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Abstract

The emergence of System-on-Chip (SOC) design 
shows the growing popularity of the integration of 

multiple-processors into one chip. In this paper, we 

propose that high-level abstraction of parallel 
programming like OpenMP is suitable for chip 

multiprocessors. For SOCs, the heterogeneity exists 

within one chip such that it may have different types of 
multiprocessors, e.g. RISC-like processors or DSP-

like processors. Incorporating different processors 

into OpenMP is challenging. We present our solutions 
to extend OpenMP directives to tackle this 

heterogeneity. Several optimization techniques are 

proposed to utilize advanced architecture features of 
our target SOC, the Software Scalable System on Chip 

(3SoC). Preliminary performance evaluation shows 

scalable speedup using different types of processors 
and performance improvement through individual 

optimization. 

1. Introduction 

Modern system-on-chip (SOC) design shows a 

clear trend towards integration of multiple processor 

cores, the SOC System Driver section of the 

“International Technology Roadmap for 

Semiconductors” (http://public.itrs.net/) predicts that 

the number of processor cores will increase 

dramatically to match the processing demands of 

future applications. While network processor providers 

like IBM, embedded processor providers like Cradle 

have already detailed multi-core processors, 

mainstream computer companies such as Intel and Sun 

have also addressed such an approach for their high-

volume markets.  

Developing a standard programming paradigm for 

parallel machines has been a major objective in 

parallel software research. Such standardization would 

not only facilitate the portability of parallel programs, 

but would reduce the burden of parallel programming 

as well. Two major models for parallel machines are 

clusters or distributed memory machines and 

Symmetric Multiprocessor machines (SMP). Several 

parallel programming standards have been developed 

for individual architecture, such as the Message-

Passing Interface (MPI) for distributed memory 

machines, and OpenMP or thread libraries (i.e. 

Pthread) for shared memory machines.  

Chip Multiprocessors have become emerging 

parallel machine architecture. Choosing a 

programming standard for the development of efficient 

parallel programs on this “parallel” chip architecture is 

challenging and beneficial. OpenMP is an industrial 

standard for shared memory parallel programming 

agreed on by a consortium of software and hardware 

vendors [1]. It consists of a collection of compiler 

directives, library routines, and environment variables 

that can be easily inserted into a sequential program to 

create a portable program that will run in parallel on 

shared memory architectures. 

In this paper, we propose some extensions to 

OpenMP to deal with the heterogeneity of chip 

multiprocessors. The heterogeneity is an important 

feature for most chip multiprocessors in the embedded 

space. Typical SOCs incorporate different types of 

processors into one die, i.e. RISC, or DSP-like 

processors. The parallelism is divided among 

processors; each processor may have different 

instruction set. By extending OpenMP, we can deploy 

different types of processors for parallel programming. 

We also focus on extending OpenMP for optimization 

on SOCs. Our implementation of OpenMP compiler 

shows that OpenMP extensions can be used for 

optimization of parallel programs on chip 

multiprocessors architecture. The current version of 

our compiler accepts standard OpenMP programs and 

our extensions to OpenMP. Our performance 

evaluation shows scalable speedup using different 

types of processors and performance improvement 

through individual optimization extension on 3SoC.

The rest of this paper is organized as follows: in the 

next section we introduce the 3SoC architecture. In 

Section 3, we discuss our compiler/translator for chip 

multiprocessor. Section 4 describes our extensions to 

OpenMP to deal with the heterogeneity. Optimization 

techniques to improve OpenMP performance on CMP 

are discussed in Section 5. Section 6 discusses the 
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general implementation of this compiler. Performance 

evaluation and results are showed in Section 7. 

Finally, we summarize our conclusion in Section 8. 

2. 3SOC Architecture Overview 

Cradle's Software Scalable System on Chip (3SoC)

architecture consists of dozens of high performance 

RISC-like and digital signal processors on a single 

chip with fully software programmable and dedicated 

input-output processors. The processors are organized 

into small groups, with eight digital signal processors 

and four RISC-like processors each sharing a block of 

local data and control memory, with all groups having 

access to global information via a unique on-chip 

bus—the Global Bus. It is because data, signal, and 

I/O processors are all available on a single chip, and 

that the chip is thereby capable of implementing entire 

systems [2]. The block diagram is shown as Figure 1. 
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The 3SoC is a shared memory MIMD (multiple 

instruction/multiple data) computer that uses a single 

32-bit address space for all register and memory 

elements. Each register and memory element in the 

3SoC has a unique address and is uniquely 

addressable. 

