
Extending OpenMP for Heterogeneous Chip Multiprocessors

Feng Liu and Vipin Chaudhary

Institute for Scientific Computing, Wayne State University, USA

fliu@ece.eng.wayne.edu vipin@wayne.edu

Abstract

The emergence of System-on-Chip (SOC) design
shows the growing popularity of the integration of

multiple-processors into one chip. In this paper, we

propose that high-level abstraction of parallel
programming like OpenMP is suitable for chip

multiprocessors. For SOCs, the heterogeneity exists

within one chip such that it may have different types of
multiprocessors, e.g. RISC-like processors or DSP-

like processors. Incorporating different processors

into OpenMP is challenging. We present our solutions
to extend OpenMP directives to tackle this

heterogeneity. Several optimization techniques are

proposed to utilize advanced architecture features of
our target SOC, the Software Scalable System on Chip

(3SoC). Preliminary performance evaluation shows

scalable speedup using different types of processors
and performance improvement through individual

optimization.

1. Introduction

Modern system-on-chip (SOC) design shows a

clear trend towards integration of multiple processor

cores, the SOC System Driver section of the

“International Technology Roadmap for

Semiconductors” (http://public.itrs.net/) predicts that

the number of processor cores will increase

dramatically to match the processing demands of

future applications. While network processor providers

like IBM, embedded processor providers like Cradle

have already detailed multi-core processors,

mainstream computer companies such as Intel and Sun

have also addressed such an approach for their high-

volume markets.

Developing a standard programming paradigm for

parallel machines has been a major objective in

parallel software research. Such standardization would

not only facilitate the portability of parallel programs,

but would reduce the burden of parallel programming

as well. Two major models for parallel machines are

clusters or distributed memory machines and

Symmetric Multiprocessor machines (SMP). Several

parallel programming standards have been developed

for individual architecture, such as the Message-

Passing Interface (MPI) for distributed memory

machines, and OpenMP or thread libraries (i.e.

Pthread) for shared memory machines.

Chip Multiprocessors have become emerging

parallel machine architecture. Choosing a

programming standard for the development of efficient

parallel programs on this “parallel” chip architecture is

challenging and beneficial. OpenMP is an industrial

standard for shared memory parallel programming

agreed on by a consortium of software and hardware

vendors [1]. It consists of a collection of compiler

directives, library routines, and environment variables

that can be easily inserted into a sequential program to

create a portable program that will run in parallel on

shared memory architectures.

In this paper, we propose some extensions to

OpenMP to deal with the heterogeneity of chip

multiprocessors. The heterogeneity is an important

feature for most chip multiprocessors in the embedded

space. Typical SOCs incorporate different types of

processors into one die, i.e. RISC, or DSP-like

processors. The parallelism is divided among

processors; each processor may have different

instruction set. By extending OpenMP, we can deploy

different types of processors for parallel programming.

We also focus on extending OpenMP for optimization

on SOCs. Our implementation of OpenMP compiler

shows that OpenMP extensions can be used for

optimization of parallel programs on chip

multiprocessors architecture. The current version of

our compiler accepts standard OpenMP programs and

our extensions to OpenMP. Our performance

evaluation shows scalable speedup using different

types of processors and performance improvement

through individual optimization extension on 3SoC.

The rest of this paper is organized as follows: in the

next section we introduce the 3SoC architecture. In

Section 3, we discuss our compiler/translator for chip

multiprocessor. Section 4 describes our extensions to

OpenMP to deal with the heterogeneity. Optimization

techniques to improve OpenMP performance on CMP

are discussed in Section 5. Section 6 discusses the

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

general implementation of this compiler. Performance

evaluation and results are showed in Section 7.

Finally, we summarize our conclusion in Section 8.

2. 3SOC Architecture Overview

Cradle's Software Scalable System on Chip (3SoC)

architecture consists of dozens of high performance

RISC-like and digital signal processors on a single

chip with fully software programmable and dedicated

input-output processors. The processors are organized

into small groups, with eight digital signal processors

and four RISC-like processors each sharing a block of

local data and control memory, with all groups having

access to global information via a unique on-chip

bus—the Global Bus. It is because data, signal, and

I/O processors are all available on a single chip, and

that the chip is thereby capable of implementing entire

systems [2]. The block diagram is shown as Figure 1.

