
An Efficient Fault-tolerant Scheduling Algorithm for Real-time Tasks with
Precedence Constraints in Heterogeneous Systems ∗∗∗∗

Xiao Qin Hong Jiang David R. Swanson
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115, {xqin, jiang, dswanson}@cse.unl.edu

∗ This work was supported by an NSF grant (EPS-0091900) and a Nebraska University Foundation grant (26-0511-0019)

Abstract

In this paper, we investigate an efficient off-line
scheduling algorithm in which real-time tasks with
precedence constraints are executed in a heterogeneous
environment. It provides more features and capabilities
than existing algorithms that schedule only independent
tasks in real-time homogeneous systems. In addition, the
proposed algorithm takes the heterogeneities of
computation, communication and reliability into account,
thereby improving the reliability. To provide fault-
tolerant capability, the algorithm employs a primary-
backup copy scheme that enables the system to tolerate
permanent failures in any single processor. In this
scheme, a backup copy is allowed to overlap with other
backup copies on the same processor, as long as their
corresponding primary copies are allocated to different
processors. Tasks are judiciously allocated to processors
so as to reduce the schedule length as well as the
reliability cost, defined to be the product of processor
failure rate and task execution time. In addition, the time
for detecting and handling of a permanent fault is
incorporated into the scheduling scheme, thus making the
algorithm more practical. To quantify the combined
performance of fault-tolerance and schedulability, the
performability measure is introduced. Compared with the
existing scheduling algorithms in the literature, our
scheduling algorithm achieves an average of 16.4%
improvement in reliability and an average of 49.3%
improvement in performability.

1. Introduction

Heterogeneous distributed systems have been
increasingly used for scientific and commercial
applications, including real-time safety-critical
applications, in which the system depends not only on the
results of a computation, but also on the time instants at
which these results become available. Examples of such

applications include aircraft control, transportation
systems and medical electronics. To obtain high
performance for real-time heterogeneous systems,
scheduling algorithms play an important role. While a
scheduling algorithm maps real-time tasks to processors
in the system such that deadlines and response time
requirements are met, the system must also guarantee its
functional and timing correctness even in the presence of
faults.

The proposed algorithm, referred to as eFRCD (efficient
Fault-tolerant Reliability Cost Driven Algorithm),
endeavors to comprehensively address the issues of fault-
tolerance, reliability, real-time, task precedence
constraints, and heterogeneity. To tolerate one processor
permanent failure, the algorithm uses a Primary/Backup
technique to allocate two copies of each task to different
processors. To further improve the quality of the schedule,
a backup copy is allowed to overlap with other backup
copies on the same processor, as long as their
corresponding primary copies are allocated to different
processors. As an added measure of fault-tolerance, the
proposed algorithm also considers the heterogeneities of
computation and reliability, thereby improving the
reliability without extra hardware cost. More precisely,
tasks are judiciously allocated to processors so as to
reduce the schedule length as well as the reliability cost,
defined to be the product of processor failure rate and task
execution time. In addition, the time for detecting and
handling of a permanent fault is incorporated into the
scheduling scheme, thus making the algorithm more
practical.

The rest of the paper is organized as follows. Section 2
briefly presents related work in the literature. Section 3
describes the workload and the system characteristics.
Section 4 proposes the eFRCD algorithm and the main
principles behind it, including theorems used for
presenting the algorithm. Performance evaluation is given
in Section 5. Section 6 concludes the paper by
summarizing the main contributions of this paper.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

2. Related work

The issue of scheduling on heterogeneous systems has
been studied in the literature in recent years. A scheduling
scheme, STDP, for heterogeneous systems was developed
in [16]. In [3,17], reliability cost was incorporated into
scheduling algorithms for tasks with precedence
constraints. However, these algorithms neither provide
fault-tolerance nor support real-time applications.

Previous work has been done to facilitate real-time
computing in heterogeneous systems. In [7], a solution for
the dynamic resource management problem in real-time
heterogeneous systems was proposed. These algorithms,
however, cannot tolerate any processor failure. Fault-
tolerance is considered in the design of real-time
scheduling algorithms to make systems more reliable.

In paper [6], a mechanism was proposed for supporting
adaptive fault-tolerance in a real-time system. Liberato et
al. proposed a feasibility-check algorithm for fault-
tolerant scheduling [8]. The well-known Rate-Monotonic
First-Fit assignment algorithm was extended in [2].
However, both of the above algorithms assume that the
underlying system either is homogeneous or consists of a
single processor.

The algorithm in [1] is a real-time scheduling algorithm
for tasks with precedence constraint, but it does not
support fault-tolerance. Manimaran et al. [9] and Mosse et
al. [4] have proposed dynamic algorithms to schedule
real-time tasks with fault-tolerance requirements on
multiprocessor systems, but the tasks scheduled in their
algorithms are independent of one another and are
scheduled on-line. Martin [10] devised an algorithm on
the same system and task model as that in [4]. Oh and Son
studied a real-time and fault-tolerant scheduling algorithm
that statically schedules a set of independent tasks [12].
Two common features among these algorithms [4,8,11,
12] are that (1) tasks are independent from one another
and (2) they are designed only for homogeneous systems.
Although heterogeneous systems are considered in both
[17] and eFRCD, the latter considers fault-tolerance and
real-time tasks while the former does not consider either.

Very recently, Girault et al. proposed a real-time
scheduling algorithm for heterogeneous systems that
considers fault-tolerance and tasks with precedence
constraints [5]. This study is by far the closest to eFRCD
that the authors have found in the literature. The main
differences between [5] and eFRCD are three-fold: (a).
eFRCD considers heterogeneities in computation,
communication and reliability that will be defined shortly,
whereas the former only considers computational
heterogeneity. These hetero-geneities. (b). The former
does not take reliability cost into consideration, whereas
eFRCD is reliability-cost driven; and (c). The former
allows the concurrent execution of primary and backup
copies of a task while eFRCD allows backup copies of

tasks whose primary copies are scheduled on different
processors to overlap one another.

