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Abstract

Spatial databases are entering an era of mass deploy-
ment in various real-life applications, especially mobile and
location-based services. The real-time processing of spa-
tial queries to meet different performance goals poses new
problems to the real-time and parallel processing commu-
nities. In this paper, we investigate how multiple window
queries can be parallelized, decomposed, scheduled and
processed in realtime workloads to optimize system perfor-
mance, such as /O cost, response time and miss rate. We
devise in-memory R-trees to decompose queries into inde-
pendent jobs. Jobs from different queries can be combined
according to their spatial locality to eliminate redundant
I/Os. Runtime job schedulers are elaborately devised to op-
timize response time or miss rate for various systems. Em-
pirical results show a significant performance improvement
over the sequential, unparalleled approach.

1 Introduction

Spatial databases (SDBs) are designed to handle large
volume of spatial data. As mobile and ubiquitous comput-
ing becomes more and more important, the number of spa-
tial applications is increasing. Many of them are location-
based services (LBS) supporting mobile clients and dy-
namic queries whose results are subject to change according
to the user’s context, especially his location. For example,
the result of a “nearest restaurant” query for an automobile
user may become invalid after just one minute. Therefore,
it is desirable for SDBs to process queries in real-time.

Traditional spatial database research focuses on optimiz-
ing I/O cost for a single query in centralized or paralleled
environments. However, in real-time spatial database appli-
cations, especially location-based services, queries arrive at
SDB in a stream. They often share common result objects
due to locality. Therefore, inter-query optimization can re-
duce I/O cost and response time. On the other hand, a
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general real-time database system should adapt to various
workloads to meet different system goals, e.g., minimizing
system response time, execution cost or query miss rate. To
achieve this objective, a dynamic scheduler that takes ad-
vantage of queries’ spatial properties is needed. These con-
siderations, stemmed from both real-time database and spa-
tial database research, lead to our study on realtime query
processing techniques for spatial databases.

In this paper, we investigate how multiple spatial queries
(specifically, window queries) can be parallelized, decom-
posed, scheduled and processed under a realtime workload
in order to enhance runtime performance, e.g., I/O cost, re-
sponse time and miss rate. We take advantage of query
locality to decompose and group overlapping queries into
independent jobs. Jobs from different queries are com-
bined so that redundant I/Os to retrieve the same objects can
be minimized. Further, we design dynamic job schedulers
to optimize system performance metrics (response time or
miss rate) for different result returning modes. Empirical
results from both synthetic data and real datasets show sig-
nificant improvements on all performance metrics over a se-
quential processing approach. Although the performance
gain is at the cost of additional computation and memory
storage, we show that the overhead is relative small.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some spatial database preliminaries and
reviews related work on real-time query scheduling and spa-
tial query optimization. The real-life SDB system model
is presented in Section 3, followed by our proposed real-
time query decomposing and job scheduling techniques in
Section 4. Section 5 further derives the detailed scheduling
policies. Empirical results are analyzed in Section 6, and
finally the paper is concluded with future work.

2 Preliminary and Related Work
2.1 R-tree and Spatial Data Index

The predominant access method for spatial database is
R-tree [5] and its variations. Many commercial database
products, such as Oracle9i adopt R-tree to index spatial and
geometric features of datasets. The R-tree is a direct ex-
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tension of B-tree for multidimensional data. It is a balanced
tree that consists of intermediate and leaf nodes. The MBRs
(Minimal Bounding Rectangles) of the actual data objects
are stored in the leaf nodes, and intermediate nodes are gen-
erated by grouping MBRs of its children nodes. Figure 1(a)
illustrates the placement of spatial objects a,b,...,7 and
Figure 1(b) shows the corresponding R-tree, where root,
node 1 and 2 are intermediate nodes and the rest are leaf
nodes. Each node in the R-tree has entries for its children
in the form of (MBR, pointer), where M BR is the minimal
bounding box of all objects in that child node and pointer
is the address of the child node. For leaf nodes, pointer
points to the actual data objects. For example, leaf node A
has two pointers pointing to object a and b, respectively.

