Efficient Global Object Space Support for Distributed JVM on Cluster”

Weijian Fang, Cho-Li Wang and Francis C.M. Lau
Department of Computer Science and Information Systems
The University of Hong Kong
{wjfang+ clwang+fcmlau} @csis.hku.hk

Abstract

We present the design of a global object space in a
distributed Java Virtual Machine that supports parallel
execution of a multi-threaded Java program on a cluster
of computers. The global object space virtualizes a single
Java object heap across machine boundaries to facilitate
transparent object accesses. Based on the object
connectivity information that is available at runtime, the
object reachable from threads at different nodes, named
as distributed-shared object, are detected. With the
detection of distributed-shared objects, we can alleviate
overheads in maintaining the memory consistency within
the global object space. Several runtime optimization
methods have been incorporated in the global object
space design, including an object home migration method
that reallocates the home of a distributed-shared object,
synchronized method migration that allows the remote
execution of a synchronized method at the home node of
its synchronized object, and object pushing that uses the
object connectivity information to improve access locality.

1. Introduction

A digtributed Java Virtual Machine (JVM) supports
parallel execution of a multi-threaded Java application on
a distributed-memory platform like cluster without any
modification on the Java program. Java threads created
within the program can be transparently distributed
among the cluster nodes to achieve a higher degree of
execution paralelism and leverage cluster resources to
solve large-scale problems.

Due to the popularity of Java [3], distributed VM has
recently become an attractive research problem and
several experimental prototypes have emerged. Java/DSM
[18], cIVM [2], Hyperion [14], Jackal [17] and JESSICA
[13], are some of the well-known examples. The
distributed JVM presents a single system image (SSI) [8]
to Java applications through the creation of a global

"This research is apported by Hong Kong RGC grant HKU-703001E.

object space (GOS) that “virtualizes’ a singe Java objed
heg acossmultiple duster nodes to fadlit ate transparent
objed accessin a distributed environment. For example,
the JESSCA system [13] which uses a page-based DSM
systems, JUMP [4], to huild the GOS. This approach
grealy alleviates the burden of the @nstruction of GOS
becaise dl the memory consistency isales, such as objed
faulting, addressng, replicaion padlicy, and transmisson
medhanism, are dl managed by the DSM's cade
coherence protocol. Such a design, however, suffered
from a mismatch between objed-based memory model of
Java ad the underlying page-based DSM
implementation. For example, the false sharing problem
ocaurs becaise of inconsistent sharing ganularity
between the variable-sized Java objeds and the fix-sized
memory pages. As thus, the performance of JESSCA was
not satisfadory [5]. More dficient solutions to suppart
objead sharing among distributed Java threads is
demanded.

In this paper, a new global object space suppat for
distributed VM is propased. We define two types of Java
objeds. node-local object that is readable from the
threals that are at the same duster node, and distributed-
shared object (DSO) that is readable from at least two
threads that are locaed at different cluster nodes.

We ague that the separation of distributed-shared
objeds and node-locd objeds can al eviate overheals in
maintaining the memory consistency within the global
objed space ad achieve better performance of distributed
JVM. Firstly, only distributed-shared ohjeds suffer from
heavy overheads in maintaining the memory consistency
since they may have multiple duplicated copies on
different nodes. Detedion of DSOs could make
consistency protocol be more lightweight. Secondly, in
Java program, synchronization primitives are not only
used to proted criticd sedion but also to maintain
memory consistency. Synchronizaion operations on a
node-locd objed do not need to trigger the distributed
operations to maintain consistency, becaise node-locd
objeds are only reatable from some locd threads.
Detedion of DSO makes consistency maintaining less
frequently. Thirdly, it is not necessry to apply the

distributed garbage wlledion operations on node-locd
objeds snce it is sfe to garbage wlled node-locd
objedslocdly.

