currently, there are basically two existing
approaches: one encapsulates SCSI protocol in TCP/IP at host bus adapter (HBA) level
[21] and the other carries out SCSI and IP protocol conversion at a specialized switch
[17]. Both approach have severe performance limitations. To encapsulate SCSI protocol
over IP requires significant amount of overhead traffic for SCSI commands transfers and
handshaking over the Internet. Converting protocols at a switch places special burden to
an already-overloaded switch and creates another specialized networking equipment in a
SAN. Furthermore, the Internet was not designed for transferring storage data blocks.
Many features such as MTU (Maximum Transfer Unit), data gram fragmentation, routing,
and congestion control may become obstacle for providing enough instant bandwidth for
large block transfers of storage data.

This paper introduces a new storage architecture called STICS (SCSI-To-IP Cache
Storage) aimed to solve the above-mentioned issues facing storage designers to
implement SAN over the Internet. A typical STICS bock consists of one or several
storage devices such as disks or RAID and an intelligent processing unit with an

 3

embedded processor and sufficient RAM. It has two standard interfaces: one is SCSI
interface and the other is standard Ethernet interface. Besides the regular data storage in
STICS, one storage device is used as a nonvolatile cache that caches data coming from
possibly two directions: block data from SCSI interface and network data from Ethernet
interface. In addition to standard SCSI and IP protocols running on the intelligent
processing unit, a local file system also resides in the processing unit. The file system is
not a standard file system but a simplified Log-structured file system [22] that writes data
very quickly and provides special advantages to cache data both ways. Besides caching
storage data in both directions, STICS also localizes SCSI commands and handshaking
operations to reduce unnecessary traffic over the Internet. In this way, it acts as a storage
filter to discards a fraction of the data that would otherwise move across the Internet,
reducing the bottleneck imposed by limited Internet bandwidth and increasing storage
data rate. Apparent advantages of the STICS are:

• = It provides an iSCSI network cache to smooth out the traffic and improve overall
performance. Such a cache or bridge is not only helpful but also necessary to
certain degree because of the different nature of SCSI and IP such as speed, data
unit size, protocols, and requirements. Wherever there is a speed disparity, cache
helps. Analogous to “cache memory” used to cache memory data for CPU, STICS
is a “cache storage” used to cache networked storage data for server host.

• = It utilizes the Log-structured file system to quickly write data into magnetic media
for caching data coming from both directions.

• = Because STICS uses log disk to cache data, it is a nonvolatile cache, which is
extremely important for caching storage data reliably since once data is written to
a storage, it is considered to be safe.

• = Although both NAS and STICS have storage devices and Ethernet interfaces,
STICS is a perfect complement to NAS. NAS allows direct connection to an
Ethernet to be accessed by networked computers, while STICS allows direct
connection to a SCSI interface of a computer that in turn can access a SAN
implemented over the Internet.

• = By localizing part of SCSI protocol and filtering out some unnecessary traffic,
STICS can reduce the bandwidth requirement of the Internet to implement SAN.

• = Active disks [1,14,20] are becoming feasible and popular. STICS represents
another specific and practical implementation of active disks.

• = It is a standard plug-and-play building block for SAN over the Internet. If
ISTORE [2] is standard “brick” for building, then STICS can be considered as a
standard “beam” or “post” that provides interconnect and support of a
construction (provided that the STICS is “big” and “strong” enough).

Overall, STICS adds a new dimension to the networked storage architectures. To
quantitatively evaluate the performance potential of STICS in real world network
environment, we have partially implemented the STICS under the Linux OS. While all
network operations of STICS are implemented over an Ethernet switch, cache algorithms
and file system functions are simulated because of time limit. We have used PostMark
[10] benchmark and EMC’s trace to measure system performance. PostMark results show
that STICS provides 53% to 78% performance improvement over iSCSI implementation

 4

in terms of average system throughput. An order of magnitude performance gain is
observed for 90% of I/O requests under the EMC’s trace in terms of response time.

The paper is organized as follows. Next section presents the architecture and overall
design of STICS. Section 3 presents our initial experiments and performance evaluations.
We discuss related research work in Section 4 and conclude our paper in Section 5.

2. Architecture and Design of STICS

Figure 1 shows a typical SAN implementation over IP using STICS. Any number of
storage devices or server computers can be connected to the standard Internet through
STICS to form the SAN. Instead of using a specialized network or specialized switch,
STICS connects a regular host server or a storage device to the standard IP network.
Consider STICS 1 in the diagram. It is directly connected to the SCSI HBA of Host 1 as a
local storage device. It also acts as a cache and bridge to allow Host 1 to access, at block
level, any storage device connected to the SAN such as NAS, STICS 2, and STICS 3 etc.
In order to allow a smooth data access from Host 1 to the SAN, STICS 1 provides SCSI
protocol service, caching service, naming service, and IP protocol service.