A b i D root immediate node
q
a T h node 1 [A]B] | [cIp] Jnode2
g iy
: g [alo] ] [cldfe] [fTg[ ] [n[il ] leaf node
node A node B node C node D

2
(a) Spatial Objects Placement
Figure 1. An Example of R-tree

(b) Corresponding R-tree

2.2 Window Query Processing

Window (range) queries are one of the most common
type of queries in spatial databases [12]. A window query
requests for a set of objects that intersect a window q. The
processing of a window query (e.g., the light gray window
q in Figure 1(a)) in R-trees is as follows: starting from the
root node, recursively search downwards for children whose
MBRs overlap window ¢ (designated by the gray nodes in
Figure 1(b)). Among the leaf nodes that are searched, re-
turn those spatial data objects that overlap with window g¢.
In the example shown in Figure 1, object d and e are re-
turned when node B is searched, and f is returned when C
is searched. But nothing is returned when D is searched.

2.3 Related Work

Much attention has been paid to the manipulation and
scheduling of incoming queries in a real-time database sys-
tem (RTDBS). Pang et al. proposed algorithms to mini-
mize the number of missed deadlines by adapting both the
multiprogramming level and the memory allocation strat-
egy of an RTDBS through feedback [8]. In their subsequent
work [7], they incorporated the notion of multiclass and
devised dynamic algorithms that can ensure any deadline
misses are scattered across the different classes according to
a user-defined miss distribution. Their system adapts itself
to current resource configuration and workload character-
istics by tuning the admission and resource allocation poli-
cies. Garofalakis and Ioannidis modeled the full complexity
of scheduling distributed multi-dimensional resource units
in hierarchical parallel systems for intra- and inter-query ex-
ecutions [4]. They provided various heuristics for different

scenarios of parallelism. However, while achieving good
performance for general-purpose relational databases, these
approaches are less efficient, or even inapplicable, to spa-
tial databases since they don’t take advantage of any spatial
semantics of the queries.

On the other hand, several papers addressed the problem
of spatial query optimization. Aref and Samet proposed a
spatial database architecture called SAND where spatial and
non-spatial components of an object are stored separately
[1]. But the query processing and optimization algorithms
incorporate both kinds of components to achieve better per-
formance. In [9], Papadopoulos and Manolopoulos studied
the performance of nearest neighbor queries in multi-disk
multi-processor parallel architectures. They utilized statis-
tical information to estimate the number of leaf-node ac-
cesses and to determine an efficient parallel execution strat-
egy over all processors. However, these papers focus on
single-query optimization and are offline algorithms. To
the best of our knowledge, no previous work has addressed
the problem of query scheduling and optimization in a real-
time, online spatial database system.

3 Real-life Spatial Database System Model

System Architecture: A real-life spatial database sys-
tem is commonly deployed in a distributed environment:
clients (especially mobile clients) are the end users. Their
spatial queries are either directly sent to SDB via a wired
network, or through the mobile support stations (MSS) of a
wireless network. Figure 2 illustrates the system model.

Wireless cell

"

uu Aabile Support Station (MSS)
Wired Network

=
u Client

Figure 2. Distributed System Architecture

patial Database (SDB)

Performance Objectives: Our primary goal in this pa-
per is to optimize the following performance metrics: I/O
cost, mean response time, miss rate. These system met-
rics are not fully compatible to each other: minimizing the
number of queries that missed the deadlines (called overdue
queries) or average I/O cost may increase the overall sys-
tem response time. In this paper, our strategy is to minimize
average response time for systems not supporting deadlines,
and to minimize miss rate for systems supporting deadlines.
1/0O cost is minimized in a best-effort fashion, which is dis-
cussed in the next section.

4 Processing Real-time Spatial Queries

The essential idea of real-time spatial query processing
is to process multiple window queries in parallel in order
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(a) Two Overlap Queries (b) Query Decomposition on R-tree

Figure 3. In-memory R-tree and Query Decomposition

to eliminate duplicate I/O accesses to common index and
data pages. Meanwhile, jobs are re-scheduled to minimize
mean query response time. In principle, processing queries
close to one another will save more I/O cost because there
is a high chance that they can share some MBRs in the R-
tree index as well as data objects. However, how to quantify
closeness and degree of overlapping in terms of I/O is rather
difficult. In the following section, we propose our innova-
tive solution based on window query decomposition.