2.1. Quads 

The Quad is the primary unit of replication for 

3SoC. A 3SoC chip has one or more Quads, with each 

Quad consisting of four PEs, eight DSEs, and one 

Memory Transfer Engine (MTE) with four Memory 

Transfer Controllers (MTCs). In addition, PEs share 

32KB of instruction cache and Quads share 64KB of 

data memory, 32K of which can be optionally 

configured as cache. Thirty-two semaphore registers 

within each quad provide the synchronization 

mechanism between processors. Figure 2 shows a 

Quad block diagram. Note that the Media Stream 

Processor (MSP) is a logical unit consisting of one PE 

and two DSEs. 

Processing Element--The PE is a 32-bit processor 

with 16-bit instructions and thirty-two 32-bit registers. 

The PE has a RISC-like instruction set consisting of 

both integer and IEEE 754 floating point instructions. 

The instructions have a variety of addressing modes 

for efficient use of memory. The PE is rated at 

approximately 90 MIPS.  

Digital Signal Engine--The DSE is a 32-bit processor 

with 128 registers and local program memory of 512 

20-bit instructions optimized for high-speed fixed and 

floating point processing. It uses MTCs in the 

background to transfer data between the DRAM and 

the local memory. The DSE is the primary compute 

engine and is rated at approximately 350 MIPS for 

integer or floating-point performance. 
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2.2. Communication and Synchronization 

Communication--Each Quad has two 64-bit local 

buses: an instruction bus and a data bus. The 

instruction bus connects the PEs and MTE to the 

instruction cache. The data bus connects the PEs, 

DSEs, and MTE to the local data memory. Both buses 

consist of a 32-bit address bus, a 64-bit write data bus, 

and a 64-bit read data bus. This corresponds to a 

sustained bandwidth of 2.8 Gbytes/s per bus. 

The MTE is a multithreaded DMA engine with four 

MTCs. An MTC moves a block of data from a source 

address to a destination address. The MTE is a 

modified version of the DSE with four program 

counters (instead of one) as well as 128 registers and 

2K of instruction memory. MTCs also have special 

functional units for BitBLT, Reed Solomon, and CRC 

operations. 

Synchronization--Each Quad has 32 globally 

accessible semaphore registers that are allocated either 

statically or dynamically. The semaphore registers 

associated with a PE, when set, can also generate 

interrupts to the PE. 

2.3. Software Architecture and Tools 

Figure 1: 3SOC Block diagram 

Figure 2: Quad Block diagram 
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The 3SoC chip can be programmed using standard 

ANSI C or a C-like assembly language (“CLASM”) or 

a combination thereof. The chip is supplied with 

GNU-based optimizing C-compilers, assemblers, 

linkers, debuggers, a functional and performance 

accurate simulator, and advanced code profilers and 

performance analysis tools. Please refer to 3SoC

programmer’s guide [3]. 

3. The OpenMP Compiler/Translator 

There are a number of OpenMP implementations 

for C and FORTRAN on SMP machines today. One of 

the approaches is to translate a C program with 

OpenMP directives to a C program with Pthreads [4]. 

Our OpenMP prototype compiler consists of three 

phases as described in the following subsections. 

3.1. Data Distribution 

In OpenMP, there are several clauses to define data 

privatization. Two major groups of variables exist: 

shared and private data. Private data consists of 

variables that are accessible by a single thread or 

processor that doesn’t need communication, such as 

variables defined in “PRIVATE” and 

“THREADPRIVATE” clause. Some private data 

needs initialization or combination before or after 

parallel constructs, like “FIRSTPRIVATE” and 

“REDUCTION”. Access to these data should be 

synchronized among different processors.  