We proposed a lightweight solution for deteding the
distributed-shared ofjeds. Distributed-shared oljeds can
be deteded using an objed connedivity graph derived
from objed reference information that is available at
runtime. Our GOS design further leverages the
identification of distributed-shared oljeds and the
avail ability of connedivity information for redizing the
Java memory model in a distributed JVM. Such
connedivity information was not exploited in most of the
previous ohjed-based or page-based DSM systems.

Severa aress of optimizations have been proposed in
our GOS design: (1) the object home migration that
reduces communication traffic by migrating the home of a
distributed-shared oljed to a hode that need to accessthe
objed more frequently; (2) synchronized method
migration that optimizes criticd sedion exeaution by
shipping a synchronized method to the home node of its
synchronized objed; (3) object pushing that uses
connedivity information to prefetch objeds for achieving
better accesslocdlity.

We have tested our designin our JESSCA distributed
JVM. The preliminary results sow that our approac is
promising. With al the optimizaions enabled, al four
benchmark programs achieved an efficiency of over 84%
on four nodes, and al achieved an efficiency of over 75%
on eight nodes except one program.

The next sedion discuses the detedion of distributed-
shared dbjeds in detail. Sedion 3 describes our home-
based multiple-writer cade @herence protocol that
implements the Java memory model. Sedion 4 discusses
various optimizations implemented in GOS. Performance
results are reported in sedion 5. In sedion 6, severa
related works are discussed and compared with our GOS.
Conclusions are given in Sedion 7.

2. Distributed-shared Object

In the VM, ead variable, including rot only objed
field that resides in the heg but also thread-locd variable
that resides in the Java thread stadks, has a type, either a
reference type or a primitive type, such asinteger, char, or
float. This type information is known at compile time and
written into class files generated by the wmpiler. At
runtime, the dassloader builds up type information from
classfiles. Thus, by looking W runtime type information,
we can identify those variables that are of referencetype.

2.1 Connectivity Graph and Reachability
If an objed’s field contains a reference to another

objed, connedivity exists between these two oljeds.
Instance objeds creded during runtime will strictly

conform to the type information of the dass Therefore, a
connectivity graph can be built to describe the referential
relationship among all objeds. The graph is dynamic
since mnnedivity between objeds may change from time
to time throughthe reasssgnment of objedsfields.

Reachability describes the relationship between thread
and its readable objeds based on the cmnnedivity graph.
A thread can read a subset of objeds in the mnnedivity
graph, which include the root objeds whose references
reside a the thread stack, and al other objeds reatable
from the root objeds via some paths in connedivity
graph. Based on the readability, we can distingush
between thread-local objeds that can only be reatable
from one singe thread, and thread-escaping objeds that
can be readable from multiple threads.

In the oontext of distributed VM, Java threals and
objeds are distributed among different nodes. With the
consideration of the relative locaion between the thread
and its reatable objeds in a duster environment, we
extend the mncepts of thread-locd and thread-escegping
objed and define node-local objed and distributed-
shared objed: (1) Node-local object is an objed that is
readable from threal(s) locaed at the same duster node.
It is either a thread-local objed or a thread-escaping
objed. (2) Digributed-shared object (DSO) is an objed
that is readable from a leest two threads locaed at
different cluster nodes.

2.2 Detection of DSO

A mechanism to identify distributed-shared oljeds is
esential in the GOS because the access on the DSO
will i nitiate aseries of thread synchronization and ohjed
consistency operations, which involve multiple duster
nodes collaboration. To minimize the detedion
overheads, a lightweight DSO detedion mechanism is
propcsed. The detedion of DSO in GOS is postponed to
the time when a thread is to be migrated or a remote
objed request is initiated, becaise not al readable
objeds are necessrily accesed during the whole lifetime
of the exeaution.

During the thread migration, we examine the thread
context to be transmitted aaoss node boundary. We dso
examine the objed content sent to a remote node. The
objedive is to identify objed references gored in them.
The transmitted oljed reference implies the objed is a
DSO since it is readable from the threals located at
different nodes. If an objed reference is identified, and
the objed has not been marked as a DSO, it is marked at
this moment. On the first appearance of arecaved remote
reference an empty objed of its exad class will be
creded and assciated with it. The objed’s access sate
will be set to invalid. When it is accessed later, its up-to-
date content will be faulted in. In this £heme, only those

objects whose references appear on multiple nodes will be
detected as DSOs.