The basic structure of STICS is shown in Figure 2. It consists of five main components:

1) A SCSI interface: STICS supports SCSI communications with hosts and other

extended storage devices. Via the SCSI interface, STICS may run under two different
modes: initiator mode or target mode [25]. When a STICS is used to connect to a host,
it runs in target mode receiving requests from the host, carrying out the IO processing
possibly through network, and sending back results to the host. In this case, the

Figure 1: System overview. A STICS connects to the host via SCSI interface and
connects to other STICS’ or NAS via Internet.

Host 1 Disks

STICS 2 TCP/IP
Internet

SCSI

TCP/IP

STICS 1

TCP/IP

NAS

STICS 3 STICS NHost 3
or
Storage

Host M
or
Storage

SCSI

SCSISCSI

STICS acts as a directly attached storage device to the host. When a STICS is used to
connect to a storage device such as a disk or RAID to extend storage, it runs in
initiator mode, and it sends or forwards SCSI requests to the extended storage device.
For example, in Figure 1, STICS 1 runs in target mode while STICS 2 runs in initiator
mode.

2) An Ethernet interface: Via the network interface, a STICS can be connected to the
Internet and share storage with other STICS’s or network attached storages (NAS).

3) An intelligent processing unit: This processing unit has an embedded processor and a
RAM. A specialized Log-structured file system, standard SCSI protocols, and IP
protocols run on the processing unit. The RAM is mainly used as buffer cache. A
small NVRAM (1-4MB) is also used to maintain the meta data such as hash table,
LRU list, and the mapping information (STICS_MAP). These meta data are stored in
this NVRAM before writing to disks. The use of the NVRAM avoids frequently
writing and reading meta data to/from disks. Alternatively, we can also use Soft
Updates [3] technique to keep meta data consistency without using NVRAM.

4) A log disk: The log disk is a sequential accessed device. It is used to cache data along
with the RAM above in the processing unit. The log disk and the RAM form a two-
level hierarchical cache similar to DCD [7,8].

5) Storage device: The regular storage device can be a disk, a RAID, or JBOD (Just-
Bunch-Of-Disks). This storage device forms the basic storage component in a
networked storage system. From point of view of a server host to which the STICS is
connected through the SCSI interface, this storage device can be considered as a local
disk. From the point of view of the IP network through the network interface, this
storage can be considered as a component of a networked storage system such as a
SAN with an IP address as its ID.

 SCSI Interface

N
etw

ork Interface

Processor

RAM

Log Disk

Figure 2: STICS architecture. A STICS block consists of
intelligent processing unit with an embedded processor an
block has one SCSI interface and one network interface.

Storage
devices
5

 a log disk, storage device, an
d sufficient RAM. Each STICS

 6

2.1 STICS naming service

To allow a true “any-to-any” communication between servers and storage devices, a
global naming is necessary. In our design, each STICS is named by a global location
number (GLN) which is unique for each STICS. Currently we assign an IP address to
each STICS and use this IP as the GLN.

2.2 Cache Structure of STICS

The cache organization in STICS consists of two level hierarchies: a RAM cache and a
log disk. Frequently accessed data reside in the RAM that is organized as LRU cache as
shown in Figure 3. Whenever the newly written data in the RAM are sufficiently large or
whenever the log disk is free, data are written into the log disk. There are also less
frequently accessed data kept in the log disk. Data in the log disk are organized in the
format of segments similar to that in a Log-structured File System [22]. A segment
contains a number of slots each of which can hold one data block. Data blocks in
segments are addressed by their Segment IDs and Slot IDs.

L B A L o g d is k
L B A h a s h _ p re v h a s h _ n ex t p r e v n e x t S lo t N o

L R U L is t

L B A L o g d is k
L B A h a s h _ p re v h a s h _ n ex t p r e v n e x t S lo t N o

L B A L o g d is k
L B A h a s h _ p re v h a s h _ n ex t p r e v n e x t S lo t N o

F re e L is t

H a s h Ta b le

S lo t e n t rie s S lo ts

s lo t N -1 s lo t N s lo t 2 s lo t 1

E n try 1 E n try 2 E n try N

L B A L o g d is k
L B A h a s h _ p re v h a s h _ n ex t p r e v n e x t s lo t N o G L N

G L N

G L N

G L N

 Figure 3: RAM buffer layout. RAM buffer consists of slot entries and slots. The hash table, LRU list and
Free list are used to organize the slot entries.