3.2. Computation Division 

The computation needs to be split among different 

processors. The only way to represent parallelism in 

OpenMP is by means of PARALLEL directive as 

shown below: 

#pragma omp parallel 
{
    /* code to be executed in parallel */ 
}

In the 3SoC architecture, a number of processors 

can be viewed as a number of “threads” compared to 

normal shared memory architectures. Each processor 

or “thread” has its own private memory stack. At the 

same time, each processor is accessing the same 

blocks of shared local memory within the Quad or 

SDRAM outside Quad. In a typical 3SoC program, 

PE0 will initiate and start several other processors like 

PEs or DSEs, so that PE0 acts as the “master” thread 

and all other processors act as “child” threads. Then 

PE0 will transfer parameters and allocate data among 

different processors. It will also load the MTE 

firmware and enable all MTCs. Through data 

allocation PE0 tells each processor to execute specific 

regions in parallel. PE0 will also execute the region 

itself as the master thread of the team. At the end of a 

parallel region, PE0 will wait for all other processors 

to finish and collect required data from each processor, 

similar to a “master” thread. 

The common translation method for parallel 

regions uses a micro-tasking scheme. Execution of the 

program starts with the master thread, which during 

initialization creates a number of spinner threads that 

sleep until they are needed. The actual task is defined 

in other threads that are waiting to be called by the 

spinner. When a parallel construct is encountered, the 

master thread wakes up the spinner and informs it the 

parallel code section to be executed and the 

environment to be setup for this execution. The 

spinner then calls the task thread to switch to a specific 

code section and execute.  

int main() {
  //..
  #pragma omp parallel
  {
      #pragma omp single
      {
          printf(“hello world!\n”);
       }
       //only one thread execute this
   }
  //..
}

void function1() {
     {
       my_quadid=_QUAD_INDEX;
      my_peid=(my_quadid*4)+_PE_INDEX;
        //identify each processor ID
        ..
      if(my_peid==3)
      {
          printf(“hello world!\n”);
       }
      //only one processor execute this, not necessary master processor

      <communication and synchronization for this parallel region>
       }
}

int main() {
 {
    if(my_peid==0)
    {
        <allocate and initialize number of processors>
        <start all other processors>
     }
    // PE0 initialize and start all other processors

    function1();
    // each processor will run parallel region,
    // PE0 will also execute this function

    <end all processors>
  }
}

For a chip multiprocessor environment, each 

“thread” unit is one processor. The number of 

“threads” is the actual processor number instead of a 

team of virtual threads, which can be created at the 

discretion of the user in a normal shared memory 

model. It is not practical to create two threads - one for 

spinning and another for actual execution. Moreover, 

each processor has its own processing power and 

doesn’t wait for resources from other processors. In 

our approach, we simply assign each parallel region in 

the program with a unique identifying function. The 

code inside the parallel region is moved from its 

original place and replaced by a function statement, 

where its associated region calls this function and 

Figure3: Translation of an OpenMP program 
(left) to a 3SoC parallel region (right) 
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processors with correct IDs execute selected 

statements in parallel (See Figure 3). 

3.3. Communication Generation 

In OpenMP specifications, several communications 

and synchronizations need to be guaranteed and 

inserted into the parallel regions at certain points. For 

example, only one processor allows access to the 

global “REDUCTION” variable at the end of the 

parallel construct at a time before an implicit barrier. 

Hardware synchronization features like semaphores in 

3SoC are the most important features that distinguish 

normal multiprocessor chips from “parallel” chips. On 

3SoC platform, the semaphore library (Semlib) has 

procedures for allocating global semaphores and Quad 

semaphores and for locking and unlocking. Reading a 

semaphore register, which also sets the register, is an 

atomic operation that cannot be interrupted. Sample 

barrier code is shown below: 

semaphore_lock(Sem1.p);
done_pe++;                 //global shared variable 
semaphore_unlock(Sem1.p);
while(done_pe<(PES));    //PES is total number of PEs 
     _pe_delay(1); 

4. Extensions to OpenMP for DSEs

Programming for PEs is similar to conventional 

parallel programming. The programs start with one PE 

(PE0) that is responsible for the environment setup 

and initialization of all other PEs. Afterwards PEs are 

involved in execution of selected statements within 

each parallel region by its associated processor ID. 

PEs are the primary processing units. Our 

implementation of OpenMP compiler could accept 

standard C programs with OpenMP directives and 

successfully convert it to parallel programs for PEs. 

The heterogeneity is due to the DSE processor.  

4.1. Controlling the DSEs 

The controlling PE for a given DSE has to load the 

DSE code into the DSE instruction memory. 

Thereafter, the PE initializes the DSE DPDMs with 

the desired variables and starts the DSE. The PE then 

either waits for the DSE to finish, by polling, or can 

continue its work and get interrupted when the DSE 

finishes its task. Several DSE library calls are invoked. 