M

S

P

M

S

P

M

S

P

M

S

P

MEMORYC
L

O
C

K
S

M

S

P

M

S

P

M

S

P

M

S

P

MEMORYD
R

A
M

C
O

N
T

R
O

L

DRAM

Global Bus

PROG I/O PROG I/O

P
R

O
G

 I
/O

P
R

O
G

 I
/O

P
R

O
G

 I
/O

PROG I/OPROG I/OPROG I/OPROG I/O

P
R

O
G

 I/O
P

R
O

G
 I/O

NVMEM

M

S

P

M

S

P

M

S

P

MEMORY

M

S

P

M

S

P

M

S

P

M

S

P

MEMORY

M

S

P

PE DSE

MEM

Multi Stream Processor

750 MIPS/GFLOPS

Shared
Prog
Mem

Shared
Data
Mem

Shared
DMA

DSE

MEM

I/
O

 B
u

s

The 3SoC is a shared memory MIMD (multiple

instruction/multiple data) computer that uses a single

32-bit address space for all register and memory

elements. Each register and memory element in the

3SoC has a unique address and is uniquely

addressable.

2.1. Quads

The Quad is the primary unit of replication for

3SoC. A 3SoC chip has one or more Quads, with each

Quad consisting of four PEs, eight DSEs, and one

Memory Transfer Engine (MTE) with four Memory

Transfer Controllers (MTCs). In addition, PEs share

32KB of instruction cache and Quads share 64KB of

data memory, 32K of which can be optionally

configured as cache. Thirty-two semaphore registers

within each quad provide the synchronization

mechanism between processors. Figure 2 shows a

Quad block diagram. Note that the Media Stream

Processor (MSP) is a logical unit consisting of one PE

and two DSEs.

Processing Element--The PE is a 32-bit processor

with 16-bit instructions and thirty-two 32-bit registers.

The PE has a RISC-like instruction set consisting of

both integer and IEEE 754 floating point instructions.

The instructions have a variety of addressing modes

for efficient use of memory. The PE is rated at

approximately 90 MIPS.

Digital Signal Engine--The DSE is a 32-bit processor

with 128 registers and local program memory of 512

20-bit instructions optimized for high-speed fixed and

floating point processing. It uses MTCs in the

background to transfer data between the DRAM and

the local memory. The DSE is the primary compute

engine and is rated at approximately 350 MIPS for

integer or floating-point performance.

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PROGRAM

MEM/

CACHE

DATA

MEM/

CACHE

INTERFACE

GLOBAL BUS

Arbiter

MSP

MTE

2.2. Communication and Synchronization

Communication--Each Quad has two 64-bit local

buses: an instruction bus and a data bus. The

instruction bus connects the PEs and MTE to the

instruction cache. The data bus connects the PEs,

DSEs, and MTE to the local data memory. Both buses

consist of a 32-bit address bus, a 64-bit write data bus,

and a 64-bit read data bus. This corresponds to a

sustained bandwidth of 2.8 Gbytes/s per bus.

The MTE is a multithreaded DMA engine with four

MTCs. An MTC moves a block of data from a source

address to a destination address. The MTE is a

modified version of the DSE with four program

counters (instead of one) as well as 128 registers and

2K of instruction memory. MTCs also have special

functional units for BitBLT, Reed Solomon, and CRC

operations.

Synchronization--Each Quad has 32 globally

accessible semaphore registers that are allocated either

statically or dynamically. The semaphore registers

associated with a PE, when set, can also generate

interrupts to the PE.

2.3. Software Architecture and Tools

Figure 1: 3SOC Block diagram

Figure 2: Quad Block diagram

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

The 3SoC chip can be programmed using standard

ANSI C or a C-like assembly language (“CLASM”) or

a combination thereof. The chip is supplied with

GNU-based optimizing C-compilers, assemblers,

linkers, debuggers, a functional and performance

accurate simulator, and advanced code profilers and

performance analysis tools. Please refer to 3SoC

programmer’s guide [3].