4.1 In-memory R-tree and Active Queries

In a practical implementation where a fair amount of
main memory is available, high-level R-tree nodes can be
assumed to be cached in memory. In the extreme, the entire
R-tree except the leaf nodes can be assumed to be cached in
memory, because the total number of leaf nodes is normally
two orders of magnitude larger than that of all higher level
nodes. We call the cached part of the R-tree in-memory R-
tree. Figure 3(b) illustrates the two parts of an R-tree. In
general, such a two-way partitioning can be applied to an
R-tree at any level. It depends on how much memory can
be allocated for the in-memory R-tree. In the sequel, with-
out loss of generality, the in-memory R-tree includes all of
the internal nodes of an R-tree.

In terms of I/O workload, it is natural for us to divide the
processing of a window query ¢ into two stages:

Stage 1: perform the window query on the in-memory R-
tree to identify all of the leaf nodes to visit, e.g., in Figure 3,
when query g goes through this stage, leaf node B, C' and
D are identified,;

Stage 2: for each of the leaf nodes, visit the corresponding
page and retrieve resultant data objects. Such processing of
a leaf node is called a leaf-node job. For example, B, C and
D are leaf node jobs for query q.

It’s obvious that Stage 1 is fast as it only incurs memory
operations while Stage 2 is much more costly due to I/O op-
erations. Multiple real-time window queries can quickly go
through the first stage and queue before the second stage,
where they, called active queries, are decomposed into leaf
node jobs. We propose to put a runtime scheduler be-
tween the two stages for scheduling the leaf-node jobs in
the queue.

The rationale of eliminating redundant I/Os lies in that
leaf node jobs from different active queries may refer to the
same leaf node. We intentionally combine those jobs refer-
ring to the same leaf node into one “super” leaf-node job

(super job, for short). When executing this super job, all of
its associated window queries will be processed altogether.
For example, in Figure 3, query ¢ has jobs B, C, D, while
¢’ has jobs C, D. Thus leaf nodes C and D are required by
both ¢ and ¢’. We combine the two C jobs into one super
C job. When executing super job C, ¢ and ¢’ are both pro-
cessed at the same time. All objects intersecting either ¢ or
q' (i.e., ) will be returned. The same applies to D. There-
fore all active queries accessing the same leaf node MBR
require only one access to the leaf-node page. As such, the
same object required by multiple queries is only retrieved
once. For example, object f, a common result for ¢ and ¢’,
is retrieved only once when executing super job C. In the
sequel, we develop schedulers to determine the processing
order of these super jobs.

4.2 The Scheduler

The scheduler in our proposal maintains an active query
table holding a maximum of S queries. For each active
query, it stores the information required for scheduling. The
scheduler determines an optimal processing order of the su-
per jobs, which is to be discussed in Section 5. If the table
is full, new queries have to wait before Stage 1. After an ac-
tive query is completed, that is, all its associated super jobs
are executed, its entry is removed from the table. A new
query is decomposed and its entry is inserted into the table.

4.3 Returning the Query Result

Different applications require different result returning
modes, our system supports the two of them. In immediate
mode, when one super job is finished, SDB immediately
connects to the relevant clients and sends the partial result
back. While in collecting mode, the scheduler in addition
maintains a collector for each active query which stores so-
far retrieved objects in memory. When the query is com-
pleted, the whole set of results is returned and the collector
is removed.

4.4 Spatial Database System Architecture

To sum up this section, our spatial database system is
composed of the following components and data struc-
tures: query receiver (with query registry storing clients and
queries associations), query decomposer (with in-memory
R-tree), the scheduler (with active query table), super job
executer (with leaf pages of R-tree and data objects), collec-
tors and the transmitter. Figure 4 illustrates the architecture.
The scheduler is the core component, which is further dis-
cussed in the next section. Generally, it evaluates the active
query table to schedule the next super job, which is executed
by the super job executer. The resultant objects are directly
sent to the transmitter (in immediate mode) or the collectors
(in collecting mode). If a query is completed, the scheduler
removes its entry from the active query table and request
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Figure 4. Spatial Database System Architecture

the query decomposer to decompose the next queued query
in the query registry. The entry of this new query is then
inserted into the active query table. The scheduler repeats
the routine continually.

