
Ferry: An Architecture for Content-Based Publish/Subscribe Services on P2P
Networks

Yingwu Zhu
Department of ECECS

University of Cincinnati
zhuy@ececs.uc.edu

Yiming Hu
Department of ECECS

University of Cincinnati
yhu@ececs.uc.edu

Abstract

Leveraging DHTs (distributed hash table), we propose
Ferry, an architecture for content-based publish/subscribe
services. With its novel design in subscription installa-
tion, subscription management and event delivery algo-
rithm, Ferry can serve as a scalable platform to host any
and many content-based publish/subscribe services: any
publish/subscribe service with a unique scheme can run on
top of Ferry, and many publish/subscribe services can run
together on top of Ferry. For each of the publish/subscribe
services running on top of Ferry, Ferry does not need to
maintain or dynamically generate any dissemination tree.
Instead, it exploits the embedded trees in DHTs such as
Chord to deliver events, thereby imposing little overhead.
By delivering events along DHT links, Ferry has two main
advantages: (1) it eliminates the cost in construction and
maintenance of the dissemination trees; (2) it allows fur-
ther optimization, i.e., the DHT link maintenance mes-
sages could be piggybacked onto the event delivery mes-
sages to reduce the maintenance cost which is inherent and
nontrivial in DHTs. Moreover, Ferry can support a pub-
lish/subscribe scheme with a very large number of event at-
tributes.

1. Introduction

Content-based publish/subscribe (pub/sub) is a power-
ful paradigm for information dissemination from publish-
ers to subscribers in a large-scale distributed network. In a
content-based pub/sub system, subscribers register their in-
terests in future events through subscriptions. Upon receiv-
ing an event (published by a publisher), the system matches
the event to the subscriptions which serve as filters and de-
liver the event to the matched subscribers. The major advan-
tage of content-based pub/sub is its high expressiveness in
subscriptions, i.e., a subscription is expressed by specifying
a set of predicates over event attributes [9].

As DHT-based peer-to-peer (P2P) systems [17, 15, 23,
14] attract more and more interests from the research com-
munity due to their scalability, fault-tolerance and self-
organization, many content-based pub/sub systems [11, 7,
20, 19, 18, 12, 13] have been recently built on top of these
DHTs. In such systems, peers cooperate in storing sub-
scriptions and routing events to their subscribers in a fully
distributed manner. A big challenge facing a P2P-based
pub/sub system is to design a light-weight, efficient, and
timely event delivery algorithm. Put in another way, the
pub/sub system should impose small overhead on the un-
derlying DHT, and the event delivery should be efficient
in terms of bandwidth cost and timely in terms of user-
perceived latency.

To this end, we propose an architecture for content-based
pub/sub services, called Ferry, built on top of Chord [17].
As a platform, Ferry can host any and many pub/sub ser-
vices. This is twofold: (1) any pub/sub service with a
unique scheme can run on top of Ferry; (2) many pub/sub
services can coexist on top of Ferry. For each pub/sub ser-
vice running on top of Ferry, Ferry does not need to main-
tain or dynamically generate any dissemination tree to de-
liver events. Leveraging the embedded trees (formed by
DHT links) in the DHT, Ferry aggregates and delivers event
messages along DHT links, thereby imposing little over-
head. Exploiting DHT links has two major advantages.
First, it eliminates the cost in construction and maintenance
of dissemination trees used for event delivery. Second, it
allows some optimizations. E.g., the DHT link (or routing
table) maintenance messages (sent periodically) can be pig-
gybacked onto the event delivery messages to reduce the
maintenance cost which is inherent and nontrivial (in terms
of bandwidth) in DHTs. To deal with the load balancing is-
sue, Ferry takes three steps. First, it relies on the uniformity
of the consistent hash function used in Chord to distribute
subscriptions and events across nodes. Second, it proposes
a scheme, called one-hop subscription push to balance the
subscription distribution among neighbor nodes. Finally, it
adopts attribute partitioning [22] to further improve load

balance.
We have built Ferry on top of p2psim 1, a discrete-event

packet level simulator. Via detailed simulations, we eval-
uated Ferry extensively in terms of overlay hops, latency,
overhead, and bandwidth cost. The experimental results
show that Ferry can deliver events to a large number of sub-
scribers with very small overhead and latency. Moreover,
Ferry can support a pub/sub scheme with a very large num-
ber of event attributes.

The rest of the paper is structured as follows. Section 2
provides a survey of related work. We present the design of
Ferry in Section 3. Section 4 presents experimental setup
and results. We conclude this paper in Section 5.

