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Abstract 
 

Virtual Private Networks (VPN) provide a cost-
effective means of meeting the communication needs 
among several sites. The hose model for VPN 
configuration alleviates the scalability problem of the 
pipe model by reserving bandwidth for traffic 
aggregates instead of between every pair of endpoints. 
Existing studies on quality of service (QoS) guarantees 
in the hose model deal only with bandwidth 
requirements. In this paper we enhance the hose model 
to specify delay requirements between endpoints. 
Three categories of algorithms, namely the pipe mesh, 
the multiple source-based trees, and the shared tree 
approaches, are then proposed for VPN provisioning. 
We investigate methods of implementing the shared 
tree approach to meet the delay requirements with low 
provisioning cost and small computation overhead.   
 

1. Introduction 

Two popular models have been proposed for 
supporting QoS in Virtual Private Networks (VPNs): 
the “pipe” model [2] and the “hose” model [4]. The 
hose model has good characteristics such as flexibility, 
multiplexing gain and ease of specification [5]. In [4], a 
hose is realized with a source-based tree resulting in a 
factor of 2 to 3 in capacity savings over the pipe model. 
In [7], the hoses are implemented with a single shared 
tree and the algorithms attempt to optimize the total 
bandwidth reserved on the edges of the tree. In [6] the 
bandwidth efficiency of the hose model was studied, 
where the over-provisioning factor is evaluated in 
networks with various sizes and node densities. In [3], 
a multi-path provisioning approach was proposed.  
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However, no work on the hose model has 
considered delay, which is becoming important in 
VPNs with delay-sensitive applications such as Voice 
over IP [9]. In this paper we enhance the hose model to 
support delay requirements at the VPN endpoints. We 
propose three approaches for the enhanced hose model: 
the pipe mesh approach, the multiple source-based 
trees approach, and the shared tree approach. For the 
shared tree approach we consider the following 
questions: (1). How to make the shared tree support the 
delay requirements? (2). How to achieve high statistical 
multiplexing gain given that the delay requirement is 
satisfied? (3). How to reduce the computational 
overhead? The first issue is solved by formulating a 
minimum diameter Steiner tree (MDStT) problem. The 
second problem is proved to be NP-hard and we use 
heuristics to build trees with low provisioning cost. The 
third issue is tackled by a pruning technique.  

The rest of the paper is structured as follows. The 
enhanced hose model, supporting both delay and 
bandwidth requirements, is described in Section 2. 
Section 3 presents three approaches for the enhanced 
hose model and discusses their advantages and 
disadvantages. The three problems with the the shared 
tree approach are further studied in Sections 4, 5, and 6 
respectively. Simulation results comparing the 
performance of the proposed algorithms are presented 
in Section 7. Finally, Section 8 concludes the paper.  

2. The Enhanced Hose Model 

We model the network as a graph G = (V, E) where 
V is the set of nodes and E is the set of bidirectional 
links connecting the nodes. Each link (i, j) is associated 
with two QoS metrics – the bandwidth capacity Lij and 
the delay Dij. The delay value of a path is defined as the 
sum of the delay values of all links along the path. 

The VPN specification in the hose model includes 
[7]: (1) A subset of the nodes P ⊆ V corresponding to 
the VPN endpoints, and (2) for each node i∈ P, the 
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associated ingress and egress bandwidths Bi
in and Bi

out, 
respectively. Note that the terms “ingress” and “egress” 
are taken with respect to the VPN endpoints. This 
model can be enhanced to include a delay requirement 
in two ways: (1) Associate a delay requirement Di with 
each node i, which specifies the maximum delay from 
this node to every other node in the VPN, or (2) Group 
applications that use the VPN into different delay 
classes characterized by their end-to-end delay 
requirements that must hold between every pair of end 
points. We adopt the latter approach in this paper. 

The network identifies a set of delay classes; each 
class j is characterized by its end-to-end delay 
requirement Dj, j = 1…L. Without loss of generality, 
we order the L delay classes as: D1 < D2 < … < DL. In 
practice, these delay classes are obtained by measuring 
the characteristics of typical applications over the 
VPN. For each class j, with a delay constraint Dj, we 
need to find the corresponding ingress and egress 
bandwidth requirements Bi,j

in and Bi,j
out at each i ∈ P. 

Therefore, the VPN specification in the enhanced 
hose model consists of the following three components: 
(1) A subset of the nodes P ⊆ V corresponding to the 
VPN endpoints, (2) For each delay class j, the delay 
requirement Dj, which specifies the maximum end-to-
end delay allowed between any pair of VPN endpoints, 
(3) For each i∈P and each Dj, the associated ingress 
and egress bandwidths Bi,j

in and Bi,j
out, respectively. 

For clarity of presentation, the provisioning of one 
specific delay class, with its given delay requirement D 
and the associated ingress and egress bandwidths Bi

in 
and Bi

out for each VPN endpoint i, is discussed 
subsequently. The provisioning a VPN network can be 
viewed as provisioning each of the L delay classes. 

