
Provisioning Virtual Private Networks in the Hose Model with Delay
Requirements

Lei Zhang, Jogesh Muppala, Samuel Chanson
Dept. of Computer Science, Hong Kong Univ. of Science and Technology

Clearwater Bay, Kowloon, Hong Kong
{zhanglei, muppala, chanson}@cs.ust.hk

Abstract

Virtual Private Networks (VPN) provide a cost-
effective means of meeting the communication needs
among several sites. The hose model for VPN
configuration alleviates the scalability problem of the
pipe model by reserving bandwidth for traffic
aggregates instead of between every pair of endpoints.
Existing studies on quality of service (QoS) guarantees
in the hose model deal only with bandwidth
requirements. In this paper we enhance the hose model
to specify delay requirements between endpoints.
Three categories of algorithms, namely the pipe mesh,
the multiple source-based trees, and the shared tree
approaches, are then proposed for VPN provisioning.
We investigate methods of implementing the shared
tree approach to meet the delay requirements with low
provisioning cost and small computation overhead.

1. Introduction

Two popular models have been proposed for
supporting QoS in Virtual Private Networks (VPNs):
the “pipe” model [2] and the “hose” model [4]. The
hose model has good characteristics such as flexibility,
multiplexing gain and ease of specification [5]. In [4], a
hose is realized with a source-based tree resulting in a
factor of 2 to 3 in capacity savings over the pipe model.
In [7], the hoses are implemented with a single shared
tree and the algorithms attempt to optimize the total
bandwidth reserved on the edges of the tree. In [6] the
bandwidth efficiency of the hose model was studied,
where the over-provisioning factor is evaluated in
networks with various sizes and node densities. In [3],
a multi-path provisioning approach was proposed.

 This work described in this paper has been supported by the
Research Grants Council of Hong Kong SAR, China (Project No.
HKUST6177/04E)

However, no work on the hose model has
considered delay, which is becoming important in
VPNs with delay-sensitive applications such as Voice
over IP [9]. In this paper we enhance the hose model to
support delay requirements at the VPN endpoints. We
propose three approaches for the enhanced hose model:
the pipe mesh approach, the multiple source-based
trees approach, and the shared tree approach. For the
shared tree approach we consider the following
questions: (1). How to make the shared tree support the
delay requirements? (2). How to achieve high statistical
multiplexing gain given that the delay requirement is
satisfied? (3). How to reduce the computational
overhead? The first issue is solved by formulating a
minimum diameter Steiner tree (MDStT) problem. The
second problem is proved to be NP-hard and we use
heuristics to build trees with low provisioning cost. The
third issue is tackled by a pruning technique.

The rest of the paper is structured as follows. The
enhanced hose model, supporting both delay and
bandwidth requirements, is described in Section 2.
Section 3 presents three approaches for the enhanced
hose model and discusses their advantages and
disadvantages. The three problems with the the shared
tree approach are further studied in Sections 4, 5, and 6
respectively. Simulation results comparing the
performance of the proposed algorithms are presented
in Section 7. Finally, Section 8 concludes the paper.

2. The Enhanced Hose Model

We model the network as a graph G = (V, E) where
V is the set of nodes and E is the set of bidirectional
links connecting the nodes. Each link (i, j) is associated
with two QoS metrics – the bandwidth capacity Lij and
the delay Dij. The delay value of a path is defined as the
sum of the delay values of all links along the path.

The VPN specification in the hose model includes
[7]: (1) A subset of the nodes P ⊆ V corresponding to
the VPN endpoints, and (2) for each node i∈ P, the

This is the Pre-Published Version

associated ingress and egress bandwidths Bi
in and Bi

out,
respectively. Note that the terms “ingress” and “egress”
are taken with respect to the VPN endpoints. This
model can be enhanced to include a delay requirement
in two ways: (1) Associate a delay requirement Di with
each node i, which specifies the maximum delay from
this node to every other node in the VPN, or (2) Group
applications that use the VPN into different delay
classes characterized by their end-to-end delay
requirements that must hold between every pair of end
points. We adopt the latter approach in this paper.

The network identifies a set of delay classes; each
class j is characterized by its end-to-end delay
requirement Dj, j = 1…L. Without loss of generality,
we order the L delay classes as: D1 < D2 < … < DL. In
practice, these delay classes are obtained by measuring
the characteristics of typical applications over the
VPN. For each class j, with a delay constraint Dj, we
need to find the corresponding ingress and egress
bandwidth requirements Bi,j

in and Bi,j
out at each i ∈ P.