2. Related Work

Due to space constraints, we here just present the most
related work. Many distributed content-based pub/sub sys-
tems [2, 4, 21, 6, 5, 3] have been proposed by using routing
trees to deliver events to the subscribers based on multicast
techniques. Among these systems, Ferry is most similar to
MEDYM [3]. In MEDYM, each node can be a matcher for
some subscriptions and events. Upon receiving an event,
some matcher responsible for this event matches the event
to the subscriptions and obtains a destination list of the
matched subscribers. Then, the event delivery message
containing the destination list is routed through a dynami-
cally generated dissemination tree with the help of topology
knowledge. However, Ferry differs from MEDYM in that it
does not need to dynamically generate a dissemination tree
on demand and it instead exploits the embedded trees in-
herent in a DHT to deliver events, thereby imposing little
overhead.

DHTs such as Chord [17], Pastry [15], Tapestry [23],
and CAN [14] offer an attractive platform to build content-
based pub/sub systems due to their scalability, load bal-
ance, fault-tolerance, and self-organization. Many attempts
have been made in designing a P2P-based pub/sub sys-
tem [19, 20, 18, 12, 7, 13, 16, 25, 11]. Tam et al. [18] pro-
pose a content-based pub/sub system built from Scribe [16].
The problem with their system is that it has some restric-
tions on the expression of subscriptions. Terpstra et al. [19]
propose a content-based pub/sub system built on top of
Chord. In order to have the system function correctly, it
needs to maintain the invariants for filters in the face of node
joins and departures, which is not an easy task. Triantafillou
et al. [20] also built their content-based pub/sub system on
top of Chord. However, the main drawback is that subscrip-
tion installation and update may be expensive due to the
large number of nodes and messages involved for attribute
ranges in subscriptions. Reach [12] and HOMED [7] is a
content-based pub/sub system built on top of a P2P over-

1http://pdos.lcs.mit.edu/p2psim

lay which maintains high-level semantic relationships. Both
may have a load balancing issue since unevenly distributed
subscriptions would cause unevenly distributed nodes in the
overlay identifier space. In HOMED, it may be difficult
to derive node IDs from their subscriptions while preserv-
ing high expressiveness of subscriptions and the change of
a node’s interests would cause the change of the overlay
structure. Meghdoot [11] is based on CAN. Considering
skewed distributions of both subscriptions and events in a
real application, Meghdoot addresses the load balancing is-
sue by zone splitting and zone replication. The major lim-
itation of Meghdoot is that the overlay’s dimension is pro-
portional to the number of event attributes.

Although Ferry is also built on top of a DHT, it dif-
fers from existing P2P-based solutions in that it exploits the
embedded trees in a DHT to deliver events. Ferry’s novel
subscription installation and management algorithms allow
the event delivery messages to be aggregated as much as
possible along the dissemination paths, thereby avoiding
redundant messages sent across the DHT identifier space.
Moreover, Ferry provides a scalable and efficient platform
to run any content-based pub/sub application with a unique
scheme. It also supports the application with a very large
number of event attributes.

3. System Design

In this section, we present the design of Ferry on top of
Chord. However, the techniques discussed here are appli-
cable or easily adaptable to other DHTs such as Pastry and
Tapestry. It is worth pointing out that Ferry aims to serve
as a platform to host many pub/sub services with unique
schemes. For illustration purpose, we base our discussion
on a pub/sub scheme S = {A1, A2, ..., An}, proposed by
Fabret et al. [9]. In this scheme, a subscription is a con-
junction of predicates over one or more attributes, and an
example subscription is s = {(A1 = v1)∧(v2≤A3≤v3)}. An
example event is e = {A1 = c1, A2 = c2, ...,An = cn}.
In Ferry, each node serves as a rendezvous point (RP) for
some subscriptions and events, and also as an intermediate
node on the paths of event delivery. Given a scheme S =
{A1, A2, ..., An}, the RP nodes for its subscriptions and
events are the most immediate successors of ki = h(Ai),
where ki is a key derived from an attribute Ai by using the
consistent hash function h() (which is used in Chord to pro-
duce node IDs and data keys).

3.1. Subscription Installation

A subscription s is represented by a pair (sid, p), where
sid is a subscriber’s node ID (subscriber ID for short), and
p specifies a subscriber’s interests in particular events by a
conjunction of predicates which define the values or ranges

over one or more attributes in the scheme S. When a user
wishes to subscribe for some events, the user first has to
register his/her interests to a RP node in the form of a sub-
scription. Due to space constraints, we omit the discussion
of RndRP algorithm which aims to evenly distribute sub-
scriptions over RP nodes. Please refer to our technical re-
port [24] for more detail.