5 Scheduling Policies

In the active query table, super jobs and queries form a
many-to-many mapping: a query is associated with multiple
jobs through decomposition, while a super job is associated
with multiple queries that comprise it. In this section, we
devise super jobs scheduling policies for the scheduler to
minimize the mean response time. The following assump-
tions and notations need to be introduced:

1. The object MBRs have similar sizes and are uniformly
distributed in the MBR of the leaf node. Therefore, the
number of resultant objects for query ¢ in leaf page p, de-
noted by selec(p, q), is proportional to the size of the over-
lapping area of ¢ and MBR of p. This means, selec(p, q) =

fanout(p) x %W, where fanout(p) is the to-

tal number of objects in leaf node p. Similarly, selec(q)
denotes the total number of resultant objects for query g,
ie., selec(q) = Z;il selec(pi,q).!  And selec(p) de-
notes the total number of resultant objects for all active

queries in super job p, i.e., selec(p) fanout(p) x

overlap.area(p,q1,92,..-,9s) . 2
area(p) >

2. Each object has equal data size. That is to say, the time
cost for a job p is proportional to selec(p). In the sequel, we
exclusively use the latter measurement to derive the mean
response time formulae.

5.1 Cost Model for Immediate mode

In the immediate mode, we define the response time for
a query ¢, denoted by resp_time(q), as the average return
time for each of the resultant object, i.e.,

selec
Z‘ @ [Tq,j B Tq]

7j=1
selec(q)

resp_time(q) = (1)

I'T is the total number of jobs in the active query table.

2overlap-area(p,qi,q2,...,qs) = U joverlap_area(p,q;),
where S is the maximum number of queries the active query table can
hold. In the implementation, this is approximated by the Monte Carlo ran-
domized algorithm.

where Tj, ; is the time when the jth object of ¢ is returned,
T, is the time at which g is inserted in the active query ta-
ble The mean response time for all queries in the active
query table is,

selec(qq)

S
- 1 1
resp_time = 3 i:E . —selec(qi) jE Tos —Ta] @

=1

Since Ty, and S are constant, we only need to minimize the
following:

g 1 selec(q;) T il seleC(p (J')

1 TN N selee(n,ai)

£ selec(q;) " pz:;“ zz:; selec(q) )
3)

Equation 3 rewrites the summation of response time of all
resultant objects in terms of the jobs in which they are re-
trieved. Here t,, is the finishing time of job p, which is the
finishing time of its previous job p-1 plus selec(p), the du-
ration of job p, i.e., t, = t,—1 + selec(p).

selec(p,qi)
selec(q;)

query ¢;. It is denoted by sat(p,q;) in the sequel. Its
summation over all ¢;, denoted by sat(p), represents the
contribution of job p to all active queries, i.e., sat(p) =
Zle sat(p, ;). Thus, Equation 3 is rewritten as follows:

j=1

represents the proportion of job p satisfying

S selec(qq)

T
Z selec Z qi>J th - sat(p) 4)
i=1 p=1

From Equation 4, the minimization problem is trans-
formed into the following scheduling problem:

Problem 1 Given a set of jobs p1, po, - - -, pr, which take
selec(py), selec(ps), - -+, selec(pr) time to finish, respec-
tively. Each job will have a penalty proportional to the
time it finishes, i.e., penalty(p) = t, - wp. Find the op-
timal scheduling sequence to minimize the overall penalty

T
Zp:l tp - Wp.

This is the same problem as minimizing total weighted
completion time of a sequence of jobs in a single pro-
cessor, which was studied in [10] by Smith. He proved
that scheduling these jobs in non-increasing order of their
wp/selec(p) values produces the optimal solution. There-
fore, our scheduling policy in immediate mode is:

Scheduling Policy 1 Immediate Mode Scheduling Pol-
icy: Arrange the jobs in descending order of their
sat(p)/selec(p) values.