Therefore, the VPN specification in the enhanced
hose model consists of the following three components:
(1) A subset of the nodes P ⊆ V corresponding to the
VPN endpoints, (2) For each delay class j, the delay
requirement Dj, which specifies the maximum end-to-
end delay allowed between any pair of VPN endpoints,
(3) For each i∈P and each Dj, the associated ingress
and egress bandwidths Bi,j

in and Bi,j
out, respectively.

For clarity of presentation, the provisioning of one
specific delay class, with its given delay requirement D
and the associated ingress and egress bandwidths Bi

in
and Bi

out for each VPN endpoint i, is discussed
subsequently. The provisioning a VPN network can be
viewed as provisioning each of the L delay classes.

3. Implementing the Enhanced Hose
Model

Three general approaches for implementing the
enhanced hose model are considered: (1) The “pipe
mesh” approach, (2) The “multiple source-based trees”
approach, and (3) The “shared tree” approach. The
“pipe mesh” approach [4] implements the hoses with a
mesh of pipes between the VPN endpoints. This can be
viewed as the traditional pipe model and is included
mainly for comparison purposes. The second approach
builds a source-based tree to implement each hose of
the VPN endpoints. A total of |P| source-based trees are
needed. The third approach uses a single shared tree for
all the hoses in the VPN.

3.1. Pipe Mesh

In this approach a hose is implemented by a mesh of
pipes between ingress and egress routers of the VPN.

For a pipe from ingress i to egress j, min(Bi
out, Bj

in) of
bandwidth is reserved on each link along the path.

In order to minimize the reserved bandwidth for a
pipe, we need to minimize the number of hops without
violating the delay constraint D. We call this the Delay-
Constrained Min-Hop Problem, which is a special case
of the Delay-Constrained Least-Cost Problem when all
the link costs are equal to 1. The problem is solvable
by the Constrained Bellman-Ford (CBF) algorithm [13],
which finds independent Min-Hop paths from a source
to a set of destinations subject to delay constraints. The
provisioning cost of the pipe mesh is the sum of
bandwidth reservations of all links.

3.2. Multiple Source-Based Trees

In this approach, we use |P| source-based trees to
realize the hoses, one tree per hose. For a given source
based tree T rooted at the VPN endpoint i, we denote
by Tv the connected component of T containing node v
when link (u, v) is deleted from the tree. In this case,
the traffic passing through link (u, v) can only originate
from i to the other endpoints in Tv. The traffic that i can
send is bounded by Bi

out, and the traffic that Tv can

receive cannot exceed ∑ ∩∈ vTPj
in
jB . Thus the

bandwidth reserved for link (u, v) of T is given by CT(u,

v) = min{ Bi
out , ∑ ∩∈ vTPj

in
jB }. Therefore, the total

bandwidth reserved for tree T is given by Eq. (1):

CT = ∑ ∈Tvu T vuC),(),(. (1)

In the above equation only links directing away
from i need to be considered. This is because the
source-based tree is only used to send traffic from i to
the other VPN endpoints. Therefore, if link (u, v) is a
link in tree T directing away from i, no bandwidth
needs to be reserved on (v, u). Since we are interested
in minimizing the total bandwidth reserved for tree T,
the problem of computing the optimal source-based
tree for endpoint i can be expressed as follows:

Optimal Delay-Constrained Source-Based Tree
Problem: Given a set of VPN endpoints P with their
associated ingress and egress bandwidths and the delay
requirement D, compute a source-based tree T rooted at
endpoint i whose leaves are the other VPN endpoints.
The objective is to minimize CT while satisfying the
delay requirement, DjidelayiPj ≤∈),(max \ .

Theorem 1: The Optimal Delay-Constrained
Source-Based Tree Problem is NP-hard. (See [14] for
proof.)

We select the QDMR algorithm proposed in [8] to
construct the source-based trees. QDMR is a fast and
scalable heuristic for generating low-cost delay-
bounded multicast trees. The total bandwidth reserved

using multiple source-based trees can be calculated by
adding the bandwidth reserved for each tree.

3.3. Shared Tree

This approach implements the |P| hoses with a single
shared tree. The tree structure is used because it is
scalable and simplifies routing and restoration.
Furthermore, a shared tree allows the bandwidth
reserved on a link to be shared by the traffic between
the two sets of VPN endpoints connected by the link.