In this section, we present a more efficient algorithm,
called PredRP, as outlined in Algorithm 1. The basic idea
behind PredRP is that a subscription s is stored in a RP node
whose node ID is equal to or most immediately precedes s’s
subscriber ID among all the RP nodes of the scheme S. As
shown in Figure 1, r1 is responsible for the subscriptions
from [r1, r2), and r2 is responsible for the subscriptions
from [r2, r1). PredRP could achieve better performance
than RndRP by avoiding sending the redundant messages
across the Chord ring space. With RndRP, the event delivery
messages from RP nodes r1 and r2 may need to traverse the
whole Chord ring space since the subscriptions stored on
each RP node may come from the subscribers distributed
over the whole Chord ring space. However, with PredRP,
the event delivery messages from RP nodes r1 and r2 only
need to traverse a fraction of the Chord ring space due to the
fact that each RP node stores only those subscriptions from
a contiguous region of the Chord ring space (e.g., [r 1, r2)
and [r2, r1)) respectively).

Algorithm 1 install subscription(Subscription s)
1: choose an attribute Ai from S such that h(Ai) either is equal to or

most immediately precedes s’s subscriber ID among all attributes
2: k = h(Ai)
3: store s in a RP node which is an immediate successor node of k

(2)(1)

�

��

�

�

��

���

�

���

� �

�

��

�

����������	
��

�� �� �

����������	
��

�� �� �� �

����������	
��

�� �� �

����������	
��

�� �

Figure 1. Illustration of RndRP and PredRP. r1 and r2 are two
RP nodes. a, b, c, d, e, f are subscribers. (1) RndRP (2) PredRP.

When a subscriber leaves the system, he/she may unreg-
ister his/her subscriptions installed in the system, by simply
requesting the corresponding RP nodes to remove his/her
subscriptions. Otherwise, a subscription may have a TTL
value. By associating a subscription with a TTL value, a
subscriber does not need to unregister his/her subscriptions
when leaving. The main drawback is that the subscriber
needs to refresh his/her subscriptions periodically. How-
ever, the detailed discussion on unsubscribing is not focus
of this paper.

3.2. Subscription Management

As discussed in [17], Chord nodes consult their succes-
sor lists and finger tables to route a message with a key k to
a destination node whose ID is the successor of k. Consider
each subscriber with a unique sid. The routing paths from
a RP node r to all these sids (or subscribers) form a tree
rooted at the RP node r, say EMDTreer (an embedded
tree for r) 2. As will be discussed in Section 3.4, the events
will be disseminated along this tree from the RP node to the
subscribers. Note that this tree is formed by the underlying
DHT links, thereby imposing no additional construction or
maintenance cost.

How does a RP node r manage the subscriptions in-
stalled by subscribers? Recall that each Chord node’s rout-
ing table consists of two parts: a successor list and a finger
table. As outlined in Algorithm 2, r manages the subscrip-
tions in a manner that a subscription s is stored according
to the entry of a neighbor node (including both successor
nodes and finger table nodes) whose node ID is equal to or
most immediately precedes s’s sid 3. Note that this does not
necessary suggest that we put the data structure of subscrip-
tions into r’s routing table. We may just keep the metadata
of the subscriptions into the entry of its routing table. How-
ever, the discussion of how to associate subscriptions with
routing table’s entries is not focus of this paper.

Algorithm 2 manage subscriptions(Subscription s)
Require: vector<Subscription> store[1..k] {stores subscriptions in the

RP node according to the entry of k neighbor nodes}
1: find the neighbor node nj whose ID is equal to or most immediately

precedes s’s sid
2: store[j].push back(s)

Figure 2 illustrates a RP node r’s subscription manage-
ment (for simplicity of presentation, the subscriptions of
subscribers s2, x, y, z, v and w in r are represented by their
sid). Subscriber s2’s subscription is stored corresponding
to the entry of r’s successor node s2. The subscriptions of
subscribers x and y are stored corresponding to the entry of
r’s finger table node f2. The subscriptions of subscribers z,
w and v are stored corresponding to the entry of r’s finger
table node f3. As will be shown later, this novel subscrip-
tion management can allow a RP node to deliver events by
aggregating messages along its DHT links (links to its suc-
cessor nodes and finger table nodes), thereby reducing the
number of messages across the system.

Now consider again Figure 1. PredRP may cause uneven
subscription distribution across the RP nodes (r1 stores less

2Other DHTs such as Pastry and Tapestry have similar embedded trees
as well.

3This manner of subscription management is based on the observation
that when routing a message from the RP node r to node s, r will first
forward the message to its neighbor node whose ID is equal to or most
immediately precedes s’s ID.

