
POSE: Getting Over Grainsize in Parallel Discrete Event Simulation

Terry L. Wilmarth and Laxmikant V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
{wilmarth, kale}@cs.uiuc.edu

Abstract

Parallel discrete event simulations (PDES) encom-
pass a broad range of analytical simulations. Their
utility lies in their ability to model a system and pro-
vide information about its behavior in a timely manner.
Current PDES methods provide limited performance im-
provements over sequential simulation. Many logical
models for applications have fine granularity making
them challenging to parallelize. In POSE, we exam-
ine the overhead required for optimistically synchroniz-
ing events. We have designed an object model based
on the concept of virtualization and new adaptive op-
timistic methods to improve the performance of fine-
grained PDES applications. These novel approaches
exploit the speculative nature of optimistic protocols to
improve single-processor parallel over sequential per-
formance and achieve scalability for previously hard-to-
parallelize fine-grained simulations.1

1. Introduction

Simulation makes it possible to analyze systems that
would be expensive, dangerous or impossible to con-
struct prototypes for. Some simulations are too complex
for sequential simulation due to space and time limita-
tions. Parallelization partitions large problems to fit in
memory on many processors and should reduce execu-
tion time, but this has proved to be a challenging prob-
lem. Fujimoto suggests that a “sufficiently general so-
lution to the PDES problem may lead to new insights in
parallel computation as a whole” [6].

We present POSE, a Parallel Object-oriented Simu-
lation Environment in which we have studied the ma-
jor obstacles to effective parallelization of discrete event

1This work was supported in part by the National Science Founda-
tion (NGS 0103645) and the local Department of Energy ASCI center,
CSAR (B341494).

models. In particular, we have focused our study on
fine-grained simulations which have exhibited the poor-
est performance.

1.1. Parallel discrete event simulation

A discrete event simulation has a state that changes
at discrete points in time (timestamps) via events. An
event list is a queue of events to be performed on the
state. A discrete global clock keeps track of progress in
simulated time. Events are selected from the event list
for execution based on the smallest timestamp. When
an event is executed, it may schedule future events that
are added to the event list. Thus there exist causality
relationships between the events in the list.

e
1

e
1

3
e e

2

e
2

LP
1

LP
1

(b)

LP
2

20 25 30Simulated Time

2

20 25 30Simulated Time

(a)

LP

Figure 1. Causality error

In parallel, a discrete event model of a system maps
physical processes to logical processes (LPs), each with
access to a local portion of the state. A local clock
keeps track of the progress of the LP. Errors arise when
a causality relationship crosses the boundary of an LP.

For example, consider LP1 and LP2 with events e1

and e2 as in Figure 1. Let T (e) be the timestamp of an



event e. It would seem to be safe to execute the two
events simultaneously. Suppose, however, that e1 issues
an event e3 for LP2, and T (e3) < T (e2). Then e3 must
execute before e2 because it may modify the local state
which is later accessed by e2.

1.2. Synchronization methods

An LP, on its own, cannot know if the earliest avail-
able event is the earliest event it will ever have. Methods
for synchronizing the execution of events across LPs are
necessary for ensuring the correctness of the simulation.
There are two categories of such mechanisms.

The conservative approach avoids causality errors by
determining the safety of processing the earliest event on
an LP. An event is safe to process when no other event
can generate earlier events on the same LP. Determining
safety could lead to deadlocks, so deadlock avoidance
or detection and recovery must be employed. Because
an unsafe earliest event causes an LP to block, conser-
vative methods are limited in the degree to which they
can utilize the available parallelism.

The optimistic approach allows LPs to process the
earliest available event with no regard to safety. Causal-
ity errors are detected and handled. When a straggler
event arrives with a timestamp less than the LP’s local
clock, the LP is rolled back to the point where the strag-
gler should have been executed. To recover state, we
checkpoint it during forward execution. Events spawned
by the events we rolled back are sent cancellation mes-
sages which remove events from an LP’s event list. If
a canceled event has already been executed, further roll-
backs are required. This can cause a cascade of rollbacks
throughout the simulation.