For a given shared tree T, we denote by Tu/Tv the
connected component of T containing node u/v when
link (u, v) is deleted from the tree. Note that the traffic
passing through link (u, v) can only originate from the
endpoints in Tu and terminate at the endpoints in Tv.
The traffic that endpoints in Tu can send is bounded by

∑ ∩∈ uTPj
out
jB , and the traffic that Tv can receive cannot

exceed ∑ ∩∈ vTPj
in
jB . Thus the bandwidth to be

reserved on link (u, v) of T is given by CT(u, v) =

min{ ∑ ∩∈ uTPj
out
jB , ∑ ∩∈ vTPj

in
jB }. The total

bandwidth reserved for tree T is therefore given by
formula (2):

CT = ∑ ∈Tvu T vuC),(),(. (2)

Note that unlike eq. (1), where only the links
directing away from the root of the tree are counted, all
links in the tree (in both directions) are considered in
eq. (2). Since we are interested in minimizing the total
bandwidth reserved for tree T, the problem of
computing the optimal shared tree can be formulated as:

Optimal Delay-Constrained Shared Tree
Problem: Given a set of VPN endpoints P with their
associated ingress and egress bandwidths and the delay
requirement D, compute a shared tree T connecting all
the VPN endpoints with the objective of minimizing CT
while satisfying the delay requirement,

DjidelayPji ≤∈),(max , .

Theorem 2: The Optimal Delay-Constrained
Shared Tree Problem is NP-hard (See [14] for proof)

Compared to the previous two approaches, the
shared tree approach makes the best use of statistical
multiplexing to reduce the provisioning cost. Only one
tree is needed for the whole VPN with p hoses. The
simulation results in Sec. 7.2 justify this, showing a
significant reduction in provisioning cost. Furthermore,
routing along the shared tree is simple and restoration
of the tree structure is easy.

We develop heuristics for the Optimal Delay-
Constrained Shared Tree Problem using a center based
shared tree approach. The procedure can be divided
into three phases as follows:

Phase 1: The graph is examined to identify a set of
candidate centers satisfying the delay requirement. The
set is called the Candidate Center Set (CCS).

Phase 2: The Candidate Center Set is pruned to
reduce the computation overhead of the heuristic.
Depending on the need to control overhead, the set can
be unchanged, partially-pruned, or totally pruned. By
“totally pruned”, we mean the set is reduced to only
one candidate center after pruning.

Phase 3: Trees that do not violate the delay
requirement D are constructed for each of the nodes in
the pruned Candidate Center Set. The tree with the
minimum reserved bandwidth is chosen.

Three problems are of interest: (1). In Phase 1, how
to make the shared tree support the most stringent delay
requirements? (2). In Phase 2, how to reduce the
computation overhead as far as possible by pruning
without incurring additional provisioning cost? (3). In
Phase 3, how to achieve high statistical multiplexing
gain given a specific candidate center? These three
problems are solved in sections 4, 5, and 6 respectively.

4. Meeting the Delay Requirement

In this section, we first propose two heuristics,
namely the RC and DC heuristics to find all candidate
centers satisfying the delay requirement. These two
heuristics cannot guarantee a feasible tree will be found
when the delay requirement is too stringent. We solve
this by formulating the minimum diameter Steiner tree
problem and propose a new algorithm MDStT.

4.1. The Radius Constrained (RC) Heuristic

The radius r for node v is defined as the largest
least-delay value from v to the VPN endpoints. The RC
heuristic includes a node c in the candidate center set if
its radius r satisfies r≤D/2. This guarantees that the
maximum delay between any two VPN endpoints along
the least-delay tree rooted at c cannot exceed twice the
radius, i.e., D. Therefore, a shared Steiner tree is
constructed to span the p endpoints with c as the center.

4.2. The Diameter Constrained (DC) Heuristic

The diameter d for node v is defined as the sum of
the two largest least-delay values from v to the VPN
endpoints. Note that this definition of the diameter for a
node is different from the definition of the diameter for
a tree in Section 4.3. The DC heuristic includes a node
c in the candidate center set if its diameter d satisfies
the delay requirement D (d≤D). If the condition is
satisfied, the delay between any two VPN endpoints
along the least-delay tree rooted at node c does not
violate the delay requirement D.