RT entry subscriptions

Subscription Storage

�

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�� �

�� �� �

Figure 2. An illustration of a RP node r’s subscription manage-
ment. s1 and s2 are r’s successors. f1, f2, and f3 are members
of r’s finger table. s2, x, y, z, w, and v are subscribers whose
subscriptions are stored in r.

subscriptions than r2). To deal with the load balancing is-
sue, we propose a scheme, called one-hop subscription push
mode (one-hop push for short). The basic idea is that a RP
node (say r) may push the subscriptions corresponding to
an entry of the finger table to the corresponding finger table
node (say n). The RP node r then uses a summary filter 4 to
represent the subscriptions pushed away. Upon an event e,
r matches the event with the summary filter. If it is a match,
the RP node r delivers e to the corresponding finger table
node n (at this point, no subscriber ID list is carried in the
event delivery message), which in turn serves as a RP node
for those subscriptions pushed from r and starts delivering
e to those matched subscribers.

One-hop push serves two main purposes. The first pur-
pose is to move some of the loads (i.e., subscriptions and
thereby subscription matching load) on a RP node to some
(or all) of its finger table nodes for load balance. For exam-
ple, if a RP node r is overloaded by subscriptions, it finds a
finger table node f is underloaded or willing to take some
subscriptions through the load status piggybacked in the fin-
ger table maintenance messages which are sent periodically.
Then, r could push those subscriptions corresponding to the
entry of f to f . Note that the subscriptions to be pushed
could also be piggybacked onto the routing table mainte-
nance messages to reduce the number of messages involved.
The second purpose is to reduce the message size from a RP
node to its finger table nodes (at this point, no subscriber ID
list is carried in the messages) and therefore the bandwidth
cost. For more detail of one-hop push, please refer to our
technical report [24].

3.3. Event Publication and Matching

When a node wishes to publish an event, the event is first
directed to all of the RP nodes corresponding to the scheme
S. These RP nodes are responsible for matching the event
to the subscriptions and starting delivering the event to the

4A summary filter in Ferry corresponds to an entry of the finger table
and covers all currently hosted subscriptions for this entry of the finger
table by exploiting covering relationships between subscriptions [22].

matched subscribers. Given an event e = {A1 = c1, A2 =

c2, ..., An = cn}, Algorithm 3 outlines the process of event
publication. It is worth pointing out that the event may be
sent to the RP nodes either through the underlying Chord
routing protocol, or through the direct point-to-point com-
munication if the event publishing node has already cached
the mapping of ki to the IP address of the RP node. The di-
rect point-to-point communication between the publishing
node and the RP nodes is expected to achieve better perfor-
mance compared to the Chord routing protocol. However,
if the number of the RP nodes is large (proportional to the
number of attributes in S), either the point-to-point com-
munication model may be inappropriate and impractical, or
resorting to the Chord routing protocol may be inefficient
(e.g., in terms of bandwidth). We may need to use a more
efficient mechanism to publish the event to the RP nodes
instead, e.g, multicast techniques. More discussion of this
is presented in [24].

Algorithm 3 publish event(Event e)
1: for each Ai ∈ S do
2: ki = h(Ai)
3: send e to a RP node which is an immediate successor node of ki
4: end for

When an event e is published to a RP node r, r first
needs to find the subscriptions matching the event, and then
starts the process of delivering the event to the matched sub-
scribers. Upon an event e, the RP node r needs to match e
with the subscriptions it is storing. Algorithm 4 outlines
the matching process which returns the list of matched sub-
scribers with respect to the entry of r’s k neighbor nodes.

Algorithm 4 match subscriptions(Event e)
Require: vector<Subscription> store[1..k] {stores subscriptions in the

RP node according to the entry of k neighbor nodes}
Require: is match(e, p) returns TRUE if e satisfies p, FALSE otherwise
Ensure: vector<ID> matched set[1..k] {the matched subscribers’ IDs

to be returned}
1: for each neighbor node ni do
2: for each subscriptions sj = (sidj , pj) ∈ store[i] do
3: if is matched(e, pj) then
4: matched set[i].push back(sidj)
5: end if
6: end for
7: end for
8: return matched set

Note that Algorithm 4 is a linear subscription matching
algorithm with respect to the number of subscriptions. To
overcome this linear matching inefficiency, we could adopt
sublinear matching algorithms based on building a subscrip-
tion tree that collapses similar subscriptions [1]. However,
how to optimize the matching algorithm is not focus of this
paper. Algorithm 4 is primarily for illustration purpose.