Optimistic simulations periodically estimate a global
virtual time (GVT), the smallest timestamp of all events
in the simulation at some point in time. Nothing earlier
than the GVT can be rolled back or canceled, so it is safe
to dispose of any checkpoints with an earlier timestamp.
The process of reclaiming this memory and committing
the event to history is called fossil collection.

We feel that optimistic mechanisms have greater po-
tential for utilizing available parallelism than conserva-
tive mechanisms. Rather than blocking to wait for an
event to be safe, optimistic approaches perform specula-
tive computation that may not need to be rolled back.

1.3. Related Work

Much progress has been made in PDES over the last
two decades but major problems remain[5]. Simulations

developed by parallel computing experts with a deep un-
derstanding of the underlying parallel environment (usu-
ally those who developed it) perform well while those
developed by non-experts perform poorly. The prob-
lem of fine-grained simulations (where synchronization
overhead overwhelms computation) remains unsolved.

The most well-studied optimistic mechanism is Time
Warp, as used in the Time Warp Operating System[7].
Time Warp was notable as it was designed to use pro-
cess rollback as the primary means of synchronization.
Georgia Tech Time Warp (GTW)[4] was developed for
small granularity simulations such as wireless networks
and ATM networks and designed to be executed on a
cache-coherent, shared memory multiprocessor. GTW
features a simulated time barrier which imposes a limit
on how far into the future LPs can advance. POSE has
a similar speculative window. GTW achieved speedups
of 38 using 42 processors for simulating a PCS network.

The Synchronous Parallel Environment for Emula-
tion and Discrete Event Simulation (SPEEDES)[15] was
developed with an optimistic approach called breathing
time buckets. SPEEDES has evolved to include various
strategies for comparison purposes and has been used for
a variety of applications including military simulations.

Many PDES systems are combinations or hybrids of
existing mechanisms. Yaddes[13] allowed a program
to be run sequentially, or in parallel using one of three
mechanisms with no changes. Maisie[3] requires mi-
nor modifications to render a program executable as a
sequential simulation, or parallel using conservative or
optimistic synchronization mechanisms. Maisie’s suc-
cessor, Parsec[1], also allows for a mix of synchroniza-
tion protocols amongst the LPs of a program. The best
speedup reported for Parsec was nearly 8 on 16 proces-
sors for simulating a 3000-node wireless network using
the conservative null message protocol.

1.4. Performance goals

Let TP denote single-processor parallel time. Let TS

be the time obtained by our sequential simulator. TI or
ideal sequential time is a lower bound on the sequential
time. This is the time it would take to execute the simu-
lation if we knew the events and their order in advance.
This measure is useful when the program requires more
memory than is available on a single processor. To ob-
tain TI , we run the program in parallel, compute the av-
erage grainsize and multiply by the number of events
executed. As we shall see in Section 3, this is a lower
bound on TS because of an interesting effect of our ap-
proach on event grainsize.



Our goal is to improve the scalability of problems
with fine granularity. In particular, we seek to reduce
per event overhead by making efforts to handle single
events apply to groups of events. We have three sub-
goals for POSE. First, to achieve a lower break-even
point, which is the number of processors required to bet-
ter TS . This improves the applicability of PDES in small
parallel computing environments. Second, we wish to
achieve near-linear speedups relative to TP . Finally, we
should obtain greater maximum speedups.

2. Fine Granularity and Overhead in PDES

For every event, there is overhead to handle the event
in parallel. If the work performed by the event is
small, the overhead will far outweigh it. Bagrodia[2]
specifies three primary sources of overhead in PDES:
partitioning-related, target architecture, and synchro-
nization protocol overheads. We focus on the overhead
of optimistic synchronization and have categorized the
types of overhead encountered. Figure 5 in Section 4
charts overhead in a POSE program and illustrates the
difficulties to overcome.