3. The OpenMP Compiler/Translator

There are a number of OpenMP implementations

for C and FORTRAN on SMP machines today. One of

the approaches is to translate a C program with

OpenMP directives to a C program with Pthreads [4].

Our OpenMP prototype compiler consists of three

phases as described in the following subsections.

3.1. Data Distribution

In OpenMP, there are several clauses to define data

privatization. Two major groups of variables exist:

shared and private data. Private data consists of

variables that are accessible by a single thread or

processor that doesn’t need communication, such as

variables defined in “PRIVATE” and

“THREADPRIVATE” clause. Some private data

needs initialization or combination before or after

parallel constructs, like “FIRSTPRIVATE” and

“REDUCTION”. Access to these data should be

synchronized among different processors.

3.2. Computation Division

The computation needs to be split among different

processors. The only way to represent parallelism in

OpenMP is by means of PARALLEL directive as

shown below:

#pragma omp parallel
{
 /* code to be executed in parallel */
}

In the 3SoC architecture, a number of processors

can be viewed as a number of “threads” compared to

normal shared memory architectures. Each processor

or “thread” has its own private memory stack. At the

same time, each processor is accessing the same

blocks of shared local memory within the Quad or

SDRAM outside Quad. In a typical 3SoC program,

PE0 will initiate and start several other processors like

PEs or DSEs, so that PE0 acts as the “master” thread

and all other processors act as “child” threads. Then

PE0 will transfer parameters and allocate data among

different processors. It will also load the MTE

firmware and enable all MTCs. Through data

allocation PE0 tells each processor to execute specific

regions in parallel. PE0 will also execute the region

itself as the master thread of the team. At the end of a

parallel region, PE0 will wait for all other processors

to finish and collect required data from each processor,

similar to a “master” thread.

The common translation method for parallel

regions uses a micro-tasking scheme. Execution of the

program starts with the master thread, which during

initialization creates a number of spinner threads that

sleep until they are needed. The actual task is defined

in other threads that are waiting to be called by the

spinner. When a parallel construct is encountered, the

master thread wakes up the spinner and informs it the

parallel code section to be executed and the

environment to be setup for this execution. The

spinner then calls the task thread to switch to a specific

code section and execute.

int main() {
 //..
 #pragma omp parallel
 {
 #pragma omp single
 {
 printf(“hello world!\n”);
 }
 //only one thread execute this
 }
 //..
}

void function1() {
 {
 my_quadid=_QUAD_INDEX;
 my_peid=(my_quadid*4)+_PE_INDEX;
 //identify each processor ID
 ..
 if(my_peid==3)
 {
 printf(“hello world!\n”);
 }
 //only one processor execute this, not necessary master processor

 <communication and synchronization for this parallel region>
 }
}

int main() {
 {
 if(my_peid==0)
 {
 <allocate and initialize number of processors>
 <start all other processors>
 }
 // PE0 initialize and start all other processors

 function1();
 // each processor will run parallel region,
 // PE0 will also execute this function

 <end all processors>
 }
}

For a chip multiprocessor environment, each

“thread” unit is one processor. The number of

“threads” is the actual processor number instead of a

team of virtual threads, which can be created at the

discretion of the user in a normal shared memory

model. It is not practical to create two threads - one for

spinning and another for actual execution. Moreover,

each processor has its own processing power and

doesn’t wait for resources from other processors. In

our approach, we simply assign each parallel region in

the program with a unique identifying function. The

code inside the parallel region is moved from its

original place and replaced by a function statement,

where its associated region calls this function and

Figure3: Translation of an OpenMP program
(left) to a 3SoC parallel region (right)

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

processors with correct IDs execute selected

statements in parallel (See Figure 3).

3.3. Communication Generation

In OpenMP specifications, several communications

and synchronizations need to be guaranteed and

inserted into the parallel regions at certain points. For

example, only one processor allows access to the

global “REDUCTION” variable at the end of the

parallel construct at a time before an implicit barrier.