2.3 An Example
Ty T, Java thread :
Java object
[| [stack frame O :
: () Detected ;7 Invalid
DSO ' DSO
Connectivity

between objects

--3> Object reference
in thread stack

(a) Reachability graph

T -

Node 0 Node 1

(b) After thread T, is distributed to Node 1

T

T

Node 0 Node 1

Cluster network

(c) Access on f by T, triggers detection of i
Figure 1. Detection of distributed-shared object

Examining the case in Figure 1, athread T, prepares an
object tree then passes the reference of object ¢ to another
thread T, as shown in the reachability graph (Figure 1.a).
When T, is distributed to another cluster node, i.e. node 1,
al the objects reachable from abject ¢ become DSOs.
Object a, b, and d are not DSOs since they are thread-

local to T;. Instead of detecting all these objects as DSOs
at one blow, we detect object ¢ as a DSO and send object
¢ to node 1. Because object e and f are directly connected
with object a, we also detect abject e and f as DSOs but
do not send them to node 1 (Figure 1.b). On node 1, we
create two objects whose type are exactly the same as the
types of object e and f. Since the contents of object e and f
are not available, we set their access state to invalid. Next
time when object f is accessed by T, on node 1 (Figure
1.c), an object fault will occur. An object request message
will be sent to node 0. This event will trigger the detection
of object i as a DSO. The up-to-date content of object f is
copied from node 0 to node 1. Details of how to maintain
the coherence of objects located among multiple nodes
are discussed in next section. If object e is not accessed by
T,, object e is always invalid on Node 1 and object g and
h will never be detected as DSOs.

3. Cache Coherence Protocol

Java memory model (JMM) mainly defines the
memory consistency [1] semantics of multi-threaded Java
applications. Any implementation of GOS support for
distributed VM must conform to JIMM. We follow the
JMM proposed in [15], which is very similar to lazy
release consistency [10].

In Java, there is a lock associated with each Java
object. Java language provides synchronized block
facility, either a synchronized method or a synchronized
statement, for achieving exclusive access in a critical
section. Enter and exit of a synchronized block
correspond to acquiring and releasing the lock associated
with the synchronized object. The JMM requires that
when a thread acquires a lock, all object values modified
by threads previoudly release the same lock, should be
visible to the thread acquiring the lock.

Our GOS implements the IMM with a home-based
multiple-writer cache coherence protocol. The object is
the unit of coherence. Each DSO is associated with a
home node, which is the node that creates the object.
Since DSOs can be detected at runtime, accesses on
invalid copies of DSOs will fault in their contents on
demand. Upon releasing a lock, all updated values to non-
home copies of DSOs should be forwarded to
corresponding home nodes. Upon acquiring alock, a flush
action is required to set the access states of the non-home
copies of DSOs invalid, which guarantees the up-to-date
contents will be faulted in from the home nodes when
they are accessed later. Before the flush, all updated
values to non-home copies of DSOs should be forwarded
to the corresponding home nodes. Therefore, in such a
way, a thread is guaranteed to see the up-to-date content
of DSOs after it acquires the proper lock. Since alock can
be regarded as a specia field of an object, all the
operations on a lock are aso executed at the

corresponding home node. Thus the home node of the
ohjed being locked ads as the lock manager.

The mncurrent writes to DSO are permitted by using
twin and diff techniques [11]. On the first write to a non-
home opy of DSO, a twin of objea will be aeded,
which is the exad copy of the objed. On lock aaquiring
and releasing, the diff is creaded by comparing twin with
current objed content word by word and sent to the home
node.