One of the challenging tasks in this research is to design an efficient data structure and a
search algorithm for RAM cache. As shown in Figure 3, the RAM cache consists of a
Hash table which is used to locate data in the cache, a data buffer which contains several
data slots, and a few In-memory headers. Data blocks stored in the RAM cache are
addressed by their Logical Block Addresses (LBAs). The Hash Table contains location

 7

information for each of the valid data blocks in the cache and uses LBAs of incoming
requests as search keys. The slot size is set to be the size of a block. A slot entry consists
of the following fields:
• = An LBA entry that is the LBA of the cache line and serves as the search key of hash

table;
• = Global Location Number (GLN) if the slot contains data from or to other STICS.
• = A log disk LBA is divided into 2 parts:

1) A state tag (2 bits), used to specify where the slot data is: IN_RAM_BUFFER,
IN_LOG_DISK, IN_DATA_DISK or IN_OTHER_STICS;

2) A log disk block index (30 bits), used to specify the log disk block number if the
state tag indicates IN_LOG_DISK. The size of each log disk can be up to 230
blocks.

• = Two pointers (hash_prev and hash_next) are used to link the hash table;
• = Two pointers (prev and next) are used to link the LRU list and FREE list;
• = A Slot-No is used to describe the in-memory location of the cached data.

2.3 STICS modes

As we mentioned above, A STICS may run under two modes: initiator mode or target
mode. SCSI initiator and target modes are outlined in Figure 4. When running in target
mode, a STICS is connected to a host and the host is running in initiator mode. Otherwise
a STICS runs in initiator mode. Initiator mode is the default mode of SCSI. All server
host platforms including Linux support SCSI initiator mode. We use the standard SCSI

Front-End Target
Driver

Generic SCSI
Target

SCSI Target

SCSI Responses/Data

SCSI Commands/Data

File system

Generic SCSI
Initiator

Front-End
Initiator Driver

SCSI Initiator

Figure 4: SCSI initiator and target sub-systems.

 8

initiator mode in our STICS. The SCSI target runs in parallel to the initiator and is
concerned only with the processing of SCSI commands. We define a set of target APIs
for STICS. These APIs include SCSI functions such as SCSI_DETECT,
SCSI_RELEASE, SCSI_READ, SCSI_WRITE and etc. When running under target mode,
a STICS looks like a standard SCSI device to a connected host.

2.4 Basic operations

For each STICS, we define a variable STICS_LOAD to represent its current load. The
higher the STICS_LOAD, the busier the STICS is. When a STICS system starts, its
STICS_LOAD is set to zero. When the STICS accepts a request, STICS_LOAD is
incremented and when a request finishes, STICS_LOAD is decremented. Besides
STICS_LOAD, we define a STICS_MAP to map all STICS loads within the network.
STICS_MAP is a set of <GLN, STICS_LOAD> pairs. The STICS_MAP is also updated
dynamically.

2.4.1. Write

Write requests may come from one of two sources: the host via SCSI interface and
another STICS via the Ethernet interface. The operations of these two types of writes are
as follows.

Write requests from the host via SCSI interface: After receiving a write request, the
STICS first searches the Hash Table by the LBA address. If an entry is found, the entry is
overwritten by the incoming write. Otherwise, a free slot entry is allocated from the Free
List, the data are copied into the corresponding slot, and its address is recorded in the
Hash table. The LRU list and Free List are then updated. When enough data slots (16 in
our preliminary implementation) are accumulated or when the log disk is idle, the data
slots are written into log disk sequentially in one large write. After the log write
completes successfully, STICS signals the host that the request is complete.

Write requests from another STICS via Ethernet interface: A packet coming from the
network interface may turns out to be a write operation from a remote STICS on the
network. After receiving such a write request upon unpacking the network packet, STICS
gets a data block with GLN and LBA. It then searches the Hash Table by the LBA and
GLN. If an entry is found, the entry is overwritten by the incoming write. Otherwise, a
free slot entry is allocated from the Free List, and the data are then copied into the
corresponding slot. Its address is recorded in the Hash table. The LRU list and Free List
are updated accordingly.

2.4.2 Read

Similar to write operations, read operations may also come either from the host via SCSI
interface or from another STICS via the Ethernet interface.

 9

Read requests from the host via SCSI interface: After receiving a read request, the
STICS searches the Hash Table by the LBA to determine the location of the data. Data
requested may be in one of four different places: the RAM buffer, the log disk(s), the
storage device in the local STICS, or a storage device in another STICS on the network.
If the data is found in the RAM buffer, the data are copied from the RAM buffer to the
requesting buffer. The STICS then signals the host that the request is complete. If the
data is found in the log disk or the local storage device, the data are read from the log
disk or storage device into the requesting buffer. Otherwise, the STICS encapsulates the
request including LBA, current GLN, and destination GLN into an IP packet and
forwards it to the corresponding STICS.