4.3. Optimal Solution: The MDStT Algorithm

The above two heuristics, while fast and simple,
cannot guarantee finding a feasible tree even if one
exists. In the example given in Figure 1, the delay
requirement among the VPN endpoints (P1 – P4) is 50.
Nevertheless, the RC and DC heuristics are only able to
support a delay requirement up to 58 with the candidate
center located at Q2 with a radius value of 29. This
already violates the delay requirement. Figure 1(c),
shows a feasible tree satisfying the requirement.

P1 P2

Q1

Q2

P3 P4

20

10

20

20 20

29

29

29

29

P1 P2

Q2

P3 P4

20 20

29 29

P1 P2

Q1

Q2

P3 P4

20

10

20

20 20

(a) Network
topology

(b) Shortest path tree
by the DC heuristic

(c) The feasible
tree

Figure 1. Problem with the RC and DC heuristics. Only
link delays are displayed.

We define the diameter of a Steiner tree connecting
the VPN endpoints as the maximum delay between any
two endpoints. Then the minimum delay requirement
that can be supported by the shared tree can be found
by finding the minimum diameter Steiner tree.

Mathematically, the minimum diameter Steiner tree
(MDStT) problem can be formulated as follows:

Minimum Diameter Steiner Tree problem: Let G =
(V, E) be an undirected graph, where V is the set of
nodes, and E the set of links. A subset of nodes P ⊆ V
represents the set of target destinations. Also let |V| = n
and |E| = m and |P| = p. Suppose each link e ∈ E is
associated with a nonnegative weight de. A Steiner tree
is a subgraph T(V’, E’) of G which is a tree and P ⊆ V’.
The diameter D(T) of T is defined as the longest of the
shortest paths in T among all node pairs in P. The
Minimum Diameter Steiner Tree (MDStT) Problem is
to find a Steiner tree of G with the minimum diameter.

We first prove that MDStT problem is equivalent to
the absolute subset 1-center problem of a general graph.
An absolute subset 1-center of a graph G = (V, E) with
respect to a subset P⊆V is a point x (on a link or at one
of the nodes) which represents the position at which the
greatest distance from x to any destination in P is
minimized. Note that the distance from x to a given
destination in P is defined as the length of the shortest
path (with respect to link weights) connecting them.

We let A(G) denote the continuum set of points on
the edges of G. For any point x in A(G), which may or
may not be a vertex of G, and a destination node v∈P,
we let dG(x, v) denote the length of a shortest path in G
between x and v. For each x in A(G) define F(x) =
maxv∈P dG(x, v). The absolute subset 1-center problem

(AS1CP) in graph G is to find a location x which
minimizes F(x). A point x* in A(G) is an absolute
subset 1-center for subset P in G if the function F
attains its minimum at x*.

Theorem 3: Let x* be an absolute subset 1-center
of P in G and let T(x*) be a shortest path tree
connecting x* to all nodes in P. Then T(x*) is a
minimum diameter Steiner tree connecting all nodes in
P. (See [14] for proof.)

We develop our MDStT algorithm based on the
algorithms for the absolute center problem [1]. The
main idea is to identify a local absolute subset 1-center
for each link in the graph. The global absolute center
can be found by selecting the optimal one from the |E|
local centers. The local center is defined as the point
minimizing F(x) among every possible point on the link.
To find the local center for a specific link (A, B), the
functions from any point x to VPN endpoints Fi(x) are
first computed. Then F(x) can be obtained by taking
the upper envelope of these Fi(x), i= 1, 2, …, |P|. The
local center is easily identified as the point minimizing
F(x).

The MDStT algorithm finds the minimum diameter
Steiner tree in a general graph, and hence supports the
lowest delay requirement using a tree structure in the
enhanced hose model. Given the distances from the
nodes to all VPN endpoints, the RC and DC heuristics
need only O(|V|) time to identify the center, compared
to O(|E| p + |V|plogp) of the optimal MDStT algorithm
which is more expensive. The following theorem shows
that the RC and the DC heuristics are 2-approximations
of the optimal MDStT algorithm with respect to the
minimum delay requirement supported.

Theorem 4: The diameters of the trees constructed
by the RC heuristic and the DC heuristic are at most
twice the diameter of the minimum diameter Steiner
tree constructed by the MDStT algorithm. (See [14] for
proof.)