In the authors’ previous work, both static [14,15] and
dynamic [13] scheduling schemes for heterogeneous real-
time systems were developed. One similarity among these
algorithms is that the Reliability Cost Driven Scheme is
applied. With the exception of the FRCD algorithm [15],
other algorithms proposed in [13,14] cannot tolerate any
failure. In this paper, the FRCD algorithm [15] is
extended by relaxing the requirement that backup copies
of tasks be not allowed to be overlapped.

3. Workload and system characteristics

A real-time job with dependent tasks can be modelled
by Directed Acyclic Graph (DAG), T = {V, E}, where V =
{v1, v2,...,vn} is a set of tasks, and a set of edges E
represents communication among tasks. eij = (vi, vj) ∈ E
indicates a message transmitted from task vi to vj, and |eij|
denotes the volume of data being sent. To tolerate
permanent faults in one processor, a primary-backup
technique is applied. Thus, each task has two copies,
namely, vP and vB, executed sequentially on two different
processors. Without loss of generality, it is assumed that
two copies of a task are identical. The proposed approach
also is applied when two copies of each task are different.

The heterogeneous system consists of a set P = {p1,
p2,...,pm} of heterogeneous processors connected by a
network. A processor communicates with other processors
through message passing. A measure of computational
heterogeneity is modeled by a function, C: V×P→ Z+,
which represents the execution time of each task on each
processor. Thus, cj(vi) denotes the execution time of vi on
pj. A measure of communicational heterogeneity is
modeled by a function M: E×P×P → Z+. Communication
time for sending a message esr from vs on pi to vr on pj is
determined by wij*|esr|, where |esr| is the communication
cost and wij is the weight on the edge between pi and pj,
representing the delay involved in transmitting a message
of unit length between the two processors.

Given a task v ∈ V, d(v), s(v) and f(v) denote the
deadline, scheduled start time, and finish time,
respectively. p(v) denotes the processor to which v is
allocated. These parameters are subject to constraints: f(v)
= s(v) + ci(v) and f(v) ≤ d(v), where p(v) =pi. A real-time
job has a feasible schedule if for all v ∈ V, it satisfies both
f(vP) ≤ d(v), and f(vB) ≤ d(v).

A k-timely-fault-tolerant (k-TFT) schedule is defined as
the schedule in which no task deadlines are missed [12],
despite k arbitrary processor failures. The goal of eFRCD
is to achieve 1-TFT.

The reliability cost of task vi on pj is defined as the
product of failure rate, λj, of pj and vi's execution time on
pj. It should be noted that reliability heterogeneity is

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

implied in the reliability cost by virtue of heterogeneity in
cj(vi) and λj. Let RC0 (R, Ψ) and RCi(R,Ψ) (1≤ i≤ m) be
the reliability cost when no processor fails and when pi

fails, where Ψ is a given schedule and R = {λ1, λ2, …, λm}
is a set of failure rates for the processors. RC0 and RCi are
determined by equation (1) and (2), respectively.

)1()(),(
)(1

0 ∑∑
==

=Ψ
ivp

ii

m

i P

vcRRC λ

∑ ∑∑∑
= ==≠=≠=

+=Ψ
jvp jvpivp

jj

m

ijj
jj

m

ijj
i

P BP

vcvcRRC
)()(,)(,1,1

)()(),(λλ











+= ∑ ∑∑

= ==≠= jvp jvpivp
jjjj

m

ijj P BP

vcvc
)()(,)(,1

)()(λλ (2)

In equation (2), the first summation term on the right
hand side represents the reliability cost due to tasks whose
primary copies reside in fault-free processors, while the
second summation term expresses the reliability cost due
to the backup copies of the tasks whose primary copies
reside in the failed processor.

Reliability, given in the following expression, captures
the ability of the system to complete parallel jobs in the
presence of one processor permanent failure.

),(),(Ψ−=Ψ RRCeRRL (3)

4. Scheduling algorithms

In this section, we present the eFRCD algorithm,
which has three objectives, namely, (1) total schedule
length is reduced so that more tasks can complete before
their deadlines; (2) permanent failures in one processor
can be tolerated; and (3) The system reliability is
enhanced by reducing the overall reliability cost of the
schedule.

4.1 An outline

The key for tolerating a single processor failure is to
allocate the primary and backup copies of a task to two
different processors such that the backup copy
subsequently executes if the primary copy fails to
complete due to its processor failure. Not all backup
copies need to execute, even in the presence of a single
processor failure. Since only tasks allocated to the failed
processor are affected and need their backup copies to be
executed, certain backup copies can be scheduled to
overlap with one another. More precisely, a vB is allowed
to overlap with other backup copies on the same
processor, if the corresponding primary copies are
allocated to the different processors to which the vP is not
allocated. Thus, in a feasible schedule, the primary copies
of any two tasks must not be allocated to the same
processor if their backup copies are on the same processor
and there is an overlap between two the backup copies.
This statement is formally described as below.

Proposition 1. ()∧=∈∀)()(:, B
j

B
iji vpvpVvv

() ()())()()()()()()()(P
j

P
i

B
i

B
i

B
j

B
i

B
j

B
i vpvpvfvsvsvfvsvs ≠→<≤∨<≤

Fig. 1 shows an example illustrating this case. In this
example, vi

P and vj
P are allocated to p1 and p3,

respectively, and backup copies of vi and vj are both
allocated to p2. These two backup copies can be
overlapped with each other because at most one of them
will ever execute in the single-processor failure model.