3. Implementing the Enhanced Hose 
Model 

Three general approaches for implementing the 
enhanced hose model are considered: (1) The “pipe 
mesh” approach, (2) The “multiple source-based trees” 
approach, and (3) The “shared tree” approach. The 
“pipe mesh” approach [4] implements the hoses with a 
mesh of pipes between the VPN endpoints. This can be 
viewed as the traditional pipe model and is included 
mainly for comparison purposes. The second approach 
builds a source-based tree to implement each hose of 
the VPN endpoints. A total of |P| source-based trees are 
needed. The third approach uses a single shared tree for 
all the hoses in the VPN. 

3.1. Pipe Mesh 

In this approach a hose is implemented by a mesh of 
pipes between ingress and egress routers of the VPN. 

For a pipe from ingress i to egress j, min(Bi
out, Bj

in) of 
bandwidth is reserved on each link along the path.  

In order to minimize the reserved bandwidth for a 
pipe, we need to minimize the number of hops without 
violating the delay constraint D. We call this the Delay-
Constrained Min-Hop Problem, which is a special case 
of the Delay-Constrained Least-Cost Problem when all 
the link costs are equal to 1. The problem is solvable 
by the Constrained Bellman-Ford (CBF) algorithm [13], 
which finds independent Min-Hop paths from a source 
to a set of destinations subject to delay constraints. The 
provisioning cost of the pipe mesh is the sum of 
bandwidth reservations of all links.  

3.2. Multiple Source-Based Trees 

In this approach, we use |P| source-based trees to 
realize the hoses, one tree per hose. For a given source 
based tree T rooted at the VPN endpoint i, we denote 
by Tv the connected component of T containing node v 
when link (u, v) is deleted from the tree. In this case, 
the traffic passing through link (u, v) can only originate 
from i to the other endpoints in Tv. The traffic that i can 
send is bounded by Bi

out, and the traffic that Tv can 

receive cannot exceed ∑ ∩∈ vTPj
in
jB . Thus the 

bandwidth reserved for link (u, v) of T is given by CT(u, 

v) = min{ Bi
out , ∑ ∩∈ vTPj

in
jB }. Therefore, the total 

bandwidth reserved for tree T is given by Eq. (1): 

CT = ∑ ∈Tvu T vuC),( ),( . (1) 

In the above equation only links directing away 
from i need to be considered. This is because the 
source-based tree is only used to send traffic from i to 
the other VPN endpoints. Therefore, if link (u, v) is a 
link in tree T directing away from i, no bandwidth 
needs to be reserved on (v, u). Since we are interested 
in minimizing the total bandwidth reserved for tree T, 
the problem of computing the optimal source-based 
tree for endpoint i can be expressed as follows: 

Optimal Delay-Constrained Source-Based Tree 
Problem: Given a set of VPN endpoints P with their 
associated ingress and egress bandwidths and the delay 
requirement D, compute a source-based tree T rooted at 
endpoint i whose leaves are the other VPN endpoints. 
The objective is to minimize CT while satisfying the 
delay requirement, DjidelayiPj ≤∈ ),(max \ . 

Theorem 1: The Optimal Delay-Constrained 
Source-Based Tree Problem is NP-hard. (See [14] for 
proof.)   

We select the QDMR algorithm proposed in [8] to 
construct the source-based trees. QDMR is a fast and 
scalable heuristic for generating low-cost delay-
bounded multicast trees. The total bandwidth reserved 



using multiple source-based trees can be calculated by 
adding the bandwidth reserved for each tree.  

3.3. Shared Tree 

This approach implements the |P| hoses with a single 
shared tree. The tree structure is used because it is 
scalable and simplifies routing and restoration. 
Furthermore, a shared tree allows the bandwidth 
reserved on a link to be shared by the traffic between 
the two sets of VPN endpoints connected by the link.  

For a given shared tree T, we denote by Tu/Tv the 
connected component of T containing node u/v when 
link (u, v) is deleted from the tree. Note that the traffic 
passing through link (u, v) can only originate from the 
endpoints in Tu and terminate at the endpoints in Tv. 
The traffic that endpoints in Tu can send is bounded by 

∑ ∩∈ uTPj
out
jB , and the traffic that Tv can receive cannot 

exceed ∑ ∩∈ vTPj
in
jB . Thus the bandwidth to be 

reserved on link (u, v) of T is given by CT(u, v) = 

min{ ∑ ∩∈ uTPj
out
jB , ∑ ∩∈ vTPj

in
jB }. The total 

bandwidth reserved for tree T is therefore given by 
formula (2): 

CT = ∑ ∈Tvu T vuC),( ),( . (2) 

Note that unlike eq. (1), where only the links 
directing away from the root of the tree are counted, all 
links in the tree (in both directions) are considered in 
eq. (2). Since we are interested in minimizing the total 
bandwidth reserved for tree T, the problem of 
computing the optimal shared tree can be formulated as: 

Optimal Delay-Constrained Shared Tree 
Problem: Given a set of VPN endpoints P with their 
associated ingress and egress bandwidths and the delay 
requirement D, compute a shared tree T connecting all 
the VPN endpoints with the objective of minimizing CT 
while satisfying the delay requirement, 

DjidelayPji ≤∈ ),(max , . 