Sample program is shown in figure 4. 

First, the PE initializes the DSE library calls via 

dse_lib_init(&LocalState). Then the PE does Quad I/O 

check and data allocation such as assigning initial 

value for the matrix. In the next for-loop, the PE 

allocates a number of DSEs and loads the DSE code 

into the DSE instruction memory by 

dse_instruction_load(). This is done by allocating 

within one Quad first, dse_id[i]= dse_alloc(0), if 

failed, it will load from other Quads. Afterwards, the 

PE loads the DPDM's onto the allocated DSEs, 

DSE_loadregisters(dse_id). After all initializations are 

done, the PE starts all DSEs and tells DSEs to execute 

from the 0th instruction, via the function call 

dse_start(dse_id[i], 0). The PE then waits for the 

DSEs to finish and automatically releases all DSEs, by 

dse_wait(dse_id[i]). When all tasks finish, the DSE 

terminate library call dse_lib_terminate() is invoked. 
void main() {

..
int dse_id[NUM_DSE];

dse_lib_init(&LocalState);  //DSE library initialization

pe_in_io_quad_check();

<Data allocation>

_MTE_load_default_mte_code(0x3E);  // load the MTE firmware

for(i = 0; i < NUM_DSE; i++) {

dse_id[i] = dse_alloc(0);   // allocate a dse in this quad

if(dse_id[i] < 0) {
// no dse free in our quad, allocate from any quad
dse_id[i] = dse_alloc_any_quad(0);
if(dse_id[i] < 0) {

printf("Dse could not be allocated !");
}

}

// load the instructions on the allocated DSEs
dse_instruction_load(dse_id[i], (char *)&dse_function, (char

*)&dse_function_complete, 0);
}

DSE_loadregisters(dse_id);  // Load the Dpdm's on the allocated DSEs

for(i = 0; i < NUM_DSE; i++) {
// Start the DSEs from the 0th instruction
dse_start(dse_id[i], 0);

}

for(i = 0; i < NUM_DSE; i++) {
// Wait for the Dse's to complete,  frees the DES
dse_wait(dse_id[i]);

}
..
dse_lib_terminate(); // DSE library call to terminate
..

}

4.2. Extensions for DSEs 

The main parallel region is defined as #pragma

omp parallel USING_DSE(parameters). When the 

OpenMP compiler encounters this parallel region, it 

will switch to the corresponding DSE portion. The 

four parameters declared here are: number of DSEs, 

number of Registers, starting DPDM number, and data 

register array, such as (8, 6, 0, dse_mem). For 

OpenMP compiler, the code generation is guided by 

the parameters defined in parallel USING_DSE 

construct. The compiler will generate environment 

setup like dse_lib_init, dse_alloc(0), DSE startup and 

wait call dse_start(), dse_wait(), and termination 

Figure4: Sample code for controlling DSEs 
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library call dse_lib_terminate(). So users are not 

required to do any explicit DSE controls, like startup 

DSE dse_start(). See figure 5. 
int main()
{
               //other OpenMP parallel region
               #pragma omp parallel
              {
               }
               …
              //OpenMP parallel region for number of DSEs, with parameters
               #pragma omp parallel USING_DSE(8,6,0,dse_mem)

{
#pragma omp DSE_DATA_ALLOC
{

                                <initialization functions>
}

#pragma omp DSE_LOADCOMREG
{

                                 <define data registers to be transferred to DSE>
}

#pragma omp DSE_LOADDIFFREG(i)
{

                                 <define DSE data registers with different value>
}

#pragma omp DSE_OTHER_FUNC
{

                                  <other user defined functions>
}

                           //main program loaded and started by PE0
#pragma omp DSE_MAIN
{

                                  <order of executing user defined functions or other code>
}

}
             …
}

The benefit of using extensions is that it helps to 

abstract high-level parallel programs, and allows the 

compiler to insert initialization code and data 

environment setup, if required. This hides DSE 

implementation details from the programmer and 

greatly improves the code efficiency for parallel 

applications. 

5. Optimization for OpenMP 

In a chip multiprocessor environment, several 

unique hardware features are specially designed to 

streamline the data transfer, memory allocations, etc. 