Read requests from another STICS via Ethernet interface: When a read request is
found after unpacking an incoming IP packet, the STICS obtains the GLN and LBA from
the packet. It then searches the Hash Table by the LBA and the source GLN to determine
the location of the data. It locates and reads data from that location. Finally, it sends the
data back to the source STICS through the network.

2.4.3 Destages

The operation of moving data from a higher-level storage device to a lower level storage
device is defined as destage operation. There are two levels of destage operations in
STICS: destaging data from the RAM buffer to the log disk (Level 1 destage) and
destaging data from log disk to a storage device (Level 2 destage). We implement a
separate kernel thread, LogDestage, to perform the destaging tasks. The LogDestage
thread is registered during system initialization and monitors the STICS states. The thread
keeps sleep at most of the time, and is activated when one of the following events occurs:
1) the number of slots in the RAM buffer exceeds a threshold value, 2) the log disk is idle,
3) the STICS detects an idle period, 4) the STICS RAM buffer and/or the log disk
becomes full. Level 1 destage has higher priority than Level 2 destage. Once the Level 1
destage starts, it continues until a log of data in the RAM buffer is written to the log disk.
Level 2 destage may be interrupted if a new request comes in or until the log disk
becomes empty. If the destage process is interrupted, the destage thread would be
suspended until the STICS detects another idle period.

As for Level 1 destage, the data in the RAM buffer are written to the log disk sequentially
in large size (64KB). The log disk header and the corresponding in-memory slot entries
are updated. All data are written to the log disk in “append” mode, which ensures that
every time the data are written to consecutive log disk blocks.

For Level 2 destage, we use a “last-write-first-destage” algorithm according to the LRU
List. At this point, we chose a STICS with lowest STICS_LOAD to accept data. Each
time 64KB data are read from the consecutive blocks of the log disk and written to the
chosen STICS storage disks. The LRU list and free list are updated subsequently.

3. Performance Evaluations

3.1 Methodology

Our experimental settings for the purpose of evaluating the performance of iSCSI and
STICS are shown in Figures 5 and 6. Three PCs are involved in our experiments, namely
Trout, Cod and Squid. For iSCSI, the Trout serves as the host and the Squid as the iSCSI
target as shown in Figure 5. For STICS experiment, we add our STICS simulator between
the host and the target as shown in Figure 6. STICS simulator runs in Cod that caches
data and iSCSI communications. All these machines are interconnected through a
100Mbps switch to form an isolated LAN. Each machine is running Linux kernel 2.4.2
with a 3c905 TX 100Mbps network interface card (NIC) and an Adaptec 39160 high
performance SCSI adaptor. The configurations of these machines are described in Table
1 and the characteristics of individual disks are summarized in Table 2.

For iSCSI implementation, we c
Corporation [9]. The iSCSI is c
shown in Figure 5. There are 4 s
via iSCSI. First, the host establish
connects; third, the target machin
as local. All these steps are finis
the iSCSI is in “full feature ph

 Processor RAM
Trout PII-450 192M
Cod PII-400 128M
Squid K6-500 128M

Host
(Trout)

N
IC

 S

iSCSI c

Figure 5: iSCSI configurat
to target, and the target Sq
exports hard drive and Tro

Disk Model Interface Capaci

DNES-318350 Ultra SCSI 18.2G
DNES-309170 Ultra SCSI 9.1G
91366U4 ATA-5 13.6G
91020D6 ATA-4 10.2G
AC38400 UDMA 8.4G
Table 1: Machines configurations
 IDE disk SCSI disk
B Maxtor 91366u4 N/A
B WDC AC38400 IBM DNES-309170
B Maxtor 91020D6 IBM DNES-318350
om
om
tep
es
e e
hed
ase

wi

om

ion
uid
ut s

ty

Table 2: Disk parameters
Data
buffer

RPM Latency
(ms)

Transfer
rate(MB/s)

Seek time
(ms)

Manufact
urer

2MB 7200 4.17 12.7-20.2 7.0 IBM
2MB 7200 4.17 12.7-20.2 7.0 IBM
2MB 7200 4.18 Up to 33.7 9.0 Maxtor
256KB 5400 5.56 18.6 9.0 Maxtor
256KB 5400 5.5 16.6 10.5 WDC
10

piled and run the Linux iSCSI developed by Intel
piled under Linux kernel 2.4.2 and configured as
s for the two machines to establish communications
connection to target; second, the target responds and
xports its disks and finally the host sees these disks
 through socket communications. After these steps,
” mode where SCSI commands and data can be

Target
(Squid)

SC
SI

N
IC

Disks
tch

mands and data

. The host Trout establishes connection
 responds and connects. Then the Squid
ees the disks as local.