Forward Re-execution Overhead is forward execu-
tion time spent re-executing events that were previously
rolled back.

Checkpointing Overhead is the time it takes to
checkpoint an object’s state. The simplest approach is
full checkpointing which makes a copy of the state be-
fore every event. This can be wasteful if the state is
large and complex. Partial checkpointing checkpoints
only the portion of state that may have changed which is
difficult to determine in practice. Periodic checkpoint-
ing only checkpoints before some events. This requires
more overhead to reconstruct a state between two check-
points and makes GVT estimation more challenging.

Simulation Overhead is the time it takes to orches-
trate the execution, rollback and cancellation of events
according to the synchronization strategy. It includes
the time spent receiving events, inserting them in the
event queue, determining when and what events can be
executed, determining if a rollback is necessary or if
a cancellation is pending, etc. Simulation overhead is
proportional to the number of events in the simulation.
Thus, if the number of events is high but the granular-
ity is very fine, the simulation overhead will be large
relative to the forward execution time. Rollback Over-
head occurs when a straggler arrives and we must undo
events, send cancellation messages to spawned events
and restore a checkpointed state prior to the straggler’s
timestamp. Cancellation Overhead includes the time

taken to issue cancellation messages as well as receiv-
ing and handling them. POSE prioritizes a cancella-
tion slightly higher than the message to be canceled and
performs cancellations before forward execution steps.
Commit Overhead is fossil collection time and is per-
formed whenever a new GVT estimate is available.

GVT Overhead is the time spent gathering, organiz-
ing and using data to compute the GVT estimate. GVT
computation is especially likely to overwhelm forward
execution time in less than ideal simulations. This is
probably why there are so many algorithms for GVT cal-
culation in the literature[11, 16, 12]. The algorithm used
in POSE operates asynchronously, allowing the simulta-
neously execution of events. Its execution will dominate
in situations where the degree of parallelism is low, but
it doesn’t force idle time on processors with plenty of
work to do, and has resulted in less average overhead
per processor than other strategies.

Communication Overhead includes message pack-
ing/unpacking and prioritized scheduling. This over-
head naturally increases with the number of processors,
since the percentage of non-local communication rises.

3. POSE

We have chosen to implement our PDES environ-
ment in CHARM++[8], a C++-based parallel program-
ming system that supports the virtualization program-
ming model. Virtualization involves dividing a problem
into a large number N of components that will execute
on P processors [9]. N is independent of P , though ide-
ally N>>P . The user’s view of the program consists of
these components and their interactions; the user need
not be concerned with how the components map to pro-
cessors. The underlying run-time system takes care of
this and any remapping that might be done at run-time.

In CHARM++, these components are known as
chares. Chares are C++ objects with special entry meth-
ods that may be invoked asynchronously from other
chares. Since many chares can be mapped to a single
processor, CHARM++ uses message-driven execution to
determine which chare executes. A dynamic scheduler
running on each processor that has a pool of messages
(entry method invocations), selects one, determines the
object it is destined for and invokes the corresponding
method on the object. Different scheduling policies are
available and the user can attach priorities to messages.
The advantage of this approach is that no chare can hold
a processor idle while it is waiting for a message. Since
N>P , there may be other chares that can run in the
interim. The logical processes (LPs) of PDES (called



posers in POSE) are mapped onto CHARM++’s chares in
a straightforward manner. Similarly, we use timestamps
on messages as priorities and the CHARM++ scheduler
serves as an event queue.

CHARM++ also provides generalized arrays of mi-
gratable parallel objects which allows us to imple-
ment our own load balancing strategies in POSE. An-
other benefit of using CHARM++ is its communication
libraries[10]. POSE uses a streaming communication
strategy to collect and periodically deliver messages by
grouping them together into a single send operation. A
last but not least reason for using CHARM++ to imple-
ment POSE is its highly portable nature and the existence
of ports to most available parallel architectures and dis-
tributed environments.