Such features are important to improve the 

performance for parallel programming on CMP. In this 

section, we present some optimization techniques that 

can be deployed to fully utilize advanced features of 

3SoC, thus improving the performance for OpenMP. 

5.1 Using MTE Transfer Engine 

Memory allocation is critical to the performance of 

parallel programs on SOCs. Given the availability of 

local memory, programs will achieve better 

performance in local memory than in SDRAM. On-

chip memory is of limited size for SOCs or other 

equivalent DSP processors. Data locality is not 

guaranteed. One approach is to allocate data in DRAM 

first, then move data from DRAM to local memory at 

run-time. Thus, all the computation is done in on-chip 

memory instead of the slow SDRAM. In 3SoC,

developer can invoke one PE to move data between 

the local memory and DRAM at run-time. 

3SoC also provides a better solution for data 

transfer using MTE transfer engine (detailed in Sec 

2.2). Note that the MTE processor runs in parallel with 

all other processors. It transfers data between local 

data memory and SDRAM in the background.  

We use extensions to OpenMP to incorporate MTE 

transfer engine. The OpenMP directives are: 

#pragma omp MTE_INIT(buffer size, data structure, 
data slice) 

#pragma omp MTE_MOVE(count, direction) 

MTE_INIT initializes a local buffer for data 

structure with specified buffer size. MTE_MOVE will 

perform actual data movement by MTE engine. Data 

size equaling count*slice will be moved with respect 

to the direction (from local->DRAM or DRAM-

>local). Within a parallel region, a developer can 

control data movement between local memory and 

SDRAM before or after the computation. The MTE 

firmware needs to be loaded and initiated by PE0 at 

the beginning of the program. A number of MTE 

library calls will be generated and inserted by the 

compiler automatically.  

The results show significant performance speedup 

using the MTE to do data transfer, especially when the  

size of target data structure is large. Performance 

evaluation of using the MTE versus using the PE to do 

data transfer is given in Section 7. 

5.2 Double Buffer and Data Pre-fetching 

Data pre-fetching is a popular technique to improve 

the memory access latencies. Besides using the MTE 

to do data transfer in 3SoC, we can also apply a data 

pre-fetching approach through Double Buffering.  

For non-Double-Buffering, as discussed in section 

5.1, we assume data is allocated in SDRAM first. 

Before the PE starts to perform computations, it 

invokes the MTE engine to populate or move the data 

from DRAM to local memory. When the MTE is 

done, it will interrupt the PE informing it that data is 

ready and computation can be started. The interrupts 

used are semaphore interrupts. The PE locks a 

semaphore before calling on the MTE to move data. 

Once the MTE is done, it unlocks the semaphore thus 

causing an interrupt. To reduce the memory access 

latencies, double buffering is used to improve the 

performance. Instead of using one buffer in the 

previous example, it uses two local buffers which 

work in round-robin manner, each time one buffer is 

Figure 5: Extensions to OpenMP for DSEs 
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being computed, data in another buffer is being 

transferred, and vice versa.  

Figure 6 shows how to perform matrix 

multiplication using double buffering. We are 

multiplying matrices A and B, and the result is kept in 

matrix C. Matrix B is in the local memory, while 

matrices A and C are both in DRAM. However, 

instead of one local buffer per matrix, we allocate two 

buffers in the local memory for both matrices A and C. 

The PE calls the MTE to populate the first local buffer 

of matrix A. The PE then calls the MTE to populate 

the second local buffer of matrix A, while the MTE is 

moving data, the PE starts to perform computations, 

storing the result in the first local buffer of matrix C. 

Sometime during the computations, the PE will be 

interrupted by the MTE. When the PE finishes the first 

round of computation, it can start on the second local 

buffer of matrix A, and store the result in the second 

local buffer of matrix C. As a result, at any given time, 

while the PE is performing computations, the MTE 

will be moving data from the DRAM into a local 

buffer of matrix A and also will be moving the 

completed results from a local buffer of matrix C into 

the DRAM. 

To implement Double Buffering to improve the 

performance for OpenMP, we provide extensions to 

OpenMP. Users are required to perform explicit 

control of data movement between local memory and 

SDRAM. The directives are: 

#pragma omp DB_INIT(buffer1 size, buffer2 size, data 

structure1, data structure2, data slice1, data slice2) 
#pragma omp DB_MOVE(buffer ID1, direction1, 

buffer ID2, direction2) 

DB_INIT initializes two buffers for each data 

structure with specified size, totally four buffers. 