3.4. Event Delivery

Upon receiving an event, how does a RP node exploit
the embedded tree in Chord to deliver events by exploit-
ing the embedded tree EMDtreer? The basic idea behind
Ferry’s event delivery algorithm is that all the event deliv-
ery messages to those subscribers who share common an-
cestor nodes on the tree EMDtreer are aggregated into
one single message along the path from the root node r
to their lowest common ancestor node, thereby minimiz-
ing the number of messages. Algorithm 5 and Algorithm 6
outline the event delivery algorithm. The event delivery
starts from the RP node r which sends out an event delivery
message carrying a corresponding subscriber ID list (e.g.,
matched set[i] in Algorithm 4) along its neighbor links
(as shown in Figure 3). Upon receiving the message, each
neighbor node (e.g., node s2, f2, or f3 in Figure 3) exe-
cutes route message(). If there is a subscriber ID matches
its own ID, then it delivers the event to its local applica-
tions/users. It also partitions the remaining subscriber IDs
(if any) in the message according to its own neighbor nodes
(i.e., for each subscriber ID, choose a neighbor node whose
ID is equal to or most immediately precedes the subscriber
ID), and performs deliver event() to deliver the messages
each of which may carry a corresponding list of subscriber
IDs to the remaining subscribers. Note that all RP nodes of
the scheme S will perform this event delivery operation in
parallel.

This event delivery algorithm is essentially a recursive
process where each node along the dissemination paths
of EMDtreer performs deliver event() until the event
reaches all subscribers. Note that the event delivery al-
gorithm in Ferry has several important features. First, no
subscription matching operation is performed along the dis-
semination path except the RP node, due to the subscriber
list contained in the message. Second, unlike MEDYM [3],
it does not need to dynamically generate dissemination
trees on-demand because it exploits the embedded trees
which are inborn and dynamically maintained in Chord.
Thirdly, the DHT link (or routing table) maintenance mes-
sages could be piggybacked onto the event delivery mes-
sages to reduce the maintenance cost which is inherent and
nontrivial in DHTs.

Algorithm 5 deliver event(Event e, vector<ID>
matched set[1..k])
1: for i = 1 to k do
2: if matched set[i] is not empty then
3: Message M ← e + match set[i] {+ is a concatenation opera-

tor}
4: send M to the neighbor node ni, which then calls

route message(M) upon receiving M
5: end if
6: end for

Algorithm 6 route message(Message M)
1: vector<ID> matched set[1..k]
2: Event e← extract the event from M
3: vector<ID> list← extract the list of subscriber IDs from M
4: for each sidi ∈ list do
5: if sidi == this node’s ID then
6: deliver e to its local applications or users
7: else
8: find the neighbor node nj whose node ID is equal to or most

immediately precedes sidi
9: matched set[j].push back(sidi)

10: end if
11: end for
12: if matched set is not empty then
13: deliver event(e, matched set)
14: end if

subscriptions
matched

RT entry
�

��

��

��

��

��

�

�

�

�

�

��

��

��

��

��

��

�� �

�� �� �

	� ��� �� ��

����� �� ����� 	

	� ��� ��

	� ����

Figure 3. An illustration of the delivery of an event e from a RP
node r. s1 and s2 are r’s successors. f1, f2, and f3 are members
of r’s finger table. s2, x, y, z, w, and v are subscribers matching
the event e.

4. Evaluation

In this section we evaluate Ferry using a scheme S for
stock quotes application proposed by Gupta el al. [11]. We
first describe the Ferry simulator, the scheme S for the stock
quotes application, the datasets, and the metrics used for
evaluation. Then, we present the experimental results.

4.1. Experimental Setup

We implemented Ferry on top of p2psim 5, a discrete-
event packet level simulator. p2psim currently can simu-
late four P2P systems including Chord. Chord has a config-
uration named proximity neighbor selection (PNS) which
allows each Chord node to choose physically close nodes
as routing table entries to reduce lookup latency [8]. The
simulated network used in our simulations consists of 1024
nodes with inter-node latencies derived from measuring the
pairwise latencies of 1024 DNS servers on the Internet us-
ing King method [10]. The average round-trip time for the
simulated network is 198 milliseconds.

The scheme S we used in our experiments
was proposed in Meghdoot [11], and defined
as S = {[Date : string, 2/Jan/98, 31/Dec/02],

[Symbol : string, “aaa”, “zzzzz”], [Open : float, 0, 500],[Close :

float, 0, 500], [High : float, 0, 500], [Low : float, 0, 500],

5http://pdos.lcs.mit.edu/p2psim

[V olume : integer, 0, 310000000]}. Specifically, Symbol is
the stock name. Open and Close are the opening and
closing prices for a stock on a given day. High and Low
are the highest and lowest prices for the stock on that day.
Volume is the total amount of trade in the stock on that
day. Given the scheme S, an example subscription s is
(123456, {(Symbol = “yhoo”)∧(High > 35.23)}), subscribed
by a subscriber with sid = 123456.