The algorithm schedules tasks in the following three
main steps. First, tasks are ordered by their deadlines in
non-decreasing order, such that tasks with tighter
deadlines have higher priorities. Second, the primary
copies are scheduled. Finally, the backup copies are
scheduled in a similar manner as the primary copies,
except that they may be overlapped on the same
processors to reduce schedule length. More specifically,
in the second and third steps, the scheduling of each task
must satisfy the following three conditions: (1) its
deadline should be met; (2) the processor allocation
should lead to the minimum increase in overall reliability
cost among all processors satisfying condition (1); and (3)
it should be able to receive messages from all its
predecessors. In addition to these conditions, each backup
copy has three extra conditions to satisfy, namely, (i) it is
allocated on the processor that is different than the one
assigned for its primary copy, (ii) its start time is later
than the finish time of its primary copy plus the fault
detection time δ and (iii) it is allowed to overlap with
other backup copies on the same processor if their
primary copies are allocated to different processors.
Condition (i) and (ii) can be formally described by the
following proposition.
Proposition 2. A schedule is 1-TFT

→ () ()δ+≥∧≠∈∀)()()()(: PBBP vfvsvpvpVv .

4.2 The eFRCD algorithm

To facilitate the presentation of the algorithm,
necessary notations are listed in the following table.

Table 1. Definitions of Notation
Notation DEFINITION
D(v) The set of predecessors of task v. D(v) = {vi | (vi, v) ∈ E}

Fig. 1 Primary copies of vi and vj are allocated to
p1 and p3, respectively, and backup copies of vi

and vj are both allocated to p2. These two backup
copies can be overlapped with each other.

vi
P

vj
P

vj
Bvj

B

time
p1

p2

p3
overlap

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

S(v) The set of successors of task v, S(v) = {vi | (v, vi) ∈ E}
F(v) The set of feasible processors to which vB can be

allocated, determined in part by Theorem 2.
B(v) The set of predecessors of v’s backup copy, determined

by Expression (7).
VQi The queue in which all tasks are scheduled to pi, s(vq+1) =

∞, and f(v0) = 0
VQi’(v) The queue in which all tasks are scheduled to pi, and

cannot overlap with the backup copy of task v, where
s(vq+1) = ∞, and f(v0) = 0

vi f vj vi is schedule-preceding vj, if and only if s(vj) ≥ f(vi).
vi ⇒ vj vi is message-preceding vj, if and only if vi sends a

message to vj. Note that vi ⇒ vj implies vi f vj but not
inversely.

vi a vj vi execution-preceding vj, if and only if both tasks execute
and vi ⇒ vj Note that vi a vj implies vi ⇒ vj and vi f vj

EATi
P(v) The earliest available time on pi for vP

EATi
B(v) The earliest available time on pi for vB.

ESTi
P(v) The earliest start time for vP on processor pi.

ESTi
B(v) The earliest start time for vB on processor pi.

A detailed pseudocode of the eFRCD algorithm is
presented below.
The eFRCD Algorithm:
Input: T = {V, E}, P, C, M, R /* DAG, Distributed System,
Computational, Communicational and Reliability Heterogeneity */
Output: Schedule feasibility of T, and a viable schedule Ψ if it is
feasible.
1. Sort tasks by the deadlines in non-decreasing order, subject to
precedence constraints, and generate an ordered list OL;
2. /* Schedule primary copies of tasks */

for each task v in OL, following the order, schedule vP do
. 2.1 s(vP) ← ∞; rc ← ∞; VQi = ∅;
2.2 for each processor pi do /* Check if v can be allocated to pi */

/* Calculate ESTP
i(v), where VQi = { v1, v2, …, vq } is the queue in */

/* which all tasks are scheduled to pi, s(vq+1) = ∞, and f(v0) = 0 */
2.2.1 /*Compute the earliest start time of v on pi */

for (j = 0 to q + 1) do
/* check if the unoccupied time intervals, interspersed */
/* by currently scheduled tasks, can accommodate v */

if s(vj+1) - MAX{f(vj), EATi
P(v)} ≥ ci(v) then

ESTP
i(v) = MAX{f(vj), EATi

P(v)}; break;
end for

2.2.2 /* Determine the earliest ESTi based on Equation (6) */
if vP starts executing at ESTP

i(v) and can be
completed before d(v) then

Determine reliability cost rci of vP on pi;
/* Find the minimum reliability cost */
if ((rci < rc) or (rci = rc and ESTP

i(v)< s(vP))) then
s(vP) ← ESTP

i(v); p← pi; rc ← rci;
end for

2.3 if no proper processor is available for vP, then return(FAIL);
2.4 Assign p to v, where the reliability cost of vP on p is the minimal;

VQi ← VQi + vP;
2.5 Update information of messages;
end for

3. /*Schedule backup copies of tasks */
for each task v in the ordered list, schedule the backup copy vB do
3.1 s(vB) ← ∞; rc ← ∞;

/* Determine whether the vB should be allocated to processor pi */
3.2 for each feasible processor pi ∈ F(v), subject to Proposition 2 and
Theorem 2, do /* identify backup copies already scheduled */

3.2.1 for (vj ∈VQi) do /* on pi that can overlap with vB */
if (vj is a primary copy) or ((vj is a backup copy) and
(p(vj) = p(v))) then /* subject to Proposition 1 */

copy vj into task queue VQi’(v);
3.2.2 Determine if vP is a strong primary copy (using Theorem 4);
3.2.3 for (all vj in task queue VQi’(v)) do /*check the unoccupied */