DB_MOVE at certain point controls the actual data 

movement between SDRAM and local memory. Each 

time DB_MOVE will move one slice for both data 

structure1 and structure2, with specified direction 

(from local->DRAM or DRAM->local) and buffer 

ID(1 or 2) for each data structure. Concurrently, PE 

will do computation against another buffer of each 

structure. The OpenMP Compiler automatically sets 

up the environment, initializes the MTE, allocates 

necessary buffers and inserts the required library calls. 

With the help of these extensions, users can write 

OpenMP parallel programs which control data 

movement dynamically at run-time.  

5.3 Data Privatization and Others 

OpenMP provides few features for managing data 

locality. The method provided for enforcing locality in 

OpenMP is to use the PRIVATE or 

THREADPRIVATE clause. However, systematically 

applied privatization requires good programming 

practices. Some researchers have proposed several 

approaches to provide optimization with modest 

programming effort, including the removal of barriers 

that separate two consecutive parallel loops [7], 

improving cache reuse by means of privatization and 

other chip multiprocessor specific improvement [6, 8]. 

In order to improve the performance of OpenMP on 

3SoC, we apply those optimization techniques. For the 

time being, not all techniques discussed here are 

available in our first version compiler.  

{
 #pragma omp parallel for reduction(+:sum)
   for (i=0; i < n; i++)

     sum = sum + (a[i] * b[i]);
 }

{
   for(..) {
   }

  //combine barrier semaphore and
  //critical session semaphore together
  semaphore_lock(Sem1.p);
    sum=sum+sum_pri;
    done_pe1++;
  semaphore_unlock(Sem1.p);
  while(done_pe1<(PES));
     _pe_delay(1);
}

{
   for(..) {
   }
 //critical session
  semaphore_lock(Sem1.p);
    sum=sum+sum_pri;
  semaphore_unlock(Sem1.p);

 //barrier
  semaphore_lock(Sem2.p);
    sum=sum+sum_pri;
    done_pe1++;
  semaphore_unlock(Sem2.p);
  while(done_pe2<(PES));
     _pe_delay(1);
}

OpenMP code

Before Optimization

After Optimization

For barrier elimination, it may be possible to 

remove the barrier separating two consecutive loops 

within a parallel region. Barriers require a lot of 

communication and synchronization such that this 

optimization can greatly improve the performance. For 

data privatization, shared data with read-only accesses 

in certain program sections can be made “PRIVATE” 

and treated as “FIRSTPRIVATE” which has copy-in 

value at the beginning of parallel regions. For the 

3SoC architecture, all synchronization is carried out by 

means of hardware semaphores. It is helpful to 

Figure 6. Double Buffering Scheme for Matrix 
Multiplication

Figure 7: Optimization (Semaphore Elimination)  
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combine these semaphores together when encountered 

with a consecutive barrier and critical section, thus 

reducing the overall synchronization. For example, at 

the end of the parallel region, the “REDUCTION” 

variable needs to be synchronized and modified by 

each thread to reflect the changes, which can be 

combined with an implicit barrier at the end of parallel 

region, as illustrated in figure 7.  

6. Implementation 

Our current version of OpenMP compiler can take 

standard OpenMP programs. Provided with extensions 

to OpenMP, users can also write OpenMP code to 

utilize advanced chip multiprocessor features, like 

different processors, MTE or Double Buffering on 

3SoC. Please refer to [5] for details. 

7. Performance Evaluation 

Our performance evaluation is based on 3SoC
architecture; the execution environment is the 3SoC

cycle accurate simulator, Inspector (version 3.2.042) 

and the 3SoC processor. Although we have verified 

the programs on the real hardware, we present results 

on the simulator as it provides detailed profiling 

information.  

To evaluate our OpenMP compiler for 3SoC, we 

take parallel applications written in OpenMP and 

compare the performance on multiple processors under 

different optimization techniques. The first parallel 

application is Matrix Multiplication. By applying 

different optimizations at compilation, we compare the 

performance of parallel application among: no 

optimization, with data locality (matrices in local 

memory), using the MTE for data transfer, using the 

PE for data transfer and double buffering separately. 

The second application is LU decomposition that 

follows the same approach. We also show the 

compiler overhead by comparing the result with hand-

written code in 3SoC.