We generated subscriptions by using five template sub-
scriptions suggested in Meghdoot [11] with different prob-
abilities. The number of stocks and subscriptions used in
simulations were 100 and 10, 000 respectively by default,
unless otherwise specified. The events were generated ran-
domly from S and we used 100, 000 events in simulations
which were modeled as exponentially distributed with an
average inter-arrival time of 116 seconds.

We used a set of metrics to evaluate the performance and
cost of Ferry: (1) hops: the average number of overlay hops
taken by Ferry to deliver an event to all of its subscribers;
(2) latency: the average time taken by Ferry to deliver an
event to all of its subscribers; (3) overhead: it is defined
as the ratio of the number of intermediate nodes involved
during the delivery of an event to the number of subscribers
for this event. The lower the overhead, the better perfor-
mance of Ferry; (4) bandwidth cost: it is defined as ratio of
the total bandwidth cost incurred by an event delivery to the
number of nodes involved (including the intermediate nodes
and subscriber nodes). The size in bytes of each event de-
livery message is counted as 20 bytes for headers, 33 bytes
for the event, and 4 bytes for each subscriber ID carried in
the message.

The results presented next do not include the event publi-
cation and we primarily focused our experiments on Ferry’s
event delivery algorithm. Recall that, in event publica-
tion, an event can be either sent directly or routed to the
RP nodes from the event publishing node. If the event is
directly sent to the RP nodes, the average event publica-
tion latency would be average latency between nodes. If
the event chooses to be routed to the RP nodes, it can use
Ferry’s event delivery algorithm to publish the event to the
RP nodes by envisioning the RP nodes as the publishing
node’s subscribers. In this case, the performance and cost
of event publication is similar to event delivery.

4.2. Experimental Results

Due to pace constraints, some results are omitted here.
Please refer to [24] for more detail. Table 1 shows the per-
formance of Ferry with different configurations for 10, 000
subscriptions and 100, 000 events, where PNS represents
Chord uses proximity neighbor selection (PNS). The aver-
age number of subscribers per event is 25, about 2.4% of
nodes. Note that PredRP outperforms RndRP significantly,
and PredRP+PNS performs the best. This is because (1) the

Table 1. Comparison between different Ferry’s configurations
scheme hops latency(ms) bw cost(Bytes/node) overhead
RndRP 3.94 359.17 53.67 2.51
PredRP 2.64 235.28 52.41 1.20
RndRP+PNS 3.80 154.22 53.56 2.41
PredRP+PNS 2.57 144.34 52.16 1.18

event delivery messages in PredRP traverse shorter ranges
of the Chord ring space; and (2) PredRP can avoid sending
redundant messages across the Chord ring space.

Figure 4 shows the subscription distribution on 7 RP
nodes for RndRP and PredRP. Note that RndRP evenly dis-
tributes subscriptions to the RP nodes while PredRP pro-
duces a skewed load distribution. This shows one-hop sub-
scription push is very necessary for PredRP to achieve load
balance. We also studied the impact of one-hop push on
bandwidth cost for RndRP+PNS and PredRP+PNS. One-
hop push (here it pushes the corresponding subscriptions
of a RP node to its finger table nodes) could reduce the
bandwidth cost per event for RndRP+PNS from 53.56 to
52.39 Bytes/node, and for PredRP+PNS from 52.16 to
50.34 Bytes/node. The bandwidth cost reduction results
from the reduced message sizes from the RP nodes to their
finger table nodes (at this point, no subscriber ID list is car-
ried in the messages). Note that the bandwidth cost reduc-
tion is per node/event, so a small reduction could result in
huge reduction in aggregated bandwidth cost across the sys-
tem.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

RP nodes

pe
rce

nta
ge

 of
 su

bs
cri

pti
on

s

RndRP

PredRP

Figure 4. Subscription distribution in RP nodes for RndRP and
PredRP.

To explore Ferry’s performance (with configuration of
PredRP+PNS) for various numbers of subscribers, we each
time ran Ferry by delivering 100, 000 events each of which
has a given number of subscribers randomly chosen from
the system. The number of subscribers varied from 2%
to 80% of 1024 nodes per event. The results show that,
as the number of subscribers increase, the hops and la-
tency almost keep constant at 2.58 hops and 144ms, respec-
tively. The bandwidth cost increases modestly, from 50.99
to 62.69 Bytes/node/event. However, the overhead drops
significantly, from 1.36 to 0.02. The results show that Ferry
could deliver events to a large number of nodes at very low
overhead, involving only a small number of intermediate
nodes by the synthesis of its message aggregation and Pre-
dRP algorithm.