3.1. Posers

Posers are CHARM++ chares representing entities in
the simulation model. Each poser has a data field for
object virtual time (OVT). This is the simulated time that
has passed since the start of the simulation relative to the
object. Posers have event methods which are CHARM++
entry methods that have a data field for timestamp in all
messages sent to invoke them.

Event Methods
Synchronization

Strategy

Representation of User ObjectEvent Queue

Data Fields

Event Methods

OVT

Wrapper Object

Figure 2. Components of a poser

Posers have two methods for passing simulated time.
The first is the elapse function. This is used in a poser
when a certain amount of local time is passed (presum-
ably performing some activity). It advances the OVT of
the poser in which it is called. The second means is by
an offset added to event invocations. This can be used
as a means of scheduling a future activity or to indicate
transit time in a simulation.

Posers have plug-in behaviors for their underlying
implementation. These behaviors control the queuing

of events, the synchronization of their execution and ac-
cess to and modification of poser state. We refer to these
respectively as the wrapper behavior, the synchroniza-
tion strategy behavior, and the representation behav-
ior. Different approaches or plug-ins can be used for
each of these. Figure 2 illustrates how these compo-
nents fit together. The simulation developer can concen-
trate on modeling entities (the representation). For more
control over simulation behavior and performance, the
developer can later look into trying different synchro-
nization strategies.

Using virtualization allows us to maximize the de-
gree of parallelism. Including an event queue in the ob-
ject means that the scope of simulation activity result-
ing from a straggler is limited to the entity on which the
straggler arrives. Since different entities may have dra-
matically different behaviors, we are also limiting the
effects of those behaviors to a smaller scope. In partic-
ular, if one small data structure is a constantly updating
part of a larger, more static entity, we want to separate
it from the larger structure to avoid checkpointing the
larger state. Further, encapsulating the relevant data in
an object makes migration of that object much simpler.

#Posers x #Workers (total of 10000 workers)
250x40 500x20 1000x10 2000x5 10000x1

E
xe

cu
tio

n 
T

im
e

0

10

20

30

40

50

60

70

80

90

1 PE

2 PE

4 PE

8 PE

16 PE

32 PE

Figure 3. Effects of virtualization

Figure 3 shows the effects of virtualization. This is
a simple simulation with 10000 worker entities. We
organized the workers into teams. Each team is a poser
object that encapsulates all the data associated with its
workers. The simulation starts with each team giving
each worker some work to do. Each worker performs its
computation, then generates a few events for other work-
ers. Some work is generated for a neighboring worker
(likely to be on the same team) and some is generated
for a distant worker. A random placement of posers
on processors was used. We ran this simulation up to
32 processors for several team configurations. As the



figure shows, we achieved the best performance for the
case with 10000 team posers, each with a single worker.
It would seem that larger posers should have benefited
from the fact that some of their communication was
guaranteed to be local, but instead overhead from check-
pointing, fossil collection and rollback dominated.

3.2. Speculative synchronization mechanisms

In POSE, an object gets control of a processor when it
either receives an event or cancellation message via the
scheduler, or when another component of the simulation
(typically the GVT after a new estimate has been calcu-
lated) awakens the object. In the first case, the object’s
synchronization strategy is immediately invoked and in
the second case, we perform fossil collection before in-
voking the strategy.

Our optimistic strategy checks for cancellation mes-
sages and handles as many as possible. Note that a
cancellation may arrive before the corresponding event.
Next, the strategy checks for any stragglers that may
have arrived and rolls back to the earliest. Finally, it
is ready to perform forward execution steps.

This is where the opportunity to perform speculative
computation arises. All optimistic strategies perform
some amount of speculative computation. In traditional
approaches, an event arrives and is sorted into the event
list and the earliest event is executed. The event is the
earliest on the processor, but may not be the earliest in
the simulation, so its execution is speculative. In our ap-
proach, we have a speculative window that governs how
far into the future beyond the GVT estimate an object
may proceed. Speculative windows are similar to the
time windows[14] of other optimistic variants, except in
how events within the window are processed.