Hardware synchronization features like semaphores in

3SoC are the most important features that distinguish

normal multiprocessor chips from “parallel” chips. On

3SoC platform, the semaphore library (Semlib) has

procedures for allocating global semaphores and Quad

semaphores and for locking and unlocking. Reading a

semaphore register, which also sets the register, is an

atomic operation that cannot be interrupted. Sample

barrier code is shown below:

semaphore_lock(Sem1.p);
done_pe++; //global shared variable
semaphore_unlock(Sem1.p);
while(done_pe<(PES)); //PES is total number of PEs
 _pe_delay(1);

4. Extensions to OpenMP for DSEs

Programming for PEs is similar to conventional

parallel programming. The programs start with one PE

(PE0) that is responsible for the environment setup

and initialization of all other PEs. Afterwards PEs are

involved in execution of selected statements within

each parallel region by its associated processor ID.

PEs are the primary processing units. Our

implementation of OpenMP compiler could accept

standard C programs with OpenMP directives and

successfully convert it to parallel programs for PEs.

The heterogeneity is due to the DSE processor.

4.1. Controlling the DSEs

The controlling PE for a given DSE has to load the

DSE code into the DSE instruction memory.

Thereafter, the PE initializes the DSE DPDMs with

the desired variables and starts the DSE. The PE then

either waits for the DSE to finish, by polling, or can

continue its work and get interrupted when the DSE

finishes its task. Several DSE library calls are invoked.

Sample program is shown in figure 4.

First, the PE initializes the DSE library calls via

dse_lib_init(&LocalState). Then the PE does Quad I/O

check and data allocation such as assigning initial

value for the matrix. In the next for-loop, the PE

allocates a number of DSEs and loads the DSE code

into the DSE instruction memory by

dse_instruction_load(). This is done by allocating

within one Quad first, dse_id[i]= dse_alloc(0), if

failed, it will load from other Quads. Afterwards, the

PE loads the DPDM's onto the allocated DSEs,

DSE_loadregisters(dse_id). After all initializations are

done, the PE starts all DSEs and tells DSEs to execute

from the 0th instruction, via the function call

dse_start(dse_id[i], 0). The PE then waits for the

DSEs to finish and automatically releases all DSEs, by

dse_wait(dse_id[i]). When all tasks finish, the DSE

terminate library call dse_lib_terminate() is invoked.
void main() {

..
int dse_id[NUM_DSE];

dse_lib_init(&LocalState); //DSE library initialization

pe_in_io_quad_check();

<Data allocation>

_MTE_load_default_mte_code(0x3E); // load the MTE firmware

for(i = 0; i < NUM_DSE; i++) {

dse_id[i] = dse_alloc(0); // allocate a dse in this quad

if(dse_id[i] < 0) {
// no dse free in our quad, allocate from any quad
dse_id[i] = dse_alloc_any_quad(0);
if(dse_id[i] < 0) {

printf("Dse could not be allocated !");
}

}

// load the instructions on the allocated DSEs
dse_instruction_load(dse_id[i], (char *)&dse_function, (char

*)&dse_function_complete, 0);
}

DSE_loadregisters(dse_id); // Load the Dpdm's on the allocated DSEs

for(i = 0; i < NUM_DSE; i++) {
// Start the DSEs from the 0th instruction
dse_start(dse_id[i], 0);

}

for(i = 0; i < NUM_DSE; i++) {
// Wait for the Dse's to complete, frees the DES
dse_wait(dse_id[i]);

}
..
dse_lib_terminate(); // DSE library call to terminate
..