40

45

50

55

60

65

70

75

5 10 20 30 40 50 60 70 80

percentage of nodes

ba
nd

wi
th

co
st

(B
yte

s/n
od

e)

1000
5000
10000

Figure 5. bandwidth cost for various network sizes with respect
to different percentages of ndoes as subscribers.

We also investigated the performance of Ferry in various
network sizes of 1000, 5000, and 10000 nodes. The simu-
lated network of 5000 and 10000 were derived from the the
1024-DNS server measurements. For a give network size,
we ran simulations for various percentages of nodes ran-
domly chosen as subscribers (from 5% to 80%). We found
the overhead is almost constant for various network sizes
with respect to a given percentage of node as subscribers
per event, from 0.86 to 0.02 when the number of subscribers
varies from 5% to 80% of the system nodes. The number
of hops taken by event delivery for network sizes of 1000,
5000, and 10000 are 2.58, 3.82 and 4.21, respectively. As
the network size increases, the bandwidth cost incurred by
event delivery increases modestly (as shown in Figure 5).
This shows that Ferry can scale to a large number of nodes.

5. Conclusions and Future Work

Ferry is essentially a rendezvous network built on
top of a DHT to support content-based pub/sub ser-
vices/applications. Each application/service defines a
unique scheme S = {A1, A2, ..., An}, and has at most n
RP nodes (by hashing its attribute names). Subscriptions
are routed to the RP nodes within O(log N) hops, while
events are either directly sent to or routed to the RP nodes.
Hence, events are guaranteed to meet all relevant subscrip-
tions in the RP nodes. Ferry has several unique features:
(1) Ferry exploits the embedded trees in a DHT to deliver
events, thereby incurring little overhead; (2) the subscrip-
tions are managed according to the entry of a RP node’s
routing table, thereby providing an efficient way to deliver
events through aggregated messages; (3) event matching is
performed only in the RP nodes (and their neighbor nodes if
one-hop push is applied) by encapsulating the subscriber list
in the event delivery messages; (4) its novel subscription in-
stallation algorithm, PredRP, can avoid sending redundant
event delivery messages across the Chord ring space; (5)
leveraging the fault-tolerance and self-organizing nature of
DHTs, Ferry can reliably deliver events to subscribers and
be fault-tolerant to node failures.

In Ferry, each node could be a RP node for some ap-

plications/services, and serve as the intermediate node to
route events for other RP nodes. Hence, Ferry distributes
the onus of event publication, event matching, and subscrip-
tions across all nodes. Load balancing is based on the ran-
domness guarantee of the consistent hashing function used
in generating the RP nodes for different pub/sub applica-
tions/services (with different Ss). For a pub/sub scheme S
with n attributes, the maximum number of RP nodes is n.
All subscriptions of S will be stored in and all events will be
routed to the n RP nodes. If the application/service corre-
sponding to S is very popular, the subscriptions and events
may overload the RP nodes. We therefore propose one-hop
push to reduce the load of a RP node by moving part of its
subscriptions to its finger table nodes. One-hop push may
not work if a RP node’s finger table nodes are all overloaded
or not willing to take the load. Hence, we could adopt at-
tribute partitioning [22] to address this issue. For example,
consider a scheme S has an attribute temperature and the
value range for temperature is [0, 100]. Without partition-
ing, there is only one RP node. If we partition temperature
into several continuous ranges, [0, 25], (25, 50], (50, 75],
and (75, 100], we may create 4 RP nodes by hashing the
attribute name with a range. Note that with partitioning, we
need to adapt the RndRP, PredRP, and event publication al-
gorithms accordingly. Due to space constraints, we do not
present the adapted algorithms here. However, the adapta-
tion is very straightforward and simple.

In event publication, an event can be either directly sent
or routed (by Chord routing protocol) to the RP nodes. If the
number of the RP nodes (which is determined by the num-
ber of attributes of a scheme S and also subscription/event
partitioning (if applied)) is small, the event publishing node
can directly send the event to the RP nodes (by caching the
IP addresses of the RP nodes) for better performance. How-
ever, if the number of RP nodes is very large, e.g, tens or
even hundreds, using point-to-point communication would
be impractical and inefficient. This is actually a problem
of how to efficiently deliver an event from the publishing
node to a large number of RP nodes. Fortunately, Ferry’s
novel event delivery mechanism has already provided a so-
lution for this problem, by envisioning the RP nodes as the
subscribers of the event publishing node. Hence, Ferry can
support a pub/sub scheme with a very large number of at-
tributes.