 11

exchanged between the host and the target. For each SCSI operation, there will be at least
4 socket communications as follows: 1) The host encapsulates the SCSI command into
packet data unit (PDU) and sends this PDU to the target; 2) The target receives and
decapsulates the PDU. It then encapsulates a response into a PDU and sends it back to the
host; 3) The host receives and decapsulates the response PDU. It then encapsulates the
data into a PDU and sends it to the target if the target is ready to transfer; 4) the target
receives the data PDU and sends another response to the host to acknowledge the finish
of the SCSI operation.

We simulated our STICS using a PC running Linux kernel 2.4.2 with target mode support.
The STICS simulator is built on top of DCD driver developed by us [7]. The SCSI target
mode function is borrowed from the University of New Hampshire Interoperability Lab’s
SCSI target package [18]. We use 4 MB of the system RAM to simulate STICS
NVRAM buffer, and the log disk is a standalone hard drive. A hash table, a LRU list, and
mapping information (STICS_MAP) are maintained in the NVRAM. The STICS
simulator can run under two modes. To the host (Trout), it runs as target mode and to the
target storage (Squid), it runs as initiator mode. When SCSI requests come from the host,
the simulator first processes the requests locally. For write requests, the simulator writes
the data to its RAM buffer. When the log disk is idle or the NVRAM is full, the data will
be destaged to the log disk through level 1 destage. After data is written to the log disk,
STICS signals host write complete. When the log disk is full or the system is idle, the
data in log disk will be destaged to the lower level storage. At this point the STICS will
decide to store data locally or to the remote disks according to STICS_MAP. In our
simulation we store the data to local storage and remote disks equally likely. The hash
table and LRU list which reside in the NVRAM are updated. When a read request comes

Figure 6: STICS setup. The STICS simulator caches data from both SCSI and network.

SC
SI

N
IC

Cod

STICS simulator

Switch

Squid

SC
SI

N
IC

Disks

Host
(Trout)

SCSI

 12

in, the STICS searches the hash table, locates where the data are, and accesses the data
from RAM, log disk, local storage, or remote disks via network.

3.2 Benchmark program and workload characteristics

It is important to use realistic workloads to drive our simulator for a fair performance
evaluation and comparison. For this reason, we chose to use real world trace and
benchmark program.

The benchmark we used to measure system throughput is PostMark [10] which is a
popular file system benchmark developed by Network Appliance. It measures
performance in terms of transaction rates in an ephemeral small-file environment by
creating a large pool of continually changing files. “PostMark was created to simulate
heavy small-file system loads with a minimal amount of software and configuration effort
and to provide complete reproducibility [10].” PostMark generates an initial pool of
random text files ranging in size from a configurable low bound to a configurable high
bound. This file pool is of configurable size and can be located on any accessible file
system. Once the pool has been created, a specified number of transactions occur. Each
transaction consists of a pair of smaller transactions, i.e. Create file or Delete file and
Read file or Append file. Each transaction type and its affected files are chosen randomly.
The read and write block size can be tuned. On completion of each run, a report is
generated showing some metrics such as elapsed time, transaction rate, total number of
files created and so on.

In addition to PostMark, we also used a real-world trace obtained from EMC Corporation.
The trace, referred to as EMC-tel trace hereafter, was collected by an EMC Symmetrix
disk array system installed at a telecommunication consumer site. The trace file contains
230370 requests, with a fixed request size of 4 blocks. The trace is write-dominated with
a write ratio of 94.7%. In order for the trace to be read by our STICS and the iSCSI
implementation, we developed a program called ReqGenerator to convert the traces to
high-level I/O requests. These requests are then fed to our simulator and iSCSI system to
measure performance.

3.3 Results and discussions

3.3.1 Throughput

Our first experiment is to use PostMark to measure the I/O throughput in terms of
transactions per second. In our tests, PostMark was configured in two different ways as in
[10]. First, a small pool of 1,000 initial files and 50,000 transactions; and second a large
pool of 20,000 initial files and 100,000 transactions. The total sizes of accessed data are
330MB (161.35MB read and 168.38MB write) and 740MB (303.46 MB read and
436.18MB write) respectively. They are much larger than the system RAM (128MB).
The block sizes change from 512 bytes to 4KB. The IO operations are set to synchronous
mode. We left all other PostMark parameters at their default settings.