/* time intervals, and time slots occupied by backup copies */
/* that can overlap with vB , can accommodate vB */

if s(vj+1) -MAX{f(vj), EATi
B(v)} ≥ ci(v) then

ESTB
i(v)= MAX{f(vj), EATi

B(v)}; break;
end for

3.2.4 /*Determine the earliest ESTi based on Equation (9) */
if v starts executing at ESTB

i(v) and can be completed
before d(v) then

Determine reliability cost rci of vP on pi;
/* Find the minimum rc */
if ((rci<rc) or (rci=rc and ESTB

i(v)< s(vB))) then
s(vB) ← ESTB

i(v); p← pi; rc ← rci;
end if

end for
3.3 if no proper processor is available vB, then return(FAIL);
3.4 Find and assign p∈ F(v) to v, where the reliability cost of vB on p

is the minimal; VQi ← VQi + vB;
3.5 Update information of messages;
3.6 for each task vj ∈ B(v) do /* avoid redundant messages */

vj sends message to vB if possible; (based on Theorem 1 and
Expression (7))

3.7 for each task vj ∈ S(v) do /* avoid redundant messages */
if p(vP) ≠ p(vj

P) or vP is not a strong primary copy then
vB sends message to vj

P if possible; (based on Theorem 3)
end for
return (SUCCEED);

4.3 The scheduling principles

Recall that EST(v) and EAT(v) are important to
determine a proper schedule for a given task v. While both
EAT and EST indicate a time when all messages from v's
predecessors have arrived, EST additionally signifies that
the processor to which v is allocated is now available for v
to start execution. In the following, we present a series of
derivations that lead to the final expressions for EAT(v)
and EST(v).

If only one of v’s predecessors vj ∈D(v)is considered,
then the earliest available time EATi(v, vj) for the primary/
backup copies of task v depends on the finish time f(vj),
the earliest message start time MSTik(e), and the
transmission time wik*|e|, for message e sent from vj to v,
where pk = p(vj). Thus,

EATi(v, vj) = f(vj) if pi = pk

MSTik(e) + wik*|e| otherwise (4)
Now consider all predecessors of v. Clearly v must wait

until the last message from all its predecessors has
arrived. Thus the earliest available time for vP on pi,
EATi

P(v) is the maximum of EATi(v, vj) over all the
predecessors.

{ }),()()(
P

j
P

ivDv
P

i vvEATMAXvEAT
j∈

= (5)

Based on expression (5), ESTi
P(v) on pi can be

computed by checking the queue VQi to find out if the
processor has an idle time slot that starts later than task’s
EATi

P(v) and is large enough to accommodate the task.
This procedure is described in step 2.2.1 in the algorithm.
ESTi

P(v) is applied to derive ESTP(v), the earliest start
time for vP on any processor. Expression for ESTP(v) is
given below.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

{ })()(vESTMINvEST P
i

Pp

P

i ′∈
= (6)

where { }






 ×=×′′∈=′

′′∈ jj
Pp

iii vcMINvcPpP
ji

λλ)()(, and

P'’={pi ∈ P| ESTi
P(v) + ci(v) < d(v)}.

ESTB(v),the earliest start time for vB, is computed in a
more complex way than ESTP(v). This is because the set
of predecessors of vP, DP(v), contains exclusively the
primary copies of v’s predecessor tasks, whereas the set of
predecessors of vB, B(v), may contain a certain
combination of the primary and backup copies of v’s
predecessor tasks. In order to decide B(v), it is necessary
to introduce the notion of strong primary copy as follows.

Note that there are two cases in which vP may fail to
execute: (1) p(vP) fails before time f(vP), and (2) vP fails to
receive messages from all its predecessors. Case (2) is
illustrated by a simple example in Fig. 2 where dotted
lines denote messages sent from predecessors to
successors. Let vj be a predecessor of v, and p(v) ≠ p(vj).
Suppose at time t < f(vj

P), p(vj
P) fails, then vj

B should
execute. Suppose vj

B is not schedule-preceding vP, vP can
not receive any message from vj

B. Hence, even if p(vP)
does not fail, vP still can not execute. The primary copy of
a task that never encounters case (2) is referred to as a
strong primary copy, as formally defined below.
Definition 1. Given a task v, vP is a strong primary copy,
if and only if the execution of vB implies the failure of
p(vP) before time f(vP)). Alternatively, given a task v, vP is
a strong primary copy, if and only if no failures of p(vP) at
time f(vP)) imply the execution of vP.

Recall that one assumption is that only one processor
will encounter permanent failures, we observe that if vi is
a predecessor of vj, and the primary copies of both tasks
are strong primary copies, then vi

B is not message-
preceding vj

B. Fig. 3 illustrates a scenario of the case,
which is presented formally in the theorem 1 that is
helpful in determining the set of predecessors for a
backup copy (See step 3.6).
Theorem 1. Given two tasks vi and vj, vi is a predecessor
of vj. vi

B is not message-preceding vj
B, meaning that vi

B

does not need to send message to vj
B, if vi

P and vj
P are both

strong primary copies, and p(vi
P) ≠ p(vj

P).
Proof: Since vi

P and vj
P are both strong primary copies,

according to Definition 1, vi
B and vj

B can both execute if
and only if both vi

P and vj
P have failed to execute due to

processor failures. But vi
P and vj

P are allocated to two
different processors, an impossibility. Thus, at least one of
vi

B and vj
B will not execute, implying that no messages

need to be sent from vi
B to vj

B. �
Let B(v) ⊂ V be the set of predecessors of vB. It is

defined as follows.
B(v) = { vi

P | vi ∈ D(v)} ∪ {vi
B | vi∈ D(v) ∧

(vi
P is not a strong primary copy ∨ vP is not a strong

primary copy ∨ p(vi
P) = p(vP))} = DP(v) ∪ DB(v) (7)

In the eFRCD algorithm, the primary copy is allocated
before its corresponding backup copy is scheduled.
Hence, given a task v and its predecessor vi ∈ D(v), two
copies of vi should have been allocated when the
algorithm starts scheduling vB. Obviously, vB must receive

vi
B

vj
P

vj
B

vi
P

Fig. 2 Since processor p1 fails, vi
B executes.