This paper constitutes an initial step to build an efficient
and scalable platform for content-based pub/sub. A num-
ber of issues need to be explored in our next steps. For in-
stance, we will investigate the reduction of the DHT mainte-
nance cost in terms of bandwidth by piggybacking the DHT
link maintenance messages onto the event delivery mes-
sages. Another problem we will study is how cooperative
P2P nodes have to be in Ferry (e.g., to provide incentive for
nodes to cooperate in event delivery).

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching events in a content-based subscrip-
tion system. In Proceedings of the 8th ACM Symposium on
Principles of Distributed Computing (PODC), pages 53–61,
Atlanta, GA, May 1999.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In Proceed-
ings of the 19th IEEE ICDCS, pages 262–272, 1999.

[3] F. Cao and J. P. Singh. MEDYM: An architecture for
content-based publish-subscribe networks. In Proceedings
of ACM SIGCOMM, Portland, OG, Aug. 2004.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[5] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A rout-
ing scheme for content-based networking. In Proceedings
of IEEE INFOCOM, Hongkong, China, Mar. 2004.

[6] A. Carzaniga and A. L. Wolf. Forwarding in a content-based
network. In Proceedings of ACM SIGCOMM, pages 163–
174, Karlsruhe, Germany, Aug. 2003.

[7] Y. Choi, K. Park, and D. Park. Homed: A peer-to-
peer overlay architecture for large-scale content-based pub-
lish/subscribe systems. In Proceedings of the third In-
ternational Workshop on Distributed Event-Based Systems
(DEBS), pages 20–25, Edinburgh, Scotland, UK, May 2004.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput. In Proceeding of the First Symposium on Net-
worked Systems Design and Implementation (NSDI), pages
85–98, San Francisco, CA, Mar. 2004.

[9] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation
for very fast publish/subscribe systems. In Proceedings of
the 2001 ACM SIGMOD, volume 30, pages 115–126, Santa
Barbara,CA, 2001.

[10] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Es-
timating latency between arbitrary internet end hosts. In
Proceedings of the 2002 SIGCOMM Internet Measurement
Workshop, Marseille, France, Nov. 2002.

[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi.
Meghdoot: Content-based publish/subscribe over p2p net-
works. In ACM/IFIP/USENIX 5th International Middleware
Conference, Toronto, Ontario, Canada, Oct. 2004.

[12] G. Perng, C. Wang, and M. K. Reiter. Providing content-
based services in a peer-to-peer environment. In Proceed-
ings of the third International Workshop on Distributed
Event-Based Systems (DEBS), pages 74–79, Edinburgh,
Scotland, UK, May 2004.

[13] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker net-
works in an event-based middleware. In Proceedings of the
Second International Workshop on Distributed Event-Based
Systems (DEBS), San Diego, CA, June 2003.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Shenker.
A scalable content-addressable network. In Proceedings of
ACM SIGCOMM, pages 161–172, San Diego, CA, Aug.
2001.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed System Platforms (Middleware),
pages 329–350, Heidelberg, Germany, Nov. 2001.

[16] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. SCRIBE: The design of a large-scale event notifica-
tion infrastructure. In Proceedings of the 3rd International
Networked Group Communication, pages 30–43, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160, San Diego, CA, Aug. 2001.

[18] D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-
based publish/subscribe systems with distributed hash ta-
bles. In Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer Comput-
ing, Berlin,Germany, Sept. 2003.

[19] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. In Proceedings of the Second International
Workshop on Distributed Event-Based Systems (DEBS), San
Diego, CA, June 2003.

[20] P. Triantafillou and I. Aekaterinidis. Content-based publish-
subscribe over structured P2P networks. In Proceedings
of the third International Workshop on Distributed Event-
Based Systems (DEBS), pages 104–109, Edinburgh, Scot-
land, UK, May 2004.

[21] P. Triantafillou and A. Economides. Subscription summa-
rization: A new paradigm for efficient publish/subscribe sys-
tems. In Proceedings of the 24th IEEE ICDCS, 2004.

[22] Y.-M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and
H. J. Wang. Subscription partitioning and routing in content-
based publish/subscribe systems. In Proceedings of the 16th
International Symposium on Distributed Computing (DISC),
Toulouse, France, Oct. 2002.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerance wide-area location and
routing. Technical Report UCB/CSD-01-1141, Computer
Science Division, University of California, Berkeley, Apr.
2001.

[24] Y. Zhu and Y. Hu. Ferry: An architecture for content-based
publish/subscribe services on p2p networks. Technical re-
port, Department of ECECS, University of Cincinnati, Oct.
2004.

[25] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. Kubiatowicz. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In Proceedings
of the Eleventh International Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSS-
DAV), June 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