5. Lowering Provisioning Cost

Phase 1 finds a set of candidate centers satisfying
the delay requirement D. This set consists of network
nodes if RC and DC heuristics are used, but will
contain only one virtual node if the MDStT algorithm
is used, which is the absolute center identified for the
minimum diameter Steiner tree. The objective of Phase
2 is to build a low-provisioning-cost tree rooted at a
specific candidate center. Four types of trees are
considered in this work.

5.1. Least Delay Tree

The Least-delay (LD) Tree uses the least-delay tree
rooted at the center to connect the VPN endpoints. The

delay values from the center to the VPN endpoints are
minimized in this case. Because of the way the
candidate center is chosen, the delay requirement D
will always be satisfied. However, no effort is made to
minimize the total bandwidth reserved.

5.2. QDMR (QoS Dependent Multicast
Routing) Tree

The QDMR tree [8] tries to minimize the number of
hops in the constructed tree in order to reduce the
bandwidth reserved. The delay constraint from the
center to any of the VPN endpoints is set to D/2.

5.3. LCLD (Least Cost Least Delay) Tree

The third variation is to construct a LCLD tree [11].
Given a center c, each VPN endpoint v tries to connect
to the center using its LCLD path. The LCLD path
from VPN endpoint v to the center c goes along the
Min-Hop path as long as the delay bound Dshared = D/2
is not violated. It then switches to the Least-Delay path
from the current node to the center when going further
along the Min-Hop path would violate the constraint.
Switching to the least-delay path from the current node
will satisfy the delay constraint and would not cause
backtracking.

Theorem 5: The shared tree constructed using the
LCLD approach is loop free and satisfies the delay
requirement D. (See [14] for proof.)

5.4. BFS (Breadth-First-Search) Tree

The LCLD tree can reduce the provisioning cost as
shown by simulation results in Sec. 8. However, going
along the min-hop path and switching to the least-delay
path may not always be the best choice. The Breadth-
First-Search (BFS) tree first finds independent delay-
constrained min-hop (DCMH) paths from the center to
the endpoints using the CBF algorithm [13]. Then these
DCMH paths are merged to form the final BFS tree.

A by-product of this merging procedure is that there
may be loops resulting from simple union of these
DCMH paths. Therefore, we need to form an induced
graph by the union of the paths, and perform a final
round of the shortest-path algorithm from the center to
the VPN endpoints in the induced graph. This
procedure would eliminate all loops and leave only a
Steiner tree spanning the VPN endpoints.

6. Reducing Computation Overhead

In large networks with relatively loose delay
requirements, the number of candidate centers obtained
in Phase 1 may be quite large. This will cause high
computation overhead in Phase 3. The objective of
Phase 2 is to reduce the number of candidate centers in

the CCS, thereby reducing the computation overhead in
Phase 3. Let us denote the minimum radius of the
centers in the CCS by rmin. The radius of each
candidate center v in the original CCS is checked to see
if |r-rmin|≤δrmin, where δ is a predefined threshold.
Candidate centers failing to satisfy the condition are
deleted from the set. If δ is set to the extreme value 0,
the CCS will be pruned to only one candidate center
with the minimum radius. If computation overhead is
not a major concern, or the number of centers obtained
in Phase 1 is small, Phase 2 can be omitted and all
nodes in the original candidate center set are used in
Phase 3.

7. Simulation Results

We conducted a number of simulation experiments
to measure the performance of the three approaches
described in Section 3 and the algorithms proposed for
the shared tree approach in Sections 4, 5, and 6. The
results show that the shared tree approach is able to
support a given delay requirement with a scalable tree
structure at lower reserved bandwidth compared to the
other two approaches. Given the advantages of the
shared tree approach, we further study the performance
of its various implementation alternatives.

7.1. Network Topologies

Two sets of topologies were used in our simulations.
The first set is taken from the Rocketfuel project [10].
Among all the topologies, we selected four tier-1 ISP
topologies as listed in Table 1 below. They represent
real-world toplogies. The link delays of these
topologies were computed based on their geographical
distances. The setting of delay values is reasonable
since transmission delay and queueing delay values are
very small in these ISP backbone networks.

Table 1. Rocketfuel ISP topologies used in the
simulations.