In addition, we can impose some spedal coherence
protocols on some types of objeds. For example, since
string objeds are read-only, the cated copy of a
distributed shared String objed can be simply treaed as a
node-locd objed. Some objeds are mnsidered as node-
dependent resources, such as file @c. When these node-
dependent objeds are deteded as DSOs, objed
replication should be prohibited. Instead, the access to
them should be transparently redireded to their home
nodes. This is an important isale to guarantee @mplete
singe system image to Java gplicaions.

4. Optimizations

In this ®dion, we study three optimization techniques
coupled with the distributed-shared oljeds. The first two
techniques, object home migration and synchronized
method migration, are the refinements to our memory
coherence protocol that implements JMM. The third one,
object pushing, makes use of objed connedivity
information to improve accss locdlity and adciieve the
effed of communication aggregation.

4.1 Object Home Migration

In our home-based protocol, a Java thread can accessa
DSO with less overhea if the threal is locaed at the
home node of the DSO. Thus, it will be more dficient if
we ca set the home of a DSO acwrding to thread's
runtime objed access pattern. In GOS, a mechanism is
applied to determine the home of a DSO at runtime.
Subsequent objed home migration is allowed to adapt to
thread’ s objed accesspattern.

We take a mnservative solution that only those objeds
written from a single remote node will be gplied the
home migration. In other words, we only apply this
optimization to oljeds exhibiting singe writer access
pattern. This sheme was adoped because migrating
objed home may have negative impads on performance
For example, to notify a thread that doesn't know the
objed home has aready been migrated, an additional
rediredion message should be sent.

Under our coherence protocol, non-home objed writes
are refleded to home node on synchronizaion points. On
home node, objed request can be cmnsidered as a remote
read and the diff recéved on synchronization point as

remote write. Objed accesses on the home node are also
recorded.

To minimize the overhead in deteding single writer
pattern at rurtime, we record only the cnseautive writes
on an objed, which are from the same remote node. Table
1 shows the events and the mrresponding adions on the
objed’s current home node when objed home migration
is enabled. In the table, C denotes the ount of
consealtive writes from a spedfic remote node N. The
counter C will be reset to 1 if a different remote node
issuies an objed write.

The number of conseautive writes rougHy records the
number of synchronizaion iterations during which the
objed is only updated by that node. We follow a heuristic
that an objed presents sngle writer pattern if the count of
consealtive writes excealds a predefined threshold. If
single writer pattern is deteded, the objed home is
migrated to the writing rode.

Table 1. Events and actions in object home migration

Event Action
Local read No action
Local write Cc=0
Remote read from a No action

different node from N
Remote write from a

C = 1; N = the writing

different node from N node

Remote read from N If C > threshold, migrate
home to N

Remote write from N C++

4.2 Synchronized Method Migration

1 class Counter {

2 private int i; // internal counter
3

4 public Counter() {

5 i=0;

6 }

7

8 public synchronized void inc() {
9 i++;

10 }

11}

Figure 2. Synchronized method migration example

Java's g/nchronizaion primitives (e.g., synchronized
block, wait and notify methods of Object clasg are
originally designed for thread synchronizaion in a shared
memory environment. The synchronizaion constructs
built from them may be inefficient in the distributed VM
that is implemented in a distributed memory architecure
like duster.

Considering the Counter class surce @de in figure 2,
we suppose the instance objed is a DSO and its home is
not the node that invokes inc(). Upon entering and exiting

the synchronized inc() method, the invoking rode will
aqquire and release the lock of the instance objed. In line
9, the objea will be faulted in. In this case, we observe 3
message roundtrips.

It is a common behavior that synchronized oljed’s
fields will be accesd in the synchronized method. Thus,
all the synchronization requests or objed requests will be
sent to the home node of the DSO. This will lead to
multiple short messges floating between the nodes
involvingin this s/nchronization operation.

Migrating synchronized method d DSO to its home
node for exeaution will effedively reduce the number of
messages and reduce mnsistency maintaining overhead
incurred in synchronization operations.