}

4.2. Extensions for DSEs

The main parallel region is defined as #pragma

omp parallel USING_DSE(parameters). When the

OpenMP compiler encounters this parallel region, it

will switch to the corresponding DSE portion. The

four parameters declared here are: number of DSEs,

number of Registers, starting DPDM number, and data

register array, such as (8, 6, 0, dse_mem). For

OpenMP compiler, the code generation is guided by

the parameters defined in parallel USING_DSE

construct. The compiler will generate environment

setup like dse_lib_init, dse_alloc(0), DSE startup and

wait call dse_start(), dse_wait(), and termination

Figure4: Sample code for controlling DSEs

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

library call dse_lib_terminate(). So users are not

required to do any explicit DSE controls, like startup

DSE dse_start(). See figure 5.
int main()
{
 //other OpenMP parallel region
 #pragma omp parallel
 {
 }
 …
 //OpenMP parallel region for number of DSEs, with parameters
 #pragma omp parallel USING_DSE(8,6,0,dse_mem)

{
#pragma omp DSE_DATA_ALLOC
{

 <initialization functions>
}

#pragma omp DSE_LOADCOMREG
{

 <define data registers to be transferred to DSE>
}

#pragma omp DSE_LOADDIFFREG(i)
{

 <define DSE data registers with different value>
}

#pragma omp DSE_OTHER_FUNC
{

 <other user defined functions>
}

 //main program loaded and started by PE0
#pragma omp DSE_MAIN
{

 <order of executing user defined functions or other code>
}

}
 …
}

The benefit of using extensions is that it helps to

abstract high-level parallel programs, and allows the

compiler to insert initialization code and data

environment setup, if required. This hides DSE

implementation details from the programmer and

greatly improves the code efficiency for parallel

applications.

5. Optimization for OpenMP

In a chip multiprocessor environment, several

unique hardware features are specially designed to

streamline the data transfer, memory allocations, etc.

Such features are important to improve the

performance for parallel programming on CMP. In this

section, we present some optimization techniques that

can be deployed to fully utilize advanced features of

3SoC, thus improving the performance for OpenMP.

5.1 Using MTE Transfer Engine

Memory allocation is critical to the performance of

parallel programs on SOCs. Given the availability of

local memory, programs will achieve better

performance in local memory than in SDRAM. On-

chip memory is of limited size for SOCs or other

equivalent DSP processors. Data locality is not

guaranteed. One approach is to allocate data in DRAM

first, then move data from DRAM to local memory at

run-time. Thus, all the computation is done in on-chip

memory instead of the slow SDRAM. In 3SoC,

developer can invoke one PE to move data between

the local memory and DRAM at run-time.

3SoC also provides a better solution for data

transfer using MTE transfer engine (detailed in Sec

2.2). Note that the MTE processor runs in parallel with

all other processors. It transfers data between local

data memory and SDRAM in the background.

We use extensions to OpenMP to incorporate MTE

transfer engine. The OpenMP directives are:

#pragma omp MTE_INIT(buffer size, data structure,
data slice)

#pragma omp MTE_MOVE(count, direction)

MTE_INIT initializes a local buffer for data

structure with specified buffer size. MTE_MOVE will

perform actual data movement by MTE engine. Data

size equaling count*slice will be moved with respect

to the direction (from local->DRAM or DRAM-

>local). Within a parallel region, a developer can

control data movement between local memory and

SDRAM before or after the computation. The MTE

firmware needs to be loaded and initiated by PE0 at

the beginning of the program. A number of MTE

library calls will be generated and inserted by the

compiler automatically.

The results show significant performance speedup

using the MTE to do data transfer, especially when the

size of target data structure is large. Performance

evaluation of using the MTE versus using the PE to do

data transfer is given in Section 7.

5.2 Double Buffer and Data Pre-fetching

Data pre-fetching is a popular technique to improve

the memory access latencies. Besides using the MTE

to do data transfer in 3SoC, we can also apply a data

pre-fetching approach through Double Buffering.

For non-Double-Buffering, as discussed in section

5.1, we assume data is allocated in SDRAM first.

Before the PE starts to perform computations, it

invokes the MTE engine to populate or move the data

from DRAM to local memory. When the MTE is

done, it will interrupt the PE informing it that data is

ready and computation can be started. The interrupts

used are semaphore interrupts. The PE locks a

semaphore before calling on the MTE to move data.