3The actual response time for a query ¢ should also include the time ¢
is queued before stage 2. However, as this period of time is only depen-
dent on system throughput, which is regardless of scheduling policies, it’s
eliminated from subsequent analysis.
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d | 4 | ds | Qs |- queries
P 1 0 0 1 selec(py) =1
jobs P 0 1 1 1 selec(py) = 4
Py 0 0 1 0 selec(ps) = 2
intersec(q;) 1 1 2 2

Figure 5. Job and Query Association
5.2 Cost Model for Collecting Mode

In the collecting mode, we define the response time of a
query ¢, denoted by resp — time(q), as the return time of
the last obtained resultant object for q.

s
time = - T, — T, 5
resptime =g 2, i Toi-Tal  ©
Thus, the minimization problem is transformed into the
following scheduling problem:

Problem 2 Given a set of jobs p1, pa, -+, pr, which take
selec(py), selec(pz), - - -, selec(pr) time to finish, respec-
tively. A set of queries q1, qo, - - -, qs, each of which is com-
posed of a subset of these jobs. The association relation of
jobs and queries is represented by a table (cf. Figure 5, “1”
in cell (i, j) denotes q; comprises p;). A query is completed
if and only if all of its associated jobs is finished. Find the
optimal job sequence to minimize the sum of all the query
completion time.

The problem is proved to be NP-hard [6]. However, we
show the following proposition on the optimal solution to
the problem:

Proposition 1 Let q1, qo, - - -, qs denote the completion or-
der of the queries in the optimal job sequence. Any job
sequence belonging to such sequence class: {jobs in q1},
{remaining jobs in q2}, - - -, {remaining jobs in qs} is an
optimal sequence to Problem 2.

Proof: See [6].

Proposition 1 indicates that finding an optimal order of
the jobs is equivalent to finding the optimal completion or-
der of the queries. Although the latter problem remains to
be NP-hard, we can use the metric in Policy 1 as a reference
to derive a suboptimal policy for collecting mode. However,
two differences are noteworthy between these two policies:
1. Since we are to order queries instead of jobs, it’s neces-
sary to redefine the metric in Policy 1 in terms of query q.
We define sat(q) as the summation of the sat(p) over all
the jobs that are associated with ¢ and selec(q) as the sum-
mation of selec(p), which still denotes the number of result

objects in p for all active queries. Thus the metric for query
q is 2 peq S9E(P) |

> Y peq Selec(p)’
2. Since selec(p, q;) and selec(q;) are unknown in Prob-
lem 2, sat(p,q;) is redefined based on its original se-

mantics: the proportion of the objects in job p for query

;. Therefore, sat(p, qi)=m, where intersec(q;)
denotes the number of jobs that ¢; is composed of
(cf. Figure 5). The definition of sat(p) is unchanged,
sat(p)=3;_, sat(p, 4;)-

In the example of Figure 5, sat(p1, q1)=1, sat(ps, ¢2)=1,
sat(ps, q3)=sat(ps, q3)=1/2, sat(pi,qs)=sat(ps, qs)=1/2.
Therefore, sat(p1)=1+1/2=1.5, sat(py)=1+1/2+1/2=2,
sat(ps)=1/2.  According to the selec of each job
p; in Figure 5, the metric value of each query
q s metric(q)=2=15,  metric(qz)=2=0.5,
metric(q3)=21fé5=%, metric(qy)= 13:12 =0.7.

Hence, the scheduling policy for collecting mode is:

Scheduling Policy 2 Collecting Mode Scheduling Policy:

First, order all queries q; in descending order of their

Z;ltfmw(qi) sat(pi,;)

Z intersec(q;)

values *. Then obtain the job se-

i selec(pi, ;)
quence as: pi1, P12

* Pliintersec(qn) P2,1, "7
5
PsS,intersec(qs)-

In our example, queries are ordered as qi,q4,q2,qs-
Therefore, the job sequence should be py, p2, ps3.

5.3 Dynamic Scheduling Algorithms

In the previous two subsections, we analyze the schedul-
ing policies for immediate and collecting modes in the static
setting, i.e., scheduling the current queries in the active
query table. However, as queries are dynamically inserted
into and removed from the active query table, a runtime
scheduling algorithm should also address the following is-
sues:

e When do the metrics for the queries and jobs change
so that the scheduler has to re-order the job sequence?

e For queries having deadlines (either soft or firm), how
should the scheduler take these factors into consideration?