 13

In Figure 7, we plotted two separate bar graphs corresponding to the small file pool case
and the large one, respectively. Each pair of bars represents the system throughputs of
STICS (light blue bars) and iSCSI (dark red bars) for a specific data block size. It is clear
from this figure that STICS shows obvious better system throughput than the iSCSI. The
performance improvement of STICS over iSCSI is consistent across different block sizes
and for both small pool and large pool cases. The performance gain of STICS over iSCSI
ranges from 53% to 78%.

Throughput
(1000 intial files and 50000 transactions)

0

50

100

150

200

250

300

350

512 1024 2048 4096

Block size (bytes)

Tr
an

sa
ct

io
ns

/s
ec

STICS iSCSI

Throughput
(20000 initial files and 100000

transactions)

0
20
40
60
80

100
120
140
160

512 1024 2048 4096

Block size (bytes)

Tr
an

sa
ct

io
ns

/s
ec

STICS iSCSI

Figure 7: Postmark measurements.

3.3.2 Response times

Our next experiment is to measure and compare the response times of STICS and iSCSI
under EMC trace. In Figure 8a, we plotted histogram of request numbers against response
times, i.e. X-axis represents response time and Y-axis represents the number of storage
requests finished within a particular response time. For example, a point (X, Y)=(1000,
25000) means that there are 25,000 requests finished within 1000 microseconds. The
lighter (blue) part of the figure is for STICS whereas the darker (red) part for iSCSI. To
make it clearer, we also draw a bar graph representing percentage of requests finished
within a given time as shown in Figure 8b. It is interesting to note in this figure that
STICS does an excellent job in smoothing out the speed disparity between SCSI and IP.
With STICS, over 80% of requests are finished within 1000 microseconds and most them
are finished within 500 microseconds. For iSCSI with no STICS, about 53% of requests
take over 4000 microseconds, about 46% take over 8000 microseconds, and almost no
request finishes within 1000 microseconds. These measured data are very significant and
represent dramatic performance advantages of STICS.

While STICS improves the iSCSI performance by an order of magnitude for 90% of
storage requests, the average speedup of STICS is only about 85%. The average response
time of STICS is 3652 whereas the average response time of iSCSI is about 6757. Figure
9 shows average response times of groups of 1000 requests each, i.e. we average the
response times of every 1000 requests as a group and show the average response times
for all groups. In our experiments, we noticed that 5% of requests take over 8000
microseconds for STICS. Some requests even take up to 120,000 microseconds. These

 14

few peak points drag down the average performance of STICS. These excessive large
response times can be attributed to the destaging process. In our current simulation, we
allow the level 1 destaging process to continue until the entire RAM buffer is empty
before serving a new storage request. It takes a long time to move data in a full RAM to
the log disk. We are still working on the optimization of the destage algorithm. We
believe there is sufficient room to improve the destaging process to avoid the few peak
response times of STICS.

Response time

0

5000

10000

15000

20000

25000

30000

35000

1000 2000 3000 4000 5000 6000 8000 10000 10K+
Time (microseconds)

R
eq

ue
st

s

STICS iSCSI

(a)

Response time distribution

0

20

40

60

80

100

time (microseconds)

%

STICS iSCSI

STICS 82.840625 5.209375 2.259375 9.690625

iSCSI 0.009375 0.971875 53.259375 45.759375

0-1000 1000-4000 4000-8000 8000++

(b)

Figure 8: Response time distributions.

 15

Average response time

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Group

m
ic

ro
se

co
nd

STICS iSCSI

Figure 9: Average response time of STICS and iSCSI.

4. Related Work

Existing research that is most closely related to STICS is Network Attached Storage
(NAS) [4,20] and Network-Attached Secure Disk (NASD) [5], a research project at
Carnegie Mellon University. Both technologies provide direct network connection for
clients to access through network interfaces and file system functionality. NAS-based
storage appliances range from terabyte servers to a simple disk with Ethernet plug. These
storages are generally simple to manage. NASD provides secure interfaces via
cryptographic support and divides NFS-like functionality between a file manager and the
disk drives. The file manager is responsible primarily for verifying credentials and
establishing access tokens. Clients can access all devices directly and in parallel once
approved by the file manager. As discussed in the introduction of this paper, STICS
presents a perfect complement to NAS. STICS provides a direct SCSI connection to a
server host to allow the server to access at block level a SAN implemented over the
Internet. In addition to being a storage component of the SAN, a STICS performs
network cache functions for a smooth and efficient SAN implementation over IP network.
In a local area network (LAN), the LAN used to interconnect STICS and various storage
devices can be the same LAN as the one connecting servers accessing storages, or it can
be a separate LAN dedicated for SAN without competing for network bandwidth with the
servers.