Once the MTE is done, it unlocks the semaphore thus

causing an interrupt. To reduce the memory access

latencies, double buffering is used to improve the

performance. Instead of using one buffer in the

previous example, it uses two local buffers which

work in round-robin manner, each time one buffer is

Figure 5: Extensions to OpenMP for DSEs

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

being computed, data in another buffer is being

transferred, and vice versa.

Figure 6 shows how to perform matrix

multiplication using double buffering. We are

multiplying matrices A and B, and the result is kept in

matrix C. Matrix B is in the local memory, while

matrices A and C are both in DRAM. However,

instead of one local buffer per matrix, we allocate two

buffers in the local memory for both matrices A and C.

The PE calls the MTE to populate the first local buffer

of matrix A. The PE then calls the MTE to populate

the second local buffer of matrix A, while the MTE is

moving data, the PE starts to perform computations,

storing the result in the first local buffer of matrix C.

Sometime during the computations, the PE will be

interrupted by the MTE. When the PE finishes the first

round of computation, it can start on the second local

buffer of matrix A, and store the result in the second

local buffer of matrix C. As a result, at any given time,

while the PE is performing computations, the MTE

will be moving data from the DRAM into a local

buffer of matrix A and also will be moving the

completed results from a local buffer of matrix C into

the DRAM.

To implement Double Buffering to improve the

performance for OpenMP, we provide extensions to

OpenMP. Users are required to perform explicit

control of data movement between local memory and

SDRAM. The directives are:

#pragma omp DB_INIT(buffer1 size, buffer2 size, data

structure1, data structure2, data slice1, data slice2)
#pragma omp DB_MOVE(buffer ID1, direction1,

buffer ID2, direction2)

DB_INIT initializes two buffers for each data

structure with specified size, totally four buffers.

DB_MOVE at certain point controls the actual data

movement between SDRAM and local memory. Each

time DB_MOVE will move one slice for both data

structure1 and structure2, with specified direction

(from local->DRAM or DRAM->local) and buffer

ID(1 or 2) for each data structure. Concurrently, PE

will do computation against another buffer of each

structure. The OpenMP Compiler automatically sets

up the environment, initializes the MTE, allocates

necessary buffers and inserts the required library calls.

With the help of these extensions, users can write

OpenMP parallel programs which control data

movement dynamically at run-time.

5.3 Data Privatization and Others

OpenMP provides few features for managing data

locality. The method provided for enforcing locality in

OpenMP is to use the PRIVATE or

THREADPRIVATE clause. However, systematically

applied privatization requires good programming

practices. Some researchers have proposed several

approaches to provide optimization with modest

programming effort, including the removal of barriers

that separate two consecutive parallel loops [7],

improving cache reuse by means of privatization and

other chip multiprocessor specific improvement [6, 8].

In order to improve the performance of OpenMP on

3SoC, we apply those optimization techniques. For the

time being, not all techniques discussed here are

available in our first version compiler.

{
 #pragma omp parallel for reduction(+:sum)
 for (i=0; i < n; i++)

 sum = sum + (a[i] * b[i]);
 }

{
 for(..) {
 }

 //combine barrier semaphore and
 //critical session semaphore together
 semaphore_lock(Sem1.p);
 sum=sum+sum_pri;
 done_pe1++;
 semaphore_unlock(Sem1.p);
 while(done_pe1<(PES));
 _pe_delay(1);
}

{
 for(..) {
 }
 //critical session
 semaphore_lock(Sem1.p);
 sum=sum+sum_pri;
 semaphore_unlock(Sem1.p);

 //barrier
 semaphore_lock(Sem2.p);
 sum=sum+sum_pri;
 done_pe1++;
 semaphore_unlock(Sem2.p);
 while(done_pe2<(PES));
 _pe_delay(1);
}

OpenMP code

Before Optimization

After Optimization

For barrier elimination, it may be possible to

remove the barrier separating two consecutive loops

within a parallel region. Barriers require a lot of

communication and synchronization such that this

optimization can greatly improve the performance. For

data privatization, shared data with read-only accesses

in certain program sections can be made “PRIVATE”

and treated as “FIRSTPRIVATE” which has copy-in

value at the beginning of parallel regions. For the

3SoC architecture, all synchronization is carried out by

means of hardware semaphores. It is helpful to

Figure 6. Double Buffering Scheme for Matrix
Multiplication

Figure 7: Optimization (Semaphore Elimination)

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

combine these semaphores together when encountered

with a consecutive barrier and critical section, thus

reducing the overall synchronization. For example, at

the end of the parallel region, the “REDUCTION”

variable needs to be synchronized and modified by

each thread to reflect the changes, which can be

combined with an implicit barrier at the end of parallel

region, as illustrated in figure 7.