Becuase vj
P can not receive message from vi

B,
vj

B must execute instead of vj
P.

p1

p4

p2

p3

time

Fig. 3 (vi, vj) ∈∈∈∈ E, vi
P and vj

P are both strong
primary copies, and vi

P and vj
P are

scheduled on two different processors. vi
B

is not execution-preceding vj
B.

p1

p4

p2

p3

vi
P

vj
P

vi
B

vj
B

time

Primary copy of vi

Backup copy of vi Backup copy of vj

Primary copy of vj
Predecessor Successor

p1

p2

p3

Fig. 4 (vi, vj) ∈∈∈∈ E, vi
B is not schedule-preceding

vj
P and vi

P is a strong primary copy. vj
B can

not be scheduled on the processor on which
vi

P is scheduled.

vi
P

vi
Bvj

P

vj
B

vj
Btime

vi
B

vj
B

Fig. 5 vi is the predecessor of vj, vi
P and vj

P are
scheduled on the same processor, and vi

P is
the strong primary copy. In this case, vi

B is not
execution-preceding vj

P.

p1

p2

p3

vj
Pvi

P time

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

message from vi
P and all vi

B∈ DB(v). Therefore, the
maximum earliest available time of vB on pi is determined
by the primary copies of its predecessors, the backup
copies of tasks in DB(v) and messages sent from these
tasks. EATi

B(v) is given in the expression below, where δ
is a certain amount of time to detect and handle the fault.

=)(vEAT B
i

() (){ }),(,),(,)(
)()(

B
j

B
ivDv

P
j

B
ivDv

P vvEATMAXvvEATMAXvfMAX BB
j

PP
j ∈∈

+ δ

{ }),(),,(,)(
)(),(

B
j

B
i

P
j

B
i

p

vDvvDv
vvEATvvEATvfMAX BB

k
PP

j
δ+=

∈∈
(8)

ESTi
B(v) and ESTB(v) denote the earliest start time for vB

on pi, and the earliest start time for vB on any processor,
respectively. The computation of ESTi

B(v) is more
complex than that of ESTi

P(v), due to the need to
judiciously overlap some backup copies on the same
processors. The computation of ESTi

B(v) can be found
from step 3.2.3 in the above algorithm. The backup-
overlapping scheme (BOV) is implemented in step 3.2,
which attempts to reduce schedule length by selectively
overlapping backup copies of tasks. The expression for
ESTB(v) is given below,

{ })()(vESTMINvEST B
i

Pp

B

i ′∈
= (9)

where { }






 ×=×′′∈=′

′′∈ jj
Pp

iii vcMINvcPpP
ji

λλ)()(, and

P'’={pi ∈ F(v) | ESTi
B(v) + ci(v) < d(v)}.

The candidate processor pi in P'’ is not chosen directly
from the set P. Instead, it is selected from F(v), a set of
feasible processors to which the backup copy of v can be
allocated. Obviously, p(vP) is not an element of F(v).
Given a task v, it is observed that under some special
circumstance, vB cannot be scheduled on the processor
where the primary copy of v's predecessor vi

P is scheduled
(Fig. 4 illustrates this scenario). The set F(v) can be
generated will help of Theorem 2.
Theorem 2. Given two tasks vi and vj, (vi, vj)∈ E, if vi

B is
not schedule-preceding vj

P, and vi
P is a strong primary

copy, then vj
B and vi

P can not be allocated to the same
processor.
Proof: Suppose the theorem is incorrect, thus, vj

B and vi
P

are allocated to the same processor. Assume that vi
B

executes instead of vi
P. This, combined with the fact that

vi
P is a strong primary copy, implies that p(vi

P) has failed
before time f(vi

P). Since f(vi
P) < f(vj

B), it also implies that
p(vi

P) has failed before time f(vj
B), indicating that vj

B will
not execute. vi

B cannot be execution-preceding vj
P, since

vi
B is not schedule-preceding vj

P. Hence, vi
B must be

execution-preceding vj
B, impling that vj

B does execute. A
contradiction. �

Recall that EATi(v, vj) in expression (4) is a basic
parameter used to derive EATi

P(v) in expression (5) and
EATi

B(v) in expression (8). EATi(v, vj) is determined by
the start time MSTik(e) of message e sent from pi = p(v) to
pk = p(vj). A message is allocated to a link if the link has

an idle time slot that is later than the sender’s finish time
and is large enough to accommodate the message.
MSTik(e) is computed by the following procedure, where e
= (vj, v), MST(er+1) = ∞, MST(e0) = 0, |e0| = 0, and MQi =
{e1, e2, …, er} is the message queue containing all
messages scheduled to the link from pi to pk. This
procedure behaves in a similar manner as the procedure
for computing ESTi

P(v) in step 2.2.1.