4.3 Object Pushing

In Java program exeaution, after an objed is accessed,
its readable objeds in connedivity graph are very likely
to be accesd afterward. Since objed connedivity
information is available & runtime, it is possble to
prefetch multiple related oheds in connedivity graph to
improve thiskind of accesslocdity.

We use objed pushing to improve the prefetching
acarracy. While requesting a DSO, the home node will
push the requested oljed together with multiple objeds
readable from it to the requesting rode. This mechanism
provides acarrate prefetching since the home node has the
up-to-date mpies of the objeds and the mnnredivity
information maintained in the home node is always valid.

This lution is better than the pull-based aone, which
relies on the requesting rode to fault in the requested
objeds. In this enario, the faulting node issues explicit
instructions to speafy which objeds to be pulled. A fatal
drawback of this <lution is that the @nnedivity
information contained in the invalid ojed may be
obsolete. Therefore, the prefetching acaracy is not
guarantead. Some unnealed oljeds, even garbage
objeds, may be prefetched. Thiswill result in the waste of
communication bandwidth.

In our implementation, we set an optimal messge
length, which is the preferred aggregation size of objeds
to be caried to the requesting node. Readable objeds
rooted from the requested oljed will be seleded to copy
to the message buffer urtil the arrent message length is
larger than the optimal message length. Some seledion
medhanism, either depth-first or bread-first algorithm, can
be gplied.

To reduce negative impad of pushing unreeled
objeds, we will not push large objeds. For example, the
arrays of reference type, e.g., multi-dimension arrays, are
usually shared among multiple threads. Objed pushing is
not performed on the request of an array of referencetype.

Overdl, the objed pushing improves the acces
locdity since objeds to be accesd in the future have

been moved to the eeauting thread’s locd memory.
Objed pushing can aso improve performance by
achieving aggregation effed on communication becaise it
can effedively reduce the number of objed requests
during the exeaution cycles.

5. Performance Evaluation

In this ®dion, we study the performance of GOS. The
GOS is embedded in our JESSCA distributed JVM for
suppatting objed sharingin a duster environment. All the
tests are performed on a duster of 300MHz Pentium Il
PCs, runring Linux 2.2.14, and conneded by a fast
Ethernet. The JESSCA is exeauted under the interpreter
mode. In our tests, when the Java gplicaions are started,
Java threads are auttomaticdly distributed among cluster
nodes to achieve maximal parall elism.

5.1 Application Suite

Our application suite consists of four multi-threaded
Java programs. All-pair Shortest Path (ASP), Successve
Over-Relaxation (SOR), Traveling Salesman Problem
(TSP), and Nbody.

ASP cdculates the shortest path between any pair of
nodes in a graph wsing a pardlel version of Floyd's
algorithm. It requires n iterations to solve a1 n-nodes
problem. At iteration k, all threads need the value of the
kth row of the distance matrix. There is a barrier at the
end of ead iteration. The workload is distributed equally
among worker threadsin row wise.

SOR does red-bladk successve over-relaxation on a 2-
D matrix for a number of iterations. There ae two barriers
in ead iteration. The workload is distributed equally
among worker threadsin row wise.

Nbody simulates the motion of particles due to
gravitational forces over a number of simulation steps.
The program follows the dgorithm of Barnes & Hut.
Each worker thread is computing the motion simulation of
a part of particles. A quadtree is constructed at the
beginning of ead step, which will be accesd by al
worker thread.

TSP finds the shortest route anong a number of cities
using paralel branch-and-bound algorithm, which prunes
large parts of the seach spaceby ignoring partia routes
areay longer than current best solution. We divide the
whole seach trees to many small ones to form a job
queue. Every worker thread will get jobs from this queue
until the queue is empty.

5.2 Application Performance

Figure 3 shows the dficiency for eat application after
al optimizaions are enabled. Sequentia performance

data is measured on the origina Kaffe JVM when
calculating efficiency.