 Name Tier Dominant
Presence

Degree # of
nodes

701 UUNet 1 US 2569 83
209 Qwest 1 US 887 58
1239 Sprint 1 US 1735 52
7018 ATT 1 US 1490 115

The second set was randomly generated using the
Waxman Model [12]. Since we can easily control the
size of the topologies, we use them to study the effect
of network size on algorithm performance. In this
model, the nodes are placed on a 3000 × 2400 Km2
plane, roughly the size of the USA. The probability for
two nodes to be connected by a link decreases
exponentially with the Euclidean distance between
them according to the following probability function:

)]/(),(exp[),(θρ LvulvuPe −= (3)

where L is the maximum distance between any two
nodes in the network and l(u, v) is the distance between
u and v. The parameter θ controls the ratio of short
links to long links, while the parameter ρ controls the
average node degree of the network. A large value of θ
increases the number of long links, and a large value of
ρ results in a large average node degree. In the
experiments, θ and ρ were set at 0.15 and 2.2
respectively. These values were selected to obtain
random networks which closely resemble real networks.
Like the Rocketfuel topologies, the link delay values of
the random networks were calculated according to their
geographic distances. Link capacities were randomly
chosen from one of the three: OC3, OC12, and OC48.

For both sets of topologies, the VPN endpoints were
randomly selected from the network nodes. The
number of VPN endpoints was set to be 10% of the
total number of nodes in the network unless explicitly
specified. The bandwidth requirement of each VPN
endpoint was uniformly chosen between 2 and 100
Mbps. A parameter r is associated with each endpoint,
representing the ratio between the ingress and egress
bandwidth requirements. This asymmetry ratio varies
from 1 to 256 in our simulation experiments. The delay
requirement of the endpoints was generated uniformly
between 20ms and 100ms. Each simulation result given
below is the average of 10 rounds of experiments.

7.2. Efficiency of the Shared Tree Approach

The performance of the pipe mesh approach, the
multiple source-based tree approach, and the shared
tree approach were compared. Moreover, the effect of
varying the network size and the number of VPN
endpoints on performance was also investigated. In our
study, the provisioning cost (the total bandwidth
reserved) and the minimum delay requirement that can
be supported were used as performance indices. The
second metric is of interest because it describes the
ability of meeting stringent delay requirements.
Minimum delay requirement supported

Figure 2 shows the minimum delay requirement that
can be supported using each of the three approaches.
We used both rocketfuel and random topologies. The
name of the random topologies indicates the number of
nodes in the network (e.g., “ran100” is a random
topology with 100 nodes). The number of VPN
endpoints in the networks is fixed at 10% of the total
number of nodes. The first three bars are the three
variations of the shared tree approach, with different
methods of forming the candidate center set in phase 1.

The last bar shows the performance of the pipe-mesh
approach and the multiple source-based trees approach.

0

10

20

30

40

50

60

70

80

UUNet Qwest Sprint ATT ran100 ran200 ran300 ran400

Topologies

M
in

im
um

 d
el

ay
 r

eq
ui

re
m

en
t s

up
po

rt
ed

 (
m

s)

RC

DC

MDStT

pipemesh/multi-trees

Figure 2. Minimum delay requirements supported by
the approaches.

From the figure, the following observations can be
made. First, the pipe-mesh approach and the multiple
source-based trees approach perform identically with
respect to supporting the minimum delay requirement.
This is because when the delay requirement is stringent,
the source-based trees are identical to the least-delay
trees. These two approaches support smaller delay
requirements than the shared tree approach. Second,
the minimum delay requirement supported by the
shared tree approach is higher than the other two
approaches, although the difference is not large,
especially for real-world topologies.
Total bandwidth reserved

Figure 3 shows the provisioning costs of the three
approaches. The network parameter settings were the
same as before. For each network configuration, the
delay requirement is chosen randomly from [20, 100ms]
as long as all three approaches can find feasible
solutions. For the shared tree approach, we used the LD
tree in phase 2. The shared tree approach exhibits
better performance than the other two approaches,
reducing the provisioning cost by a factor of 2 or more
for a wide range of network parameters.

7.3. Meeting Delay Requirements

Figure 2 also shows the minimum delay requirement
that can be supported using the three technologies in
phase 1 of the shared tree approach. The MDStT
algorithm supports the minimum delay requirement that
can be supported by a tree structure. This provides a
lower bound for the RC and DC heuristics. The
performance of the two heuristics is also near-optimal
although they are only 2-approximations in theory. In
most cases, the DC heuristic performs close to the
optimal MDStT algorithm. This suggests that the DC
heuristic is a good choice in phase 1 since it is fast and
yields near-optimal tree diameters.