5.3.1 Scheduling Algorithm in Immediate Mode

In immediate mode, according to Policy 1, the values of
sat(p) and selec(p) change if and only if a query is com-
pleted or a new query is inserted. Therefore, the scheduler
needs to re-order all the jobs then.

For queries with deadlines, the immediate mode returns
results continuously, a soft deadline set by the client is more
reasonable. That is to say, an overdue query is still re-
turned, although it’s counted as a missed query. We tackle
soft deadline through the notion of guery weight. In Sec-
tion 5.1, all queries are assigned equal (unit) weights. The
mean response time is the arithmetic average of all query
response times. If we dynamically assign weights to these

4pm denotes the jth job in query g;.
5This sequence will remove any duplicate jobs because a job should
only be scheduled once.
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queries according to their closeness to deadlines and mini-
mize the weighted mean response time, urgent queries will
have higher priority in determining the order of jobs se-
quence. Thus, the soft deadline issue is handled without
modifying the policy.
. _f [(Mertingperiodyad ¢ < deadline(q)
weight(q) = { 1(q) t > deadline(q)
(6)
Equation 6 describes the weight assignment function,
where t denotes current time and alerting_period denotes
the length of the time period ahead of the deadline when
the weight of the query starts to increase (prior to this pe-
riod, all query weights are 1 according to this equation).
« is the weight increment ratio. In other words, it speci-
fies the “firmness” of the deadline posed on the scheduler.
The higher the value, the stronger the system requires dead-
lines to be met. Weight update is executed right before a
job re-ordering is to be carried out to provide the most up-
to-date query weights. The pseudocode of the immediate
mode scheduler is described in Algorithm 1.

Algorithm 1 Runtime Scheduler for Immediate Mode

Input: queue: queue of jobs to be executed
table: the active query table

Procedure:

1: while SYSTEM_UP do

if queue is not empty then
job = queue.popFirst(); job.execute();
table.removeFinishedQueries();

while table.size < S AND exist(nextQuery) do
table.insert(nextQuery); queue.insertJobs(nextQuery);

if table is changed OR system supports deadline then
update weight(q) according to Equation 6
update sat(p)/selec(p) for all jobs in queue
re-order all jobs according to Policy 1

SO RXINE DN

—_

5.3.2 Scheduling Algorithm in Collecting Mode

In collecting mode, from Proposition 1 and Policy 2, all
jobs in the same query will be executed as a batch. Further,
) ﬁtersec(qi) sat(pis)
the metric 5 =
=1 ¢ selec(pi, ;)
a query is completed or a new query is inserted. This in-
dicates that to lower computation overhead, each time the
scheduler only needs to pick up the current best active query
and execute all of its associated jobs in a batch.

Regarding deadlines, since in collecting mode, results
are not sent back until all objects are retrieved, a hard (firm)
deadline from the client is more reasonable. This means that
an overdue query should not be returned and it’s counted
as a missed query. Therefore, when the scheduler chooses
the best query to be executed, it first removes those queries
that are already overdue or definitely going to be overdue
6. It then chooses among those queries that are going to

will change if and only if

SThat is, t + execution_time > deadline, here execution_time is

miss the deadline if not being executed right now 7. These
queries are called urgent queries in the sequel. In case more
than one such query exist, the most urgent one (ordered by
deadline-execution_time metric), will be chosen as the
next query to execute. If no such query exist, the scheduler
> intersec(q;

)
j=1 sat(pi,;)

intersec(a;

picks up the query with the highest

= ) selec(pi,;)
value according to Section 5.2. The pseudocode of the col-
lecting mode scheduler is described in Algorithm 2.

Algorithm 2 Runtime Scheduler for Collecting Mode

Input: queue: queue of jobs to be executed
table: the active query table

Procedure:

1: while SYSTEM_UP do

2 while queue is not empty do

3 job = queue.popFirst(); job.execute();

4 while table.size < S AND exist(nextQuery) do

5: table.insert(nextQuery); queue.insertJobs(nextQuery);

6:  if system supports deadline then

7.