Pi

Pi

Best−First Order

918742 55 108 135118 234 256 332278

55 42 91 87 108 118 256 135 332 234 278

Speculative Order

Figure 4. Speculative event re-ordering

Our strategy moves events from the CHARM++
scheduler to the event queues on the objects they are des-
tined for in timestamp order. Each object gets a chance
at forward execution for each event it gets and is allowed
to speculate whenever it has control. If there are events
with timestamp greater than or equal to the GVT esti-
mate but within the speculative window, it executes all

of them. The later events are probably not the earliest in
the simulation and it is very likely that they are not even
the earliest on that processor. We are allowing the strat-
egy to speculate that those events are the earliest that the
object will receive.

By handling events in bunches, we reduce schedul-
ing and context switching overhead and benefit from
a warmed cache, but risk additional rollback overhead.
Figure 4 shows how events arriving on a processor might
be reordered for better cache performance and fewer
context switches (events of the same shade are intended
for the same object). Table 1 compares the locality of
reference for a simulation run sequentially versus the
same simulation run with a speculative strategy. This
shows that our speculative strategy is doing extra work,
but benefiting dramatically from locality of reference.

Table 1. Locality of reference comparison
Sequential Speculative

References 4,597,178,671 8,536,026,179
Cache Misses 2,371,769,619 610,132,131
Miss Rate 0.515919 0.071477

The locality of reference benefit is exhibited in our
performance analysis by a smaller average grainsize for
the same events as compared to that of the sequential and
best-first orderings of events. It is this smaller grainsize
that we use to compute TI as described in Section 1.4.

3.3. Adaptive synchronization mechanisms

We have described the concepts of poser virtualiza-
tion and speculative strategies as implemented in POSE

and they have improved performance in new and novel
ways. Next, we use these approaches to get at the heart
of the general-purpose PDES problem.

We want POSE to perform well on any type of model.
One model may differ in its behavior from another and
the approaches described so far handle a wide variety of
behaviors. However, a model itself may have different
components that differ dramatically in behavior. In this
case, the best way to speculate about which events to
execute on one object may not be the best on another.
To handle this situation, we have developed speculative
synchronization mechanisms that can adapt to differing
behaviors on a per object basis.

Consider two extreme cases. One poser receives
many events from all over the system being simulated. It
is very likely to receive stragglers that lead to rollbacks.
It also has a large state that might be cumbersome to
checkpoint, restore and commit. We would like to keep



a short leash on such an object to limit how much spec-
ulative computation it performs. Within the same sim-
ulation, we have another object with a small state. The
object also receives a large number of events to execute,
but the nature of the simulation results in those events ar-
riving in order most of the time. For this type of object,
we would like to allow it to speculate more than the first
object, especially if there is idle time on its processor.

Our adaptive strategy takes some of these issues into
consideration. It adjusts the speculative window size on
a per object basis, according to the recent past rollback
behavior of the object. The more successful speculative
computation an object performs, the further into the fu-
ture the object is allowed to speculate. Conversely, ob-
jects that receive stragglers are reined in and restricted
in the amount of speculation they can do. This strat-
egy effectively pushes our speedup curves for simulation
closer to the near-linear goal discussed earlier.

Adding adaptivity at the object-level to a synchro-
nization strategy collects data about object behavior that
is useful for several other aspects of PDES. This infor-
mation is useful for load balancing and communication
optimization as well as GVT estimation. It has led to
the development of adaptive load balancers, adaptive
communication optimization frameworks and adaptive
checkpointing strategies in POSE.

4. Performance of POSE

To better illuminate the problems with overhead in
fine-grained simulations, we have designed a synthetic
benchmark parameterized to exhibit the wide variety of
behaviors found in PDES simulations. The benchmark
creates objects placed on processors according to an ini-
tial distribution (uniform, random or imbalanced) and
each object initially sends work to itself. A work event
consists of performing computation for a time specified
by a granularity (fine, medium, coarse, mixed, or a con-
stant), then elapsing time according to a behavior pat-
tern, spawning more work events for other objects.