0

5000

10000

15000

20000

25000

UUNet Qwest Sprint ATT
Topologies

Pr
ov

is
io

ni
ng

 c
os

ts
 (

M
bp

s) pipemesh

multiple trees

Shared Tree (LD)

(a)

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

ran100 ran200 ran300 ran400 ran500
Topologies

P
ro

vi
si

on
in

g
co

st
 (

M
bp

s)

pipemesh

multiple trees

Shared Tree (LD)

(b)

Figure 3. The provisioning costs of the approaches.

7.4. Lowering Provisioning Cost

The performance of the four implementation
techniques in Phase 3, i.e., LD tree, QDMR tree, LCLD
tree, and BFS tree, is exhibited in Figure 4. For each
network configuration, the minimum delay requirement
Dmin that the four heuristics can support was the same.
The delay requirements had to be carefully selected to
show the different performance of the heuristics. If it is
too small, the latter three trees will be very similar to
the LD tree. If it is too large, the delay constraint will
be meaningless and the LCLD tree and the BFS tree
will become the min-hop tree, which definitely reserves
less bandwidth than the LD tree approach. In Figure 4,
the delay requirement was set to 1.15×Dmin. The results
show that using the LCLD tree and the BFS tree in
Phase 3 needs less bandwidth reservation than using
either the LD tree or the QDMR tree. The difference is
small for rocketfuel topologies. This is because the
sizes of these topologies are small, which leaves less
room for LCLD and BFS trees to go along alternative
paths other than least-delay paths. The same is true
with the randomly generated graph “ran100”. When the
network size increases, we see obvious advantage of
LCLD and BFS trees over LD and QDMR trees.

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

U U N e t Q w e s t S p r in t A T T r a n 1 0 0 r a n 2 0 0 r a n 3 0 0 r a n 4 0 0 r a n 5 0 0
T o p o lo g ie s

P
ro

vi
si

on
in

g
co

st
s

(M
bp

s)

L D

Q D M R

L C L D

B F S

Figure 4. The provisioning costs of the four heuristics

of the shared tree approach.

7.5. Reducing Computation Overhead

The pruning technique in Phase 2 is a compromise
between performance and overhead. Table 2 depicts
the relation between provisioning cost and the
threshold δ used to prune the set. The table also shows
the number of centers left in the CCS when the value of
δ increases. We used one of the rocket fuel topologies,
the Sprint topology in the simulation. Delay
requirements are set at 1.5 of the minimum value
supported by the shared tree approach. The DC
heuristic is used in Phase 1 and the LCLD trees are
used in Phase 2.

When δ was 0, only 1 center was left in the CCS.
When δ was increased to 0.18, 12 out of 36 candidate
centers were left in the pruned set. This means we only
need to build 12 trees in Phase 3 instead of 36 if the set
is not pruned, and these 12 trees already give optimal
provisioning cost. Further increasing the value of δ and
including more nodes in the set did not improve the
cost. This leads to the conclusion that a small δ (< 0.2)
can significantly reduce the computation overhead
without sacrificing much provisioning cost. In most
cases, the overhead would be around 1/3 of the original.

Table 2. Performance of the pruning technique
δ 0 0.1 0.18 0.2 0.4 0.8

Number of centers 1 11 12 14 23 36

Provisioning cost 1408 1098 1061 1061 1061 1061
Overhead over non-

pruning
2.8% 31% 33% 39% 64% 100%

Excessive cost 32.7% 3.5% 0 0 0 0

7.6. Asymmetric Ingress-Egress Bandwidth
Requirements

In real networks, the ingress and egress bandwidth
requirements are not necessarily the same. Using the
same experiment settings as [7], we model this
asymmetry with an asymmetry ratio r, which defines
the ratio between the ingress/egress bandwidth
requirements. Figure 5, shows the provisioning cost of

the four heuristics with different tree types for the
shared tree approach as the asymmetry ratio increased
from 1 to 256. The number of nodes was 200 and the
number of endpoints was fixed at 5. The provisioning
costs of the heuristics increase with the asymmetry
ratio while their relative ranking remains the same.