8

9

0

1

query.removeMissedQueries();
if table has urgent queries then
nextQuery = table.MostUrgentQueries();
10: queue.insert(nextQuery.jobs);
11:  if queue is empty then

intersec(q;)

3 t(p;. 5 .
12: update ifjﬁlmedqv) sat(pi,g) for all queries
j=1 v selec(pq,j)
13: nextQuery = table.findBestQueries();
14: queue.insert(nextQuery.jobs);

6 Performance Evaluation

In this section, we compare our proposed query decom-
posing and scheduling approach (denoted as SC H) against
sequential query execution® (denoted as SEQ) under vari-
ous spatial datasets, workloads, query distributions, etc.

6.1 Simulation Testbed

We implemented a simulation testbed based on the
model in Section 3. A population of mobile clients are
moving in the universe. Their moving behavior is mod-
eled according to GSTD [14], a well adopted spatiotem-
poral dataset generator. They issue window queries peri-
odically and submit them to the attached MSSs, which in
turn submit them to SDB. The mobile clients obey a Zipf
distribution [11, 3]: they are inclined to locate in a set of
“crowded” MSS cells. The arrival of queries at SDB is mod-
eled as a Poisson process. A query window is a square with
edge length ry,¢,, uniformly distributed between 7,4, and
Tmin.. For queries with deadlines, the time threshold is
modeled as a Gaussian distribution.

calculated by the selectivity estimation.

Tdeadline — average_execution_time < t + execution_time <
deadline

8That is, it executes queries in a first-come-first-serve fashion. The de-
tailed processing procedure for a window query is described in Section 2.2

9We assume the entire universe is a square unit.
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Notation |Definition Value

ppl number of mobile clients 10000

cells number of MSSs 1024

0 client’s Zipf skewness 0.95

Tquery query window’s edge length |7mqe = 0.1, rmin = 0.05
tdeadline | time threshold for query @ = 2000,0 = 500

queries |# of queries for each run 10000

S active query table size 100 unless otherwise stated

A mean query arrival rate in the range of [0.0001, 0.005]

Table 1. Parameters for the Simulation

We adopt two spatial datasets in our experiment, one
synthetic dataset and one real dataset. The synthetic data
(denoted as U N) obeys a uniform distribution with 100,000
data objects, while the real dataset [13] (denoted as C'A)
contains point locations of 62,556 California places. Ta-
ble 1 summarizes the parameter settings in the simulation.

6.2 Performance Metrics

As our research focuses on I/O minimization, the follow-
ing metrics are of interest to the performance evaluation:

1. system throughput: query processing rate, i.e., the num-
ber of completed queries in a unit of time;

2. 1/O cost: mean I/O page operations per query, which
comprises both index I/O and object I/O;

3. mean execution time: average service time for a query;
4. mean response time: see Equation 1 and 5 for Immedi-
ate Mode and Collecting Mode respectively;

5. miss rate: proportion of the missed queries, for systems
supporting deadlines only.

Since I/O time is generally several orders of magni-
tude longer than CPU time, we only measure the former
in our experiment, i.e., a disk page access costs 1 unit of
time. Without loss of generality, we set each data object
to the same size (i.e., 1 page). Therefore, “I/O cost” and
“mean execution time” are essentially the same and “sys-
tem throughput” can be derived directly from them. In the
sequel, we use these three terms interchangeably.

6.3 System Performance in Immediate Mode

We compare the performance of SEQ and SCH in
terms of the aforementioned metrics. We vary the mean ar-
rival rate of the queries (\) and query window size (7'guery)
to simulate different workloads for SDB.

Figure 6 illustrates the response time (in logarithmic
scale), I/O cost and miss rate with respect to query arrival
rates. From Figure 6(a) and 6(b), SE(Q starts to deteriorate
when A exceeds its mean query service time p. Neverthe-
less, SC' H has a steady response time for a wide range of
workloads since queries in SC'H do not simply pile up one
after one. Instead, they are parallelized, decomposed, and
re-scheduled to minimize I/O cost. Thus more queries does
not necessarily mean a longer execution time: more com-
mon objects are shared and thus more redundant I/Os can
be eliminated. Figure 6(c) and 6(d) verifies this argument:
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Figure 6. Performance v.s. Query Arrival Rates