We ran this benchmark with POSE using a parameter
set with 5000 objects, high parallelism and fine granular-
ity. The measured granularity was 0.00006s on average
and the simulation executed about 81000 events. Figure
5 illustrates the overhead for this problem. This chart
shows the average time per processor for each type of
overhead in a simulation. The communication overhead
represents all unaccounted for time between the maxi-
mum time spent in POSE on any processor and the sim-
ulation execution time. Thus it is a rough measure of
time spent on communication and scheduling.

PEs
1 2 4 8 16 32

T
im

e

0

5

10

15

20

25

30

Sequential POSE

Parallel POSE

Forward Execution

Simulation Overhead

Checkpointing Overhead

Rollback Overhead

Cancellation Overhead

Commit Overhead

GVT Overhead

Communication Overhead

Figure 5. Synthetic benchmark overhead

The black section of the bars represents the time spent
in the forward execution of events. The sequential time
(shown as a solid horizontal line) is ideal sequential time
TI and it corresponds to the single processor forward ex-
ecution time. The next section of the bar represents all
synchronization overhead. The grey sections are domi-
nated by checkpointing (the darker) and fossil collection
(the lighter) for this example. Above those we show the
GVT overhead topped off by a white bar indicating com-
munication overhead. For this simulation, we see that
the break even point occurs between 8 and 16 proces-
sors. With all the overhead represented here, it is easy to
see how hard it is to handle fine-grained events.

In spite of the small size of this example, we achieved
near-linear speedups relative to single processor paral-
lel time. Between 16 and 32 processors, the work was
distributed too much to maintain a high degree of paral-
lelism versus communication overhead.

4.1. Performance of synchronization strategies

To illustrate how these approaches perform in fine-
grained simulations, we ran a small instance (5000 ob-
jects, high communication) of our synthetic benchmark
with three synchronization strategies. The first is a sim-
ple optimistic approach with a time window, the second
is speculative with a speculative window of the same
size as the time window of the first strategy. The third
approach is the adaptive strategy with a starting window
of the same size as the other two strategies, but with free-
dom to adjust to the behavior of each object.

The simulation we ran had a very small grainsize av-
eraging 23 µs per event, with nearly 1,300,000 events
executed. The comparative behavior of the three ap-
proaches appears in almost every experiment we run.
Optimistic performs poorly compared to speculative ini-



PEs
1 2 4 8 16 32 64 128

T
im

e

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Ideal Sequential

Optimistic

Speculative

Adaptive

Figure 6. Fine-grain benchmark run-time

tially, but the difference dwindles as the number of pro-
cessors increases. The adaptive approach has more over-
head than speculative on fewer processors but eventu-
ally adaptive performs much better on higher numbers
of processors. This behavior is shown in Figure 6.

S
pe

ed
up

0

1

2

3

4

5

PEs
1 2 4 8 16 32 64 128

Optimistic Real

Speculative Real

Adaptive Real

Figure 7. Fine-grain benchmark speedup

Speedup was difficult to achieve with such a small
problem with small grainsize, but the adaptive strategy
achieved a break even point at roughly 5 processors. The
other strategies broke even at 16. The adaptive approach
achieved a maximum speedup very near 4 on 64 proces-
sors as shown in Figure 7.

Contrast this example with the speedup for the same
simulation executed with a larger grainsize of 262 µs

on average in Figure 8. The adaptive strategy achieves a
speedup of 18 on 128 processors. The adaptive approach
gets some of its gains as the number of processors in-
creases because it is less susceptible to rollback over-
head and achieves better locality of reference than the
other strategies. However, another major reason for the
performance improvement is that the speculative behav-

S
pe

ed
up

1
2

4

8

16

32

PEs
1 2 4 8 16 32 64 128

Optimistic Real

Speculative Real

Adaptive Real

Figure 8. Medium-grain benchmark

ior allows the GVT algorithm to come up with higher es-
timates each time it is invoked, thereby requiring fewer
GVT algorithm invocations than the other strategies.