Computation of MSTik(e):
1. for (g = 0 to r + 1) do /* Check whether the idle time slots */

/* If the idle time slots can accommodate v, return the value */
2. if MSTik(eg+1) - MAX{MSTik(eg) + wik*|eg|, f(vj)} ≥ wik*|e| then
3. return MAX{MSTik(eg) + wik*|eg|, f(vj)};
4. end for
5. return ∞; /* No such idle time slots is found, MST is set to be ∞ */

In scheduling messages, the proposed algorithm tries to
avoid sending redundant messages in step 3.7, which is
based on theorem 3. Suppose vj

P has successfully
executed, either vi

P is execution-preceding vj
P or vi

B is
execution-preceding vj

P. We observe that, in some special
cases illustrated in Fig 5, vi

B will never be execution-
preceding vj

P. This statement is described Theorem 3.
Theorem 3. Given two tasks vi and vj, (vi, vj)∈ E, if the
primary copies of vi and vj are allocated to the same
processor and vi

P is a strong primary copy, then vi
B is not

execution-preceding vj
P, meaning that sending a message

from vi
B to vj

P would be redundant.
Proof: By contradiction: Assume vi

B is execution-
preceding vj

P, thus, both vi
B and vj

P must execute (Table
1). Since vi

P is a strong primary copy, processor p(vi
P)

must have failed before time f(vi
P) (Def. 1). But vi

P and vj
P

are allocated to the same processor and vi
P is schedule-

preceding vj
P, implying that vj

P also could not execute. A
contradiction. �

The notion of strong primary copy appears in Theorems
1-3, it is therefore necessary to be able to determine
whether a task has a strong primary copy. Theorem 4,
applied to eFRCD in step 3.2.2, suggests an approach to
determining whether a task has a strong primary copy. In
this approach, we assume that we already know if all the
predecessors have strong primary copies or not. By using
this approach recursively, starting from tasks with no
predecessors, we are able to determine whether a given
task has a strong primary copy.
Theorem 4. (a) A task with no predecessors has a strong
primary copy. (b) Given a task vi and any of its
predecessors vj, if they are allocated to the same processor
and vj has a strong primary copy, or, if they are allocated
on two different processors and the backup copy of vj is
message-preceding the primary copy of vi, then vi has a
strong primary copy. That is, ∀vj∈V, (vj, vi) ∈ E: ((p(vi

P)
= p(vj

P) ∧ (vj
P is a strong primary copy)) ∨ (p(vi

P) ≠ p(vj
P)

∧ (vj
B ⇒ vi

P)) → (vi
P is a strong primary copy).

Proof: As the proof of (a) is straightforward from the
definition, it is omitted here. We only prove (b). Suppose
before time f(vi

P), processor p(vi
P) does not fail. Let vj be a

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

predecessor of vi. There are two possibilities: (1) p(vi
P) =

p(vj
P), we have f(vj

P) < f(vi
P), implying that processor

p(vj
P) does not fail before f(vj

P). Because vj
P is a strong

primary copy, vj
P must execute. (2) p(vi

P) ≠ p(vj
P) and vj

B

⇒ vi
P , implying that even if one processor fails, vi

P can
still receive message from task vj (recall that vj

P ⇒ vi
P).

Based on (1) and (2), we have proven that vi
P can receive

messages from all its predecessors. Thus, vi
P must execute

since p(vj
P) has not failed by time f(vi

P). Therefore,
according to Defnition 1, vi

P is a strong primary copy. �

5. Performance evaluation

In this section, we compare the performance of the
proposed algorithm with three other algorithms in the
literature, namely, OV [12], FGLS [5], and FRCD [15] by
extensive simulations.

Three performance measures are used to capture three
important but different aspects of the algorithms. The first
measure is schedulability (SC), defined to be the
percentage of parallel real-time jobs that have been
successfully scheduled among all submitted jobs. The
second is reliability (RL), defined in expression (3). To
combine the performances of the first two measures, the
third measure, performability (PF), is defined to be a
product of SC and RL.

It is noted that the four algorithms differ in some
aspects. First, OV assumes independent tasks and
homogeneous systems, whereas FRCD, eFRCD and
FGLS consider tasks with precedence constraints that
execute on heterogeneous systems. Second, among
FRCD, eFRCD and FGLS, while the former two
incorporate computational, communicational and
reliability heterogeneities into the scheduling, the latter
considers only computational heterogeneity. To make the
comparison fair, FGLS, FRCD and eFRCD are
downgraded to handle independent tasks that execute on
homogeneous systems.

Similarly, in Sections 5.4, the eFRCD algorithm is
downgraded by assuming communicational homogeneity,
while the FGLS algorithm is adapted to include reliability
heterogeneity.

5.1 The workload

Workload parameters are chosen either based on those
used in the literature [14,17] or represent realistic
workload. In each simulation experiment, 100,000 real-
time DAGs were generated independently for the
scheduling algorithm as follows: First, determine the
number of real-time tasks N, the number of processors m
and their failure rates R. Then, the computation time in
the execution time vector C is randomly chosen and
uniformly distributed in a given range. Third, data
communication among real-time tasks and communi-

cation weights are uniformly selected from 1 to 10.
Fourth, the failure rates were uniformly selected from a
given range. Finally, the fault detection time δ is
randomly computed according to a uniform distribution.
Real-time deadlines can be defined in two ways:
1. A single deadline associated with a real-time job, which
is a predetermined set of tasks with or without precedence
constraints. Such a deadline, referred to as a common
deadline [10,11,12], was employed in OV. To make a fair
comparison, the common deadline is applied to FGLS,
FRCD and eFRCD in simulation studies reported in
Sections 5.2 and 5.3.
2. Individual deadlines associated with tasks within a
real-time job. This deadline definition is often used for the
dynamic scheduling of independent real-time tasks [4,8].
In sections 5.4, this deadline definition was adapted for
tasks with precedence constraints. More specifically,
given vi ∈V, if vi is on pk and vj is on pl, then vi’s deadline
is determined by: d(vi) = MAX{d(vj)}+ |eij| × wlk +
MAX{ck(vi)} + t, where eij∈E, k∈[1, m], t is chosen
uniformly from a given range H that represents the
individual relative deadline.

5.2 Schedulability

This experiment evaluates performance in terms of
schedulability among the four algorithms, namely, OV,
FGLS, FRCD and eFRCD, using the SC measure. The
workload consists of sets of independent real-time tasks
that are to be executed on a homogeneous distributed
system. The size of the homogeneous system is fixed at
20, and a common deadline of 100 is selected. The failure
rates are uniformly selected from the range between
0.5*10-6 and 3.0*10-6. Execution time is a random
variable uniformly distributed in the range [1, 20]. SC is
first measured as a function of task set size as shown in
Fig. 6.