All 4 benchmark programs have adieved efficiency
larger than 84% on 4 nodes and all have adieved
efficiency larger than 75% on 8 nodes except Nbody. ASP
even adieves an efficiency of 98% on 4 nodes. In ASP,
while the duster size is ded to 8 nodes, the global
synchronization among all threads becomes a primary
fador to pull down the dficiency. SOR's dtuation is
similar. In Nbody, there is a construction of quadtreein
ead simulation step, which cannot be parallelized. When
the main thread performs construction of quadtreg all
other threads are waiting. The dficiency deaeases while
the duster size increases. TSP is a mmputation intensive
program comparing with other benchmark programs.
Load imbalance among worker threals is a major fador
affeding efficiency.

1.2
1
? 0.8
% 0.6 ——a—asp X
E 0.4 +——#&—SOR
— ¥ — Nbody
0.2 1 - O - TSP
0 f f
1 2 4 8

Number of processors

Figure 3. Efficiency

Table 2 shows their communication effort for some
given parameters on a 4-node duster after all
optimizations are enabled. Msg column shows the number
of messages and the Data @lumn shows the network data
volume involved. All the four programs need to accessthe
objed heg intensively and involve @nsiderable
communication eff ort except TSP.

Table 2. Communication effort

Parameters Msg (K)|Data (MB)

ASP A graph of 512vertices | 215 24.98

SOR 1024 ly 1024matrix 229 | 4201
for 30iterations

Nbody | 400 particlesfor 10 10.6 4.74
simulation steps

TSP 12 cities 29 0.24

Figure 4 shows the normalized exeaution time bre&k
down against number of procesors for the four
benchmark programs. Obj denotes the time to request an
up-to-date copy of a faulting objed. Syn denotes the time

spent on synchronization operations, such as lock, unlock,
and wait. Comp denotes the computation time.

100% ~
80% -

2 48|/248|248|2438

Normalized execution time
N
c
>
L

SOR Nbody | TSP

M cComp Osyn BObj | Number of processors

Figure 4. Percentage of execution time break down
against no. of processors

Since we insert software chedks before objed accesses
to test objed access ¢ates, an additional test was
conducted to evaluate the overhead of the accss chedks
in our GOS. Comparing the sequential performance on
JESSCA with that on Kaffe, the mst of cheds can be
derived. Since our implementation is based on interpreter
model, chedk cost doesn’t contribute significant overhead.
In al four benchmarks, ched cost is less than 3.5%
against exeadtion time on Kaffe.

5.3 Effect of Optimizations

In this gabsedion, the dfed of individua
optimizations is qudied. Figure 5 shows the dfeds of
optimizations on exeaution time, message number, and
communication data volume when running the benchmark
suite on a4-node duster. In the below figures, NO means
no ogimizaion, HM means objed home migration, SMM
means g/nchronized method migration, Push means
objed pushing. In this test, TSP solves a problem of 8
cities.

As e from the figures, objed home migration
gredly improves the performance of ASP and SOR. This
is becaise some DSOs are only written by one thread in
some duration of exeadution in SOR and ASP. The use of
synchronized method migration deaeases the number of
messages by 29.96% for ASP and 458% for SOR.
Synchronized method migration aso results in less
synchronization operations. As a result, the exeaution
time deaeases by 8.82% for ASP and 1.84% for SOR.
Objed pushing aggregates snall objed messages into a
larger message. Nbody is a typicd application involved
with lots of small-sized DSOs. The number of messagesis
remarkably reduced by 79.83% with objed pushing
enabled. Since objed pushing may push unreeded oljeds
as well, communication data volume increases by 5.23%.
Nevertheless Nbody's exeaution time deaeases by

120%

100%

Break down of execution time
[e2]
)
x
|

‘ B Comp OSyn EObj

(a) Breakdown of execution time
H: HM, HS: HM+SMM, HSP: HM+SMM+Push

120%

« 100% 17— —
[
Q
E 80% 1
=)
<
o 60%
(=]
©
2 40%
(]
= 20% H
O% - ;
ASP SOR Nbody TSP
‘DNO OHM BHM+SMM BHM+SMM+Push
(b) Message number
o 120%
£
2 100%
>
£ 80% 1
©
5 60% H
T
2 40% H
=}
E 209 H
[}
)