Another important work related to our research is Petal [13, 23], a research project of
Compaq’s Systems Research Center. Petal uses a collection of NAS-like storage servers
interconnected using custom LAN to form a unified virtual disk space to clients at block
level. A virtual disk is globally accessible to all Petal clients within the network. Petal
was built using a LAN protocol but logically designed a SAN interface. Each storage

 16

server keeps a global state, which makes management in a Petal system especially easy.
iSCSI (Internet SCSI) [6,9,21] emerged very recently provides an ideal alternative to
Petal’s custom LAN-based SAN protocol. Taking advantage of existing Internet
protocols and media, it is a nature way for storage to make use of TCP/IP as
demonstrated by earlier research work of Meter et al of USC, VISA [15] to transfer SCSI
commands and data using IP protocol.

iSCSI protocol is a mapping of the SCSI remote procedure invocation model over the
TCP/IP protocol [21]. The connection between the initiator and the target is established
when a session starts. The SCSI commands and data are transferred between the initiator
and target that need to be synchronized remotely. STICS architecture attempts to localize
some of SCSI protocol traffic by accepting SCSI commands and data from the host.
Filtered data block is sent to the storage target using Internet. This SCSI-in-Block-out
mechanism provides an immediate and transparent solution both to the host and the
storage eliminating some unnecessary remote synchronization. Furthermore, STICS
provides a nonvolatile cache exclusively for SCSI commands and data that are supposed
to be transferred through the network. This cache will reduce latency from the host point
of view as well as avoid many unnecessary data transfer over the network, because many
data are frequently overwritten.

5. Conclusions and Future Work

In this paper, we have introduced a new concept “SCSI-To-IP cache storage” (STICS) to
bridge the disparities between SCSI and IP in order to facilitate implementation of SAN
over the Internet. STICS adds a new dimension to networked storage architectures
allowing any server host to efficiently access a SAN on Internet through a standard SCSI
interface. Using a nonvolatile “cache storage”, STICS smoothes out the storage data
traffic between SCSI and IP very much like the way “cache memory” smoothes out
CPU-memory traffic. We have carried out a partial implementation and simulation of
STICS under the Linux operating system. While the caching algorithms and file system
operations inside a STICS are simulated using simulators, SCSI protocols, data transfers,
and iSCSI protocols are actually implemented using standard SCSI HBA, Ethernet
controller cards, and an Ethernet switch. We measured the performance of STICS as
compared to a typical iSCSI implementation using a popular benchmark (PostMark) and
a real world I/O workload (EMC’s trace). PostMark results have shown that STICS
outperforms iSCSI by 53%-78% in terms of average system throughput. Numerical
results under EMC’s trace show an order of magnitude performance gain for 90% of
storage requests in terms of response time. Furthermore, STICS is a plug-and-play
building block for storage networks.

We are currently in the process of completely building the STICS box using the Linux
operating system. Besides performance and reliability, manageability, adaptivity, and
scalability are under consideration [26].

 17

Acknowledgements

This research is sponsored in part by National Science Foundation under Grants CCR-
0073377 and MIP9714370. We would like to thank EMC Corporation for providing trace
files to us. We would like to thank Jian Li for discussing about the SCSI target mode and
his invaluable assistance in our experiments. We would also like to thank Yinan Liu for
his suggestions on graph editing. Finally, we would like to thank department system
administrator Tim Toolan for graciously allowing us to borrow the SCSI external cables
and a high-speed switch.

References

[1] A. Acharya, M. Uysal, and J. Saltz, “Active Disks: Programming Model,

Algorithms and Evaluation,” Proceedings of the 8th international conference on
Architectural support for programming languages and operating systems
(ASPLOS’98), October 2 - 7, 1998, San Jose, CA, pp.81-91.

[2] A. Brown, D. Oppenheimer, K. Keeton, R. Thomas, J. Kubiatowicz, and D.A.
Patterson, “ISTORE: Introspective Storage for Data-Intensive Network Services,”
Proceedings of the 7th Workshop on Hot Topics in Operating Systems (HotOS-VII),
Rio Rico, Arizona, March 1999.

[3] G. Ganger, M. McKusick, C. Soules, and Y. Patt, “Soft updates: a solution to the
metadata update problem in file systems,” ACM Transactions on Computer Systems,
Vol. 18, No. 2, 2000, pp.127-153.

[4] G. Gibson, R. Meter, “Network Attached Storage Architecture,” Communications of
the ACM, Vol. 43, No 11, November 2000, pp.37-45.

[5] G. Gibson, D. Nagle, W. Courtright II, N. Lanza, P. Mazaitis, M. Unangst, and J.
Zelenka, “NASD Scalable Storage Systems,” USENIX99, Extreme Linux Workshop,
Monterey, CA, June 1999.