0

1000

2000

3000

4000

5000

6000

1 2 4 8 16 32 64 128 256

Asymmetric Ratio

Pr
ov

is
io

n
in

g
 c

o
st

 (
M

bp
s)

LD

QDMR

LCLD

BFS

Figure 5. Effect of asymmetry ratio.

8. Conclusions

We extend the original hose model to incorporate
delay requirements. Three approaches, namely the
“Pipe Mesh” approach, the “Multiple Source-based
Trees” approach, and the “Shared Tree” approach are
proposed for provisioning VPNs in the enhanced model.
For the “Shared Tree” approach, because of its
scalability and ease of routing and restoration, several
heuristics are developed using different techniques to
implement the three phases in constructing the tree.

Simulation is used to evaluate the performance of
the approaches. The “Pipe Mesh” approach satisfies the
most stringent delay requirements, but requires more
bandwidth to be reserved than the other approaches.
The “Multiple Source-Based Trees” approach reserves
less bandwidth than the “Pipe Mesh” approach since
statistical multiplexing can be used within each of the
trees, especially at the roots. The “Shared Tree”
approach requires the least total bandwidth to be
reserved, but the minimum delay requirement that can
be supported is higher than the other two approaches.

The results suggest that the “Shared Tree” approach
can be tuned to improve performance. In Phase 1, we
obtain the minimum delay requirement that a tree can
support by transforming it into the MDStT problem.
The RC and DC heuristics are 2-approximations of
MDStT algorithm and yield near-optimal tree
diameters. In Phase 3, the LCLD and BFS trees require
less total bandwidth to be reserved than the L trees and
the QDMR trees. Finally, the pruning threshold δ in
Phase 2 can be tuned to control the computation
overhead while still yielding near-optimal provisioning
cost.

References

[1] R. Cunnighame-Greene, The Absolute Center of a
Graph, Discrete Applied Mathematics, 7 (1984), pp.
275-283.

[2] B. Davie, and Y. Rekhter. MPLS Technology and
Applications. San Mateo, CA: Morgan Kaufmann, 2000.

[3] T. Erlebach, M. Ruegg, Optimal Bandwidth Reservation
in Hose-Model VPNs with Multi-Path Routing,
INFOCOM 2004.

[4] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merwe, A Flexible
Model for Resource Management in Virtual Private
Networks, In Proc. ACM SIGCOMM, 1999. pp. 95-108.

[5] A. Gupta, A. Kumar, J. Kleinberg, R. Rastogi, and B.
Yener, Provisioning a Virtual Private Network: A
Network Design Problem for Multicommodity Flow, In
Proc. ACM STOC, 2001. pp. 389-398.

[6] A. Juttner, I. Szabo, and A. Szentesi, On Bandwidth
Efficiency of the Hose Resource Management Model in
Virtual Private Networks, In Proc. INFOCOM 2003.

[7] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener,
Algorithms for Provisioning Virtual Private Networks in
the Hose Model, IEEE/ACM Trans. on Networking, vol.
10, issue 4, August 2002. pp. 565-578.

[8] I. Matta, and L. Guo, QDMR: An Efficient QoS
Dependent Multicast Routing Algorithm, In Journal of
Communications and Networks, Real-time Technology
and Applications Symposium, 1999. pp. 213-222.

[9] P. P. Mishra, H. Saran, Capacity Management and
Routing Policies for Voice over IP Traffic, IEEE
Network, vol. 14, no. 2, pp. 20-27, March/April 2000.
pp. 20-27.

[10] Rocketfuel project, Computer Science and Engineering,
Univ. of Washington. http://www.cs.washington.edu/
research/networking/rocketfuel/.

[11] H. F. Salama, D. S. Reeves, and Y. Viniotis, A
Distributed Algorithm for Delay-Constrained Unicast
Routing, IEEE/ACM Trans. on Networking, vol. 8,
issue 2, April 2000. pp. 239-250.

[12] B. M. Waxman, Routing of Multipoint Connections,
IEEE Journal on Selected Areas in Communications,
vol. 6, issue 9, December 1988. pp. 1617-1622.

[13] X. Yuan, On the Extended Bellman-Ford Algorithm to
Solve Two-constrained Quality of Service Routing
Problems, in ICCN'99, Oct. 1999.

[14] L. Zhang, J. Muppala and S. T. Chanson, Provisioning
Virtual Private Networks in the Hose Model with Delay
Requirements, Tech. Rep. HKUST-CS05-07, Dept. of
Computer Science, HKUST, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