ASP SOR Nbody TSP

‘DNO OHM BHM+SMM BHM+SMM+Push ‘

(c) Communication data volume
Figure 5. The effects of optimizations

37.81% as a fina result. Objed pushing also reduces
TSP's message number by 27% and incurs a little more
communication data. As a result, TSP's exeadtion time
deaeases by 14%. Compared with Nbody and TSP, most
DSOs used in ASP and SOR are large 2-dimension arrays.
Objed pushing hes little dfed on them. Synchronized
method migration incresses Nbody’s exeaution time by
within 2%. Objed pushing increases ASP's exeadtion

time by 1%. Overal, the negative impad incurred by
these optimizations in our benchmark programs is very
limited.

6. Related Work

As a distributed VM, cIVM [2] uses a proxy objed
model to implement global objed space Method
invocaion and fields accessng on the proxy object are
shipped to its master objed in general. Several optimizing
techniques were gplied to reduce such shipping. This
approach is more suitable for the sequential consistency
memory model. However, under the proposed Java
memory model, i.e., the lazy relesse mnsistency, this
approach may not be very effedive since a more
aggressve objed cacing medanism, like our global
objed space seems more gpropriate. In addition, the
load dsdtribution in cJVM is determined by objed
distribution in method shipping approach. Load balance
might be difficult to achieve without programmer’s eff ort.

JESHCA [13] leveraged a page-based DSM to huild
GOS. All objeds are dlocaed into dstributed shared
memory. Such an approach suffers from false sharing
problem that is inherited from the page-based DSM. Since
page-based DSM isn't aware of Java runtime connedivity
information, it is difficult to deted distributed-shared
objeds and do further optimizaions. The detail analysis
of various fadors contributing to the dficiency in using
page-based DSM for supparting distributed oljed sharing
can be found in [5]. Java/DSM [18] is another similar
example that builds global objed spaceon top d page-
based DSM.

Some other approaches reply on compiler techniques
to transparently run multi-threaded Java gplicaions on a
cluster. They diredly compile multi-threaded Java
program to native @de that is able to exeaute in a
distributed platform. In these systems, JVM is not
involved in the eeattion and a software DSM is
employed to suppat global objed accesses. Hyperion
[14] compiles Java bytemde to C source @de, then
compil es to native cde further. Jackal [17] compil es Java
source mde to native code. In both cases, most efforts to
improve performance are done & compile time. Jadkal’s
compiler enables two opimizaions. object-graph
aggregation and automatic computation migration, which
are similar to our objed pushing and synchronized
method migration. Objed-graph aggregation uses hegp
approximation algorithm [6] to identify those related
objeds. However, heg approximation algorithm cannot
distingush between different runtime objeds that are
creded at the same dlocdtion site. Hence this approacd is
effedive only at the situation when the related oljeds are
from different allocdion sites. Comparatively, our objed
pushing is a runtime gproach and has no such drawbad.

Both Jadal and Hyperion do not intend to deted
distributed-shared ohjeds.

Inthe DSM field, DOSA [7] implements a fine-grained
DSM suppart for typed language such as Java. Its aim is
to keep sharing ganularity at objed level but still rely on
the virtual memory suppat to dothe accss sate dhedk as
in the page-based DSM. It introduces a level of
indiredion on objed accessng. Accessto oljeds will go
through a handle table to locate objed’s adual address
The indiredion adds overhead on objed accesses and
impairs cace locdity.

7. Conclusions

This paper presents a global objed space suppat for
distributed JVM. Distributed-shared objeds are deteded
with the help of runtime objed connedivity information
to improve the performance Only distributed-shared
ohjeds are taken care of to maintain consistency in gobal
objed space Severa optimizaions can be incorporated
into the global objed space Among them, home
migration and oljed pushing can effedively improve the
performance of applicaions presenting certain access
behaviors. Synchronized method migration can optimize
the exeaution of Java synchronized method in the context
of distributed JVM. After all optimizations are enabled,
considerable performanceis obtainable.