4.2. Big machine simulation

BigSim[17] simulates performance of applications
on very large parallel computers. It operates in two
modes: an on-line mode which correctly predicts perfor-
mance based on some preset message latencies, and an
emulator-only mode which logs the tasks that were per-
formed and their dependencies. In this second mode, the
logged tasks have not been ordered in time with respect
to each other and need to be timestamp-corrected in or-
der to obtain performance results about the original pro-
gram run on the BigSim emulator. We use POSE to per-
form timestamp correction. BigNetSim is an additional
POSE module that plugs into the timestamp correction
simulation and simulates the same application over a
detailed network model. The behavior of the network
model can be varied by its input parameters to model
a variety of situations without ever needing to re-run
the original program emulation. We discuss and present
results for the timestamp correction phase of BigSim.
The BigNetSim phase is in the preliminary performance
analysis stage.

The timestamp correction simulation reads the trace
log files generated by the BigSim emulator and creates
posers to model the processors and nodes of the emula-
tion. We start the first task at virtual time zero and let
the tasks “execute” and record the virtual time at which
each task starts, taking into account task dependencies
and durations. We have an estimate of network latency
which we use to determine how much time generated
tasks spend in transit to the processor on which they will
be executed. When all tasks have been executed, they
will have correct timestamps and the final GVT should
represent a correct runtime for the emulated application.

This simulation has very little computation taking



place in events and mostly involves the exchange and
update of information. Thus it serves as a challenging
fine-grained problem for POSE.

We used the BigSim emulator on 32 processors to run
a 2D Jacobi program on 8000 simulated processors. We
show a speedup plot for the correction from 1 to 64 pro-
cessors in Figure 9. The simulator processed 5,085,836
events and had an average grainsize of 198 µs.

Speedup: Timestamp Correction

S
pe

ed
up

0

10

20

30

40

50

PEs
12 4 8 16 32 64

Real Speedup

Self Speedup

Figure 9. Timestamp Correction Speedup

The figure plots real speedup relative to ideal sequen-
tial time TI and self speedup relative to single processor
POSE time. As the figure shows, self speedup is nearly
linear to 32 processors, while real speedup shows a mod-
est but correspondingly steady speedup improvement as
we add processors. This problem did not achieve any
speedup with traditional optimistic mechanisms.

5. Conclusions and Future Research

POSE has laid the foundation for a study of scala-
bility in optimistically synchronized PDES. POSE in-
corporates the notion of virtualization from CHARM++,
resulting in LPs being modeled by objects known as
posers, several of which can be mapped to the same
physical processor transparent to the user. The poser
contains an instance of a synchronization strategy and
its own event queue. This decentralization makes it pos-
sible to reduce the scope of overhead to just the objects
directly affected. It also makes it possible for the syn-
chronization strategy to react to the behavior of each ob-
ject differently.

POSE expands the notion of speculation in optimistic
synchronization. We have developed strategies that ex-
ecute several fine-grained events on a single object with
no intervening overhead. Not only does this reduce the
per-event overhead, but it also has the effect of executing

the events with a warmed cache and avoids the frequent
context switching between objects that we would do if
adhering to a strict timestamp ordering. Our strategy
adapts to the behavior of each object by adjusting the
speculative window, trying to obtain the largest set of
events to execute speculatively on a single object while
avoiding an increase in rollback overhead.

Future research will involve developing adaptive
speculative strategies further to automatically react to
simulation behavior. We will attempt to discern pat-
terns in the forward execution behavior of objects and
adjust speculation according to the pattern. Checkpoint-
ing frequency will also adapt to checkpoint only when
state restoration is most likely to be needed. We are
also developing improved strategies for communication
in PDES. We use the priorities of messages to determine
when they should be delivered. Finally, we have identi-
fied many factors affecting the load in a parallel discrete
event simulation and are developing lightweight strate-
gies for load balancing in POSE.