[6] R. Hernandez, C. Kion, and G. Cole, “IP Storage Networking: IBM NAS and iSCSI
Solutions,” Redbooks Publications (IBM), SG24-6240-00, June 2001.

[7] Y. Hu and Q. Yang, “DCD-disk caching disk: A New Approach for Boosting I/O
Performance,” 23rd Annual Intl. Symposium on Computer Architecture,
Philadelphia PA, May, 1996, pp.169-178.

[8] Y. Hu, Q. Yang, and T. Nightingale, “RAPID-Cache --- A Reliable and Inexpensive
Write Cache for Disk I/O Systems”, In the 5th International Symposium on High
Performance Computer Architecture (HPCA-5), Orlando, Florida, Jan. 1999.

[9] Intel iSCSI project, URL: http://sourceforge.net/projects/intel-iscsi, April 2001.
[10] J. Katcher, “PostMark: A New File System Benchmark,” Technical Report TR3022,

Network Appliance, URL: http://www.netapp.com/tech_library/3022.html.
[11] R. Khattar, M. Murphy, G. Tarella and K. Nystrom, “Introduction to Storage Area

Network,” Redbooks Publications (IBM), SG24-5470-00, September 1999.
[12] J. Kubiatowicz, et al. “OceanStore: An Architecture for Global-Scale Persistent

Storage,” Proceedings of the international conference on Architectural support for
programming languages and operating systems (ASPLOS’2000), December 2000.

 18

[13] E. Lee and C. Thekkath, “Petal: Distributed Virtual Disks,” Proceedings of the
international conference on Architectural support for programming languages and
operating systems (ASPLOS 1996), pp.84-92.

[14] H. Lim, V. Kapoor, C. Wighe, and D. Du, “Active Disk File System: A Distributed,
Scalable File System,” Proceedings of the 18th IEEE Symposium on Mass Storage
Systems and Technologies, San Diego, April 2001, pp. 101-115.

[15] R. Meter, G. Finn, S. Hotz, “VISA: Netstation's Virtual Internet SCSI Adapter,”
Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, California, October 3-7,
1998, pp.71-80.

[16] D. Nagle, G. Ganger, J. Butler, G. Goodson, and C. Sabol, “Network Support for
Network-Attached Storage,” Hot Interconnects’1999, August 1999.

[17] Nishan System white paper, “Storage over IP (SoIP) Framework – The Next
Generation SAN,” URL: http://www.nishansystems.com/techlib/techlib_papers.html,
June 2001.

[18] A. Palekar and R. Russell, “Design and Implementation of a SCSI Target for
Storage Area Networks,” Technical Report TR 01-01, University of New
Hampshire, URL: ftp://ftp.iol.unh.edu/pub/iscsi/tr0101.pdf, May 2001.

[19] B. Phillips, “Have Storage Area Networks Come of Age?” IEEE Computer, Vol. 31,
No. 7, 1998.

[20] E. Riedel, G. Faloutsos, G. Gibson and D. Nagle, “Active Disks for Large-Scale
Data Processing,” IEEE Computer, Vol. 34, No. 6, June 2001.

[21] J. Satran, et al. “iSCSI draft standard,” URL: http://www.ietf.org/internet-
drafts/draft-ietf-ips-iscsi-06.txt, April 2001.

[22] M. Seltzer, K. Bostic, M. McKusick, C. Staelin, “An Implementation of a Log-
Structured File System for UNIX,” Winter USENIX Proceedings, Jan. 1993, pp.
201-220.

[23] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A scalable distributed file system,”
Proceedings of the 16th ACM Symposium on Operating Systems Principles, October
1997, pp. 224-237.

[24] A. Veitch, E. Riedel, S. Towers, and J. Wilkes, “Towards Global Storage
Management and Data Placement,” Technical Memo HPL-SSP-2001-1, HP Labs,
March 2001.

[25] Working Draft, “Information Technology: The SCSI Architecture Model-2 (SAM-
2),” Revision 14, T10-1157-D, URL: ftp://ftp.t10.org/t10/drafts/sam2/sam2r14.pdf,
September 2000.

[26] Q. Yang and X. He, “Interface and File System Designs for Implementing STICS ―
SCSI-To-IP Cache Storage,” One page work-in-progress report submitted to
Conference on File And Storage Technologies (FAST’2002).

	Introduction
	Architecture and Design of STICS
	
	
	
	
	
	Write
	Read
	Destages

	Performance Evaluations
	
	
	
	
	3.3.1 Throughput
	3.3.2 Response times

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