Figure 8 shows the results of matrix multiplication 

using multiple PEs. The speedup is against sequential 

code running on single processor (one PE). Figure 9 is 

the result for LU decomposition using multiple PEs 

against one PE. We use four PEs within one Quad for 

both cases. By analysis of both charts, we conclude the 

following: 

(1) Local memory vs SDRAM: As expected, memory 

access latencies have affected the performance 

significantly. When the size of the data structure 

(matrix size) increases, speedup by allocation of data 

in local memory is obvious. For 64*64 matrix LU 

decomposition, the speedup is 4.12 in local memory vs 

3.33 in SDRAM.  

(2) Using the MTE vs SDRAM: As discussed in 

Section 5, we can deploy the MTE data transfer engine 

to move data from SDRAM to local memory at run-

time, or we can leave the data in SDRAM only and 

never transferred to local during execution. Due to the 

limited size of the local memory it’s not practical to 

put all data within the local memory. For small size 

matrices below 32*32, the MTE transfer has no 

benefit, in fact, it downgrades the performance in both 

examples. The reason is that the MTE environment 

setup and library calls need extra cycles. For larger-

size matrices, it shows speedup compared to data in 

SDRAM only. For 64*64 matrix multiplication, the 

speedup is 4.7 vs 3.9. Actually 64*64 using MTE 

engine is only a 3.2% degrade compared to storing 

data entirely in the local memory. Therefore, moving 

data using the MTE will greatly improve performance 

for large data.

(3) Using the MTE vs using the PE: We observed 

scalable speedup by using the MTE over the PE to 

move data. The extra cycles used in MTE movement 

do not grow much as the matrix size increases. For 

large data set movements, the MTE will achieve 

greater performance over the PE. 

(4) Using compiler generated vs hand-written code: 

The overhead of using the OpenMP compiler is 

addressed here. Since the compiler uses a fixed 

allocation to distribute computation, combined with 

extra code added to the program, it is not as good as 

manual parallel programming. In addition, some 

algorithms in parallel programming cannot be 

represented in OpenMP. The overhead for OpenMP 

compiler is application dependent. Here we only 

compare the overhead of the same algorithm deployed 

by both the OpenMP compiler and handwritten code. 

It shows overhead is within 5% for both examples. 

Figure 10 shows the result of matrix multiplication 

using multiple DSEs. Double Buffering techniques are 

used here. The matrix size is 128*128. 

(1) Scalable speedup by using a number of DSEs: 4 

DSEs achieve 3.9 speedup over 1 DSE for the same 

program without double buffering, and 32 DSEs 

obtain 24.5 speedup over 1 DSE. It shows that 3SoC

architecture is suitable for large intensive computation 

on multiple processors within one chip and 

performance is scalable. 

(2) Double Buffering: Double buffering shows great 

performance improvement, especially for smaller 

numbers of DSEs. For 1 DSE, the speedup is 1.8 by 

using DB over 1 DSE without DB, almost equivalent 

to using two DSEs. We expect the speedups with 
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larger number of DSEs to be in  the same range with 

larger matrices. 
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In Figure 11, we implemented parallelized FFT 

using multiple DSEs. For most applications 

computation time plays an important role in the use of 

FFT algorithm. The computation time can be reduced 

using parallelism in FFT, in 3SoC, employing multiple 

DSEs. Figure 11 shows the scalable scheme of FFT 

using different number of DSEs. From the 

computation cycles taken, the time for computation of 

1024 complex points using 8 DSEs is approximately 

240 microseconds (with the current 3SoC clock speed 

of 200Mhz), which is comparable to other DSP 

processors. For 64 fixed size data points, using 8 DSEs 

achieves 1.95 speedup over 4 DSEs.  It is clear from 

Figure 11 that FFT implementation in OpenMP is 

scalable.

8. Conclusions 

In this paper, we propose an OpenMP compiler for 

chip multiprocessors (3SoC as an example), especially 

targeting at extending OpenMP directives to cope with 

heterogeneity of CMPs. In view of this emerging 

parallel architecture, advanced architecture feature is 

important. By extending OpenMP for CMPs, we 

provide several optimization techniques. The OpenMP 

compiler hides the implementation details from the 

programmer, thus improving the overall code 

efficiency and ease of parallel programming on CMPs. 
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