Ultimately, we hope to move the field of parallel dis-
crete event simulation forward by developing techniques
that allow parallel implementations of the most natural
models to outperform their sequential implementations.
Our results show much promise for improving the per-
formance of general purpose PDES systems.

References

[1] R. Bagrodia, R. Meyer, T. M, Y. Chen, X. Zeng, J. Mar-
tin, B. Park, and H. Song. Parsec: A parallel sim-
ulation environment for complex systems. Computer,
31(10):77–85, October 1998.

[2] R. L. Bagrodia. Perils and pitfalls of parallel discrete
event simulation. In Winter Simulation Conference,
1996.

[3] R. L. Bagrodia and W.-T. Liao. Maisie: A language for
the design of efficient discrete-event simulation. IEEE
Transactions on Software Engineering, 20(4):225–237,
April 1994.

[4] S. R. Das, R. Fujimoto, K. S. Panesar, D. Allison, and
M. Hybinette. GTW: a time warp system for shared
memory multiprocessors. In Winter Simulation Confer-
ence, pages 1332–1339, 1994.

[5] R. Fujimoto. Parallel Discrete Event Simulation: Will
the Field Survive? ORSA Journal on Computing (feature
article), pages 213–230, 1993.

[6] R. M. Fujimoto. Parallel discrete event simulation. Com-
munications of the ACM, 33(10):30–53, October 1990.

[7] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and
M. Diloreto. Time warp operating system. In Proceed-
ings of the eleventh ACM Symposium on Operating sys-
tems principles, pages 77–93. ACM Press, 1987.



[8] L. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++. In
A. Paepcke, editor, Proceedings of OOPSLA’93, pages
91–108. ACM Press, September 1993.

[9] L. V. Kalé. The virtualization approach to parallel pro-
gramming: Runtime optimizations and the state of art.
In Los Alamos Computer Science Institute Annual Sym-
posium, October 2002.

[10] L. V. Kale, S. Kumar, and K. Vardarajan. A Frame-
work for Collective Personalized Communication. In
Proceedings of IPDPS’03, Nice, France, April 2003.

[11] Y.-B. LIN and E. LAZOWSKA. Determining the global
virtual time in a distributed simulation. In Proceedings
of the International Conference on Parallel Processing,
pages 201–209, August 1990.

[12] F. Mattern. Efficient algorithms for distributed snapshots
and global virtual time approximation. Journal of Par-
allel and Distributed Computing, 18(4):423–434, 1993.

[13] B. R. Preiss. Performance of discrete event simulation on
a multiprocessor using optimistic and conservative syn-
chronization. In International Conference on Parallel
Processing, 1990.

[14] L. M. Sokol, J. B. Weissman, and P. A. Mutchler. Mtw:
an empirical performance study. In Proceedings of the
23rd conference on Winter simulation, pages 557–563.
IEEE Computer Society, 1991.

[15] J. S. Steinman. Breathing time warp. In Proceedings of
the seventh workshop on Parallel and distributed simu-
lation, pages 109–118. ACM Press, 1993.

[16] A. I. Tomlinson and V. K. Garg. An algorithm for min-
imally latent global virtual time. In Proceedings of the
Seventh Workshop on Parallel and Distributed Simula-
tion, pages 35–42. ACM Press, 1993.

[17] G. Zheng, T. Wilmarth, O. S. Lawlor, L. V. Kalé,
S. Adve, and D. Padua. Performance modeling and
programming environments for petaflops computers and
the blue gene machine. In NSF Next Generation Sys-
tems Program Workshop, 18th International Parallel
and Distributed Processing Symposium(IPDPS), page
197, Santa Fe, New Mexico, April 2004. IEEE Press.