Fig. 6 shows that the SC performances of OV and
eFRCD are almost identical, and so are FGLS and FRCD.
Considering that eFRCD had to be downgraded for
comparability, this result should imply that eFRCD is
more powerful than OV, because eFRCD can also

�

���

���

���

���

�

� � 	 �� �� �� �

OV

eFRCD

FGLS

FRCD

��
�������

���������

������������

Fig. 6 SC as a function of N. Deadline= 100, m=16.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

schedule tasks with precedence constraints to be executed
on heterogeneous systems, which OV is not capable of.

The results further reveal that both OV and eFRCD
significantly outperform FGLS and FRCD in SC,
suggesting that both FGLS and FRCD are not suitable for
scheduling independent tasks. The poor performance of
FGLS and FRCD can be explained by the fact that they do
not employ the BOV scheme. The consequence is
twofold. First, FGLS and FRCD require more computing
resources than eFRCD, which is likely to lead to a
relatively low SC when the number of processors is fixed.
Second, the backup copies in FGLS and FRCD cannot
overlap with one another on the same processor, and this
may result in a much longer schedule length.

5.3 Reliability performance

In this experiment, the reliability of the OV, FGLS,
FRCD and eFRCD algorithms are evaluated as a function
of maximum processor failure rate, shown in Fig. 7. To
stress the reliability performance, SCs of all the four
algorithms are assumed to be 1.0, by assigning an
extremely loose common deadline. The task set size and
system sizes are 200 and 20, respectively. Execution time
of each task is chosen uniformly from the range between
500 and 1500. The failure rates were uniformly selected
from range [1.0*10-6, MAX_F], where MAX_F varies
from 3.5*10-6 to 7.5*10-6 per hour with increments of
0.5*10-6.

As can be observed in Fig. 7, the RL of OV and FGLS
are very close, and so are those of FRCD and eFRCD.
FRCD and eFRCD perform considerably better than both
OV and FGLS, with RL values being approximately from
10.5% to 22.3% higher than those of OV and FGLS. The
FRCD and eFRCD algorithms have much better reliability
simply because OV and FGLS do not consider reliability
in their scheduling schemes while both FRCD and
eFRCD take reliability into account. This experimental
result validates the use of the proposed FRCD and eFRCD
algorithm to enhance the reliability of the system,
especially when tasks either have loose deadlines or no
deadlines.

5.4 Effect of computational heterogeneity

The computational heterogeneity is reflected by the
variance in execution times of the computation time
vector C, and therefore a metric η=(α,β) is introduced to
represent the computational heterogeneity level, where α
=(MIN_E+MAX_E)/2 is the average value for execution
time in C, and β = α - MIN_E is the deviation of C.
Clearly, the higher the value of β, the higher the level of
heterogeneity. To study the effect of the heterogeneity
level on the PF of FGLS and eFRCD, α is fixed to 20 and
β is chosen from 0 to 28 with increments of 4. Fig. 8
shows PF as a function of β, the heterogeneity level.

The first observation from Fig. 8 is that the value of PF
increases with the heterogeneity level. This is because PF
is a product of SC and RL, and both SC and RL become
higher when the heterogeneity level increases. These
results can be further explained by the following reasons.
First, though the individual relative deadlines are not
affected by the change in computational heterogeneity,
high variance in task execution times does affect the
absolute deadlines, making the deadlines looser and the
SC higher. Second, high variance in task execution times
also provides opportunities for more tasks to be packed in
with the fixed number of processors, giving rise to a
higher SC. Third, RC decreases as the heterogeneity level
increases, implying an increasing RL.

A second interesting observation is that eFRCD
outperforms FGLS with respect to PF at low
heterogeneity levels while the opposite is true for high
heterogeneity levels. This is because when heterogeneity
levels are low, both SC and RL of eFRCD are
considerably higher than those of FGLS. On the other
hand, eFRCD’s SC is lower than that of FGLS at a high
heterogeneity level, and RLs of two algorithms become
similar when heterogeneity level increases. Therefore,
eFRCD’s PF, the product of SC and RL, is lower than that
of FGLS at high heterogeneity levels. This result suggests
that, if SC is the only objective in scheduling, FGLS is
more suitable for systems with relatively high levels of
heterogeneity, whereas eFRCD is more suitable for

���

���

���

���

���

��� 	 	�� � ��� � ��� � ���

OV

FGLS

eFRCD

FRCD

MAX_F

(10-6/hour)

��
��
�
��

Fig. 7 Reliability as function of MAX_F. N = 50, m = 20.

�

���

���

���

���

���

���

��	

��

� �
 �� �� �� �� �

FGLS(btree)

eFRCD(btree)

FGLS(4-ary
tree)

eFRCD(4-ary
tree)

����

Performability

Fig. 8 PF of btree and 4-ary tree as a function of
heterogeneity level. H=[1,100], N=150, m=20, alpha=20

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

scheduling tasks with relatively low levels of
heterogeneity. In contrast, if RL is the sole objective,
eFRCD is consistently better than FGLS. In addition,
Fig.8 indicates that performability of FGLS increases
much more rapidly with heterogeneity level than that of
eFRCD, implying that FGLS is more sensitive to the
change in computational heterogeneity than eFRCD.