6. Implementation

Our current version of OpenMP compiler can take

standard OpenMP programs. Provided with extensions

to OpenMP, users can also write OpenMP code to

utilize advanced chip multiprocessor features, like

different processors, MTE or Double Buffering on

3SoC. Please refer to [5] for details.

7. Performance Evaluation

Our performance evaluation is based on 3SoC
architecture; the execution environment is the 3SoC

cycle accurate simulator, Inspector (version 3.2.042)

and the 3SoC processor. Although we have verified

the programs on the real hardware, we present results

on the simulator as it provides detailed profiling

information.

To evaluate our OpenMP compiler for 3SoC, we

take parallel applications written in OpenMP and

compare the performance on multiple processors under

different optimization techniques. The first parallel

application is Matrix Multiplication. By applying

different optimizations at compilation, we compare the

performance of parallel application among: no

optimization, with data locality (matrices in local

memory), using the MTE for data transfer, using the

PE for data transfer and double buffering separately.

The second application is LU decomposition that

follows the same approach. We also show the

compiler overhead by comparing the result with hand-

written code in 3SoC.

Figure 8 shows the results of matrix multiplication

using multiple PEs. The speedup is against sequential

code running on single processor (one PE). Figure 9 is

the result for LU decomposition using multiple PEs

against one PE. We use four PEs within one Quad for

both cases. By analysis of both charts, we conclude the

following:

(1) Local memory vs SDRAM: As expected, memory

access latencies have affected the performance

significantly. When the size of the data structure

(matrix size) increases, speedup by allocation of data

in local memory is obvious. For 64*64 matrix LU

decomposition, the speedup is 4.12 in local memory vs

3.33 in SDRAM.

(2) Using the MTE vs SDRAM: As discussed in

Section 5, we can deploy the MTE data transfer engine

to move data from SDRAM to local memory at run-

time, or we can leave the data in SDRAM only and

never transferred to local during execution. Due to the

limited size of the local memory it’s not practical to

put all data within the local memory. For small size

matrices below 32*32, the MTE transfer has no

benefit, in fact, it downgrades the performance in both

examples. The reason is that the MTE environment

setup and library calls need extra cycles. For larger-

size matrices, it shows speedup compared to data in

SDRAM only. For 64*64 matrix multiplication, the

speedup is 4.7 vs 3.9. Actually 64*64 using MTE

engine is only a 3.2% degrade compared to storing

data entirely in the local memory. Therefore, moving

data using the MTE will greatly improve performance

for large data.

(3) Using the MTE vs using the PE: We observed

scalable speedup by using the MTE over the PE to

move data. The extra cycles used in MTE movement

do not grow much as the matrix size increases. For

large data set movements, the MTE will achieve

greater performance over the PE.

(4) Using compiler generated vs hand-written code:

The overhead of using the OpenMP compiler is

addressed here. Since the compiler uses a fixed

allocation to distribute computation, combined with

extra code added to the program, it is not as good as

manual parallel programming. In addition, some

algorithms in parallel programming cannot be

represented in OpenMP. The overhead for OpenMP

compiler is application dependent. Here we only

compare the overhead of the same algorithm deployed

by both the OpenMP compiler and handwritten code.

It shows overhead is within 5% for both examples.

Figure 10 shows the result of matrix multiplication

using multiple DSEs. Double Buffering techniques are

used here. The matrix size is 128*128.