In our future work, we will i ncorporate the detedion of
distributed-shared oljed with our distributed garbage
colledion agorithm in goba objed space To further
improve the performance of globa objed space an
adaptive cabe wmherence protocol will be implemented,
which will automaticdly adjust to the various access
patterns of distributed-shared oljeds. As objed access
pattern may change dynamicaly during the exeaution
lifetime, we believe aruntime solution is more dfedive
to adapt to the accsspatterns.

References

[1] S Adve ad K. Gharachorloo. Shared memory
consistency models: A Tutorial. IEEE Computer, 29(12):
66-76, Decanber 1996

[2] Y. Aridor, M. Fador, and A. Teperman. cjvm: a single
system image of a jvm on a duster. In Proc. of
International Conference on Parallel Processing, 1999

[3] Gilad Bracha, James Gosling, Bill Joy, and Guy Stede.
The Java Language Spedficaion, Seoond Edition.
Addison Wesley, 2000

[4] B. Cheung, C.L. Wang, Kai Hwang. A Migrating-Home
Protocol for Implementing Scope Consistency model on a
Cluster of Workstations. International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA' 99), p. 821-827, 1999 Las Vegas.

[5] W.L. Cheung, C.L. Wang, and F.C.M. Lau. Building a
Global Objea Spacefor Suppating Single System image

(6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

on a Cluster. To appea in Annual Review of Scalable
Computing, Volume 4, World Scientific, 2002

Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In 25th Annual ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages,
pages 121--133 January 1998

Y. Charlie Hu, Weimin Yu, Dan Wallad, Alan Cox, and
Willy Zwaenepoel. Runtime suppat for distributed
sharing in typed languages. In Proceedings of the Fifth
ACM Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, Rochester, NY, May
2000

K. Hwang, E. Chow, C.L. Wang, H. Jin, and Z. Xu,
Desinging S Cluster with Hierarchicd Chedkpointing
and Single I/0 Space In IEEE Concurency, 1999

P. Keleher. Distributed Shared Memory Home Pages.
http://www.cs.umd.edu/~keleher/dsm.html.

P. Keleher, A. L. Cox, and W. Zwaeepodl. Lazy release
consistency for software distributed shared memory. In
Procealings of the 19th Annual International Symposium
on Computer Architecture, pages 13--21, May 1992

P. Keleher, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. Proceelings of the
Winter 94 Usenix Conference, pp. 115131, January 1994
Tim Lindhdm and Frank Yélin. The Java Virtua
Madine Spedficaion, Second Edition. Addison Wesley,
1999

Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau.
Jessca Javaenabled single-system-image cmputing
architedure. Journal of Paralledl and Distributed
Computing, 60, Oct. 2000 (JESSCA source ®de is
avail able a: http//www.srg.csis.hku.hk/Jesdcasrc/.)

M. Madeth, K. McGuigan, and P. Hatcher. Exeauting
java threads in parale in a distributed-memory
environment. In Proc. of IBM Center for Advanced Studies
Conference, 1998

Jeremy Manson and William Pugh. Core Semantics of
Multithreaded Java. In Proc. of Joint ACM Java Grande -
ISCOPE 2001 Conference, June 2001
Transvirtual Techndogies Inc.
http://www.kaff e.org.

R. Veldema, R. F. H. Hofman, R. A. F. Bhoedjang, and H.
E. Ba. Runtime Optimizaions for a Java DSM
Implementation. In Proc. Joint ACM JavaGrande-
ISCOPE 2001, Stanford, 2001

W. Yu and A. Cox. Javaldsm: A platform for
heterogeneous computing. In Proc. of ACM 1997
Workshop on Java for Science and Engineering
Computation, 1997.

Kaffe JVM.