6. Conclusion

In this paper, an efficient fault-tolerant and real-time
scheduling algorithm (eFRCD) for heterogeneous systems
executing tasks with precedence constraints is studied.
The fault-tolerant capability is incorporated in the
algorithm by using a Primary/Backup (PB) model, in
which each task is associated with two copies that are
allocated to two different processors. eFRCD relaxes the
requirement in FRCD [15] that forbids the overlapping of
any backup copies to allow such overlapping on the same
processor if their corresponding primary copies are
allocated to different processors. The system reliability is
further enhanced by reducing overall reliability cost while
scheduling tasks. Moreover, the algorithm takes system
and workload heterogeneity into consideration by
explicitly accounting for computational, communica-
tional, and reliability heterogeneity.

To the best of our knowledge, the proposed algorithm is
the first of its kind reported in the literature, in that it most
comprehensively addresses the issues of fault-tolerance,
reliability, real-time, task precedence constraints, and
heterogeneity. To assess the performance of eFRCD,
extensive simulation studies were conducted to
quantitatively compare it with the three most relevant
existing scheduling algorithms in the literature, OV [12],
FGLS [5], and FRCD [15]. The simulation results indicate
that the eFRCD algorithm is considerably superior to the
three algorithms in the vast majority of cases. There are
two exceptions, however. First, the FGLS outperforms
eFRCD marginally when task parallelism is low. Second,
when computational heterogeneity is high, the eFRCD
algorithm becomes inferior to the FGLS algorithm.

References

[1] T.F. Abdelzaher and K.G. Shin., “Combined Task and
Message Scheduling in Distributed Real-Time Systems,” IEEE
Transaction on Parallel and Distributed Systems, Vol. 10, No.
11, Nov. 1999.
[2] Alan A. Bertossi, Luigi V. Mancini, Federico Rossini,
“Fault-Tolerant Rate-Monotonic First-Fit Scheduling in Hard-
Real-Time Systems,” IEEE Trans. Parallel and Distributed
Systems, 10(9), pp. 934-945, 1999.
[3] A. Dogan,F. Ozguner, “Reliable matching and scheduling of
precedence-constrained tasks in heterogeneous distributed
computing,”In Proc. of the 29th International Conference on
Parallel Processing, pp. 307-314, 2000.

[4] S. Ghosh, R. Melhem and D. Mosse, “Fault-Tolerance
through Scheduling of Aperiodic Tasks in Hard Real-Time
Multiprocessor Systems”, IEEE Trans. On Parallel and
Distributed Systems. Vol 8, no 3, pp. 272-284, 1997
[5] A. Girault, C. Lavarenne, M. Sighireanu and Y. Sorel,
“Fault-Tolerant Static Scheduling for Real-Time Distributed
Embedded Systems,” In Proc. of the 21st International
Conference on Distributed Computing Systems(ICDCS),
Phoenix, USA, April 2001.
[6] O. Gonzalez, H. Shrikumar, J.A. Stankovic and K.
Ramamritham, “Adaptive Fault Tolerance and Graceful
Degradation Under Dynamic Hard Real-time Scheduling,” In
Proc. of the 18th IEEE Real-Time Systems Symposium, San
Francisco, California, December 1997.
[7] E.N. Huh, L.R. Welch, B.A. Shirazi and C.D. Cavanaugh,
“Heterogeneous Resource Management for Dynamic Real-Time
Systems,” In Proc. of the 9th Heterogeneous Computing
Workshop, 287-296, 2000.
[8] F. Liberato, R. Melhem, and D. Mossé, “Tolerance to
Multiple Transient Faults for Aperiodic Tasks in Hard Real-
Time Systems,” IEEE Transactions on Computers, Vol. 49, No.
9, September 2000.
[9] G. Manimaran and C. Siva Ram Murthy, “A Fault-Tolerant
Dynamic Scheduling Algorithm for Multiprocessor Real-Time
Systems and Its Analysis,” IEEE Transactions on Parallel and
Distributed Systems, 9(11), November 1998.
[10] M. Naedele, “Fault-Tolerant Real-Time Scheduling under
Execution Time Constraints,” Sixth International Conference on
Real-Time Computing Systems and Applications, Hong Kong,
China, 13 - 15 December, 1999.
[11] Y.Oh and S.H.Son, “An algorithm for real-time fault-
tolerant scheduling in multiprocessor systems,” 4th Euromicro
Workshop on Real-Time Systems, Greece, 1992, pp.190-195.
[12]Y. Oh and S. H. Son, "Scheduling Real-Time Tasks for
Dependability," Journal of Operational Research Society, vol.
48, no. 6, pp 629-639, June 1997.
[13]X. Qin, and H. Jiang, “Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous
Systems,” In Proc. of the 30th International Conference on
Parallel Processing, Valencia, Spain, pp.113-122, 2001.
[14]X. Qin, H. Jiang, C.S. Xie, and Z.F. Han, “Reliability-driven
scheduling for real-time tasks with precedence constraints in
heterogeneous distributed systems,” In Proc. of the 12th

International Conference Parallel and Distributed Computing
and Systems, pp.617-623, November 2000.
[15]X. Qin, H. Jiang, and D.R. Swanson, “A Fault-tolerant Real-
time Scheduling Algorithm for Precedence-Constrained Tasks in
Distributed Heterogeneous Systems,” Technical Report TR-
UNL-CSE 2001-1003, Department of Computer Science and
Engineering, University of Nebraska-Lincoln, September 2001.
[16] S. Ranaweera, and D.P. Agrawal, “Scheduling of Periodic
Time Critical Applications for Pipelined Execution on
Heterogeneous Systems,” In Proc. of the 2001 International
Conference on Parallel Processing, Valencia, Spain, Sept 4-7,
2001, pp. 131-138.
[17] S. Srinivasan, and N.K. Jha, “Safty and Reliability Driven
Task Allocation in Distributed Systems,” IEEE Trans. Parallel
and Distributed Systems, 10(3), pp. 238-251, 1999.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