(1) Scalable speedup by using a number of DSEs: 4

DSEs achieve 3.9 speedup over 1 DSE for the same

program without double buffering, and 32 DSEs

obtain 24.5 speedup over 1 DSE. It shows that 3SoC

architecture is suitable for large intensive computation

on multiple processors within one chip and

performance is scalable.

(2) Double Buffering: Double buffering shows great

performance improvement, especially for smaller

numbers of DSEs. For 1 DSE, the speedup is 1.8 by

using DB over 1 DSE without DB, almost equivalent

to using two DSEs. We expect the speedups with

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

larger number of DSEs to be in the same range with

larger matrices.

0

1

2

3

4

5

6

4 8 16 32 48 64

Size of Matrix

S
p

e
e
d

u
p

Local Memory

SDRAM

Opt using MTE

Opt using PE

handwritten

0

1

2

3

4

5

4 8 16 32 48 64

Size of Matrix

S
p
e
e
d
u
p

Local Memory

SDRAM

Opt using MTE

Opt using PE

handwritten

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Number of DSEs

S
p
e
e
d
u
p Without DB

with DB

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

64 256 1024
Data Point (N)

C
y
c
le

s 8 DSEs

4 DSEs

In Figure 11, we implemented parallelized FFT

using multiple DSEs. For most applications

computation time plays an important role in the use of

FFT algorithm. The computation time can be reduced

using parallelism in FFT, in 3SoC, employing multiple

DSEs. Figure 11 shows the scalable scheme of FFT

using different number of DSEs. From the

computation cycles taken, the time for computation of

1024 complex points using 8 DSEs is approximately

240 microseconds (with the current 3SoC clock speed

of 200Mhz), which is comparable to other DSP

processors. For 64 fixed size data points, using 8 DSEs

achieves 1.95 speedup over 4 DSEs. It is clear from

Figure 11 that FFT implementation in OpenMP is

scalable.

8. Conclusions

In this paper, we propose an OpenMP compiler for

chip multiprocessors (3SoC as an example), especially

targeting at extending OpenMP directives to cope with

heterogeneity of CMPs. In view of this emerging

parallel architecture, advanced architecture feature is

important. By extending OpenMP for CMPs, we

provide several optimization techniques. The OpenMP

compiler hides the implementation details from the

programmer, thus improving the overall code

efficiency and ease of parallel programming on CMPs.

Acknowledgements
We want to thank Dr. R. K. Singh for his contribution

of the Double Buffering concept.

References
[1] OpenMP Architecture Review Board, OpenMP C

and C++ Application Program Interface, Version 2.0,
http://www.openmp.org, March 2002.

[2] 3SoC Documentation--3SoC 2003 Hardware

Architecture, Cradle Technologies, Inc. Mar 2002.

[3] 3SoC Programmer’s Guide, Cradle Technologies,

Inc., http://www.cradle.com, Mar 2002.

[4] Christian Brunschen, Mats Brorsson, OdinMP/CCp

– A portable implementation of OpenMP for C, MSc

thesis, Lund Universtiy, Sweden, July 1999.

[5] Feng Liu, Vipin Chaudhary, A practical OpenMP

compiler for System on Chips, Workshop on OpenMP

Applications and Tools, pages 54-68, June 2003.

[6] S. Satoh, K. Kusano, and M. Sato. Compiler

Optimization Techniques for OpenMP Programs, 2nd

European Workshop on OpenMP, pp 14-15, 2000.

[7] C. Tseng, Compiler optimization for eliminating

barrier synchronization, Proceedings of the 5th ACM

Symposium on Principles and Practice of Parallel

Programming, July 1995.

[8] Marcelo Cintra, José F. Martínez, and Josep

Torrellas, Architectural support for scalable

speculative parallelization in shared-memory

multiprocessors, Proceedings of the International

Symposium on Computer Architecture, 2000.

Figure 8. Matrix Multiplication using 4 PEs

Figure 9. LU Decomposition using 4 PEs

Figure 10. Matrix Multiplication using DSEs

Figure 11. Parallelized FFT using DSEs

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 23, 2008 at 10:43 from IEEE Xplore. Restrictions apply.