as the query arrival rate is getting higher, the average 1/O
cost in SC' H drops monotonously. We foresee that if A ap-
proaches infinity and the active query table can hold all the
queries, SC' H will render an optimal, static job schedule in
terms of I/O cost. On the other hand, if A\ is much lower
than u, SCH degenerates to SEQ (cf. A = 0.0002 in Fig-
ure 6(c) and 6(d)) because the number of queries in the ac-
tive query table is so small that few objects can be shared as
common results. The performance gain of SC'H over SEQ
in C'A is less remarkable than that of UN. This is expected
because our cost models assume that data objects are uni-
formly distributed inside a leaf MBR of the R-tree, which is
the case for U N but not for C'A.

For queries with deadlines, the weighted query algorithm
in Section 5.3.1 (denoted by SCH(DEADLINEFE)) out-
performs SC H by 15%-30% in terms of miss rate (cf. Fig-
ure 6(e) and 6(f)). Further, the response time and I/O cost of
SCH(DEADLINE) are still as good as SCH (cf. Fig-

ure 6(a), 6(c), 6(b) and 6(d)).

In the next experiment, we evaluate the response time
and I/O cost in terms of various query window sizes. We
Vary Tpmaz but Keep 7uin=rmaz/2. Figure 7 shows that
SCH always outperforms SFE(Q in different settings, and
the larger the 7,4, value, the more performance gain is
achieved: while the window size is increased by 16 times,
the I/O cost of 7,,,4,=0.2 is only 5 times that of 7,,,,=0.05
(cf. Figure 7(b)), because larger window queries have many
more common data objects to share.
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6.4 System Performance in Collecting Mode

We conduct the same experiment for the collecting
mode. The performance results are similar, thus not de-
picted due to space limitation. The major difference is that
when firm deadlines are applied, i.e., overdue queries can
be dropped, even S E(Q has a much lower miss rate and re-
sponse time for high arrival rates. In addition, the I/O cost
of SCH(DEADLINE) is alittle worse than that of SC H
since in SCH(DEADLINE), the first priority is to pre-
vent queries from being missed. Thus it sacrifices response
time and I/O cost to miss rate.

6.5 Impact of Active Query Table Size

The active query table size S limits the number of
queries that can be processed in parallel. The higher S is,
the more redundant I/O cost is saved. However, S is limited
by hardware resources: a large S requires both high com-
putation (for selectivity estimation and job selection) and
memory storage. Therefore, a moderate S is desirable to
conserve these resources while keeping good performance.

We fixed A to 0.002 for the real dataset. The results are
shown in Figure 8. It’s noteworthy that, both metrics con-
verge at early stage in our settings: around S=10 for col-
lecting mode and around S=20 for immediate mode. These
small S values obviously will incur only a small overhead
on memory and CPU resources, which confirms the prac-
ticability of our proposed system. In practice, the average
memory storage for the active query table and in-memory
R-tree is about 3MB. Regarding the computational cost, the
average CPU time for scheduling is only 2ms for one query
on a Pentium 4 desktop PC.

7 Conclusion

In this paper, we investigate how multiple window
queries can be paralleled, decomposed, scheduled and pro-
cessed in a realtime workload to optimize system perfor-
mance for spatial database systems. We parallelize and

decompose queries so that redundant I/Os to retrieve the
same objects for different queries can be minimized. We
also develop cost models and design dynamic schedulers to
optimize system performance in terms of response time or
miss rate for different result returning modes. Both dead-
line and no-deadline requirement are be supported. Em-
pirical results show that our approach achieves a signifi-
cant improvement over sequential query processing in vari-
ous workloads. Meanwhile, experiments also show that the
CPU and memory storage overhead is relatively small com-
pared with the performance gain it obtains. Although the
system is based on R-tree index, our query decomposition
and job scheduling approach is not limited to R-tree — it
can be applied to any partition-based spatial index, such as
Quad-tree [2].

As part of our future work, we plan to extend our work
beyond window queries to include other types of spatial
queries, such as nearest neighbor queries. A more elab-
orated selectivity estimation method will be developed in
order to render more accurate metrics for job scheduling.
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