Theorem 2: The Optimal Delay-Constrained 
Shared Tree Problem is NP-hard (See [14] for proof)   

Compared to the previous two approaches, the 
shared tree approach makes the best use of statistical 
multiplexing to reduce the provisioning cost. Only one 
tree is needed for the whole VPN with p hoses. The 
simulation results in Sec. 7.2 justify this, showing a 
significant reduction in provisioning cost. Furthermore, 
routing along the shared tree is simple and restoration 
of the tree structure is easy. 

We develop heuristics for the Optimal Delay-
Constrained Shared Tree Problem using a center based 
shared tree approach. The procedure can be divided 
into three phases as follows: 

Phase 1: The graph is examined to identify a set of 
candidate centers satisfying the delay requirement. The 
set is called the Candidate Center Set (CCS).  

Phase 2: The Candidate Center Set is pruned to 
reduce the computation overhead of the heuristic. 
Depending on the need to control overhead, the set can 
be unchanged, partially-pruned, or totally pruned. By 
“totally pruned”, we mean the set is reduced to only 
one candidate center after pruning. 

Phase 3: Trees that do not violate the delay 
requirement D are constructed for each of the nodes in 
the pruned Candidate Center Set. The tree with the 
minimum reserved bandwidth is chosen. 

Three problems are of interest: (1). In Phase 1, how 
to make the shared tree support the most stringent delay 
requirements? (2). In Phase 2, how to reduce the 
computation overhead as far as possible by pruning 
without incurring additional provisioning cost? (3). In 
Phase 3, how to achieve high statistical multiplexing 
gain given a specific candidate center? These three 
problems are solved in sections 4, 5, and 6 respectively. 

4. Meeting the Delay Requirement 

In this section, we first propose two heuristics, 
namely the RC and DC heuristics to find all candidate 
centers satisfying the delay requirement. These two 
heuristics cannot guarantee a feasible tree will be found 
when the delay requirement is too stringent. We solve 
this by formulating the minimum diameter Steiner tree 
problem and propose a new algorithm MDStT. 

4.1. The Radius Constrained (RC) Heuristic 

The radius r for node v is defined as the largest 
least-delay value from v to the VPN endpoints. The RC 
heuristic includes a node c in the candidate center set if 
its radius r satisfies r≤D/2. This guarantees that the 
maximum delay between any two VPN endpoints along 
the least-delay tree rooted at c cannot exceed twice the 
radius, i.e., D. Therefore, a shared Steiner tree is 
constructed to span the p endpoints with c as the center.  

4.2. The Diameter Constrained (DC) Heuristic 

The diameter d for node v is defined as the sum of 
the two largest least-delay values from v to the VPN 
endpoints. Note that this definition of the diameter for a 
node is different from the definition of the diameter for 
a tree in Section 4.3. The DC heuristic includes a node 
c in the candidate center set if its diameter d satisfies 
the delay requirement D (d≤D). If the condition is 
satisfied, the delay between any two VPN endpoints 
along the least-delay tree rooted at node c does not 
violate the delay requirement D.  



4.3. Optimal Solution: The MDStT Algorithm 

The above two heuristics, while fast and simple, 
cannot guarantee finding a feasible tree even if one 
exists. In the example given in Figure 1, the delay 
requirement among the VPN endpoints (P1 – P4) is 50. 
Nevertheless, the RC and DC heuristics are only able to 
support a delay requirement up to 58 with the candidate 
center located at Q2 with a radius value of 29. This 
already violates the delay requirement. Figure 1(c), 
shows a feasible tree satisfying the requirement. 
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(a) Network 
topology 

(b) Shortest path tree 
by the DC heuristic 

(c) The feasible 
tree 

Figure 1. Problem with the RC and DC heuristics. Only 
link delays are displayed. 

We define the diameter of a Steiner tree connecting 
the VPN endpoints as the maximum delay between any 
two endpoints. Then the minimum delay requirement 
that can be supported by the shared tree can be found 
by finding the minimum diameter Steiner tree. 

Mathematically, the minimum diameter Steiner tree 
(MDStT) problem can be formulated as follows: 

Minimum Diameter Steiner Tree problem: Let G = 
(V, E) be an undirected graph, where V is the set of 
nodes, and E the set of links. A subset of nodes P ⊆ V 
represents the set of target destinations. Also let |V| = n 
and |E| = m and |P| = p. Suppose each link e ∈ E is 
associated with a nonnegative weight de. A Steiner tree 
is a subgraph T(V’, E’) of G which is a tree and P ⊆ V’. 
The diameter D(T) of T is defined as the longest of the 
shortest paths in T among all node pairs in P. The 
Minimum Diameter Steiner Tree (MDStT) Problem is 
to find a Steiner tree of G with the minimum diameter. 

We first prove that MDStT problem is equivalent to 
the absolute subset 1-center problem of a general graph. 
An absolute subset 1-center of a graph G = (V, E) with 
respect to a subset P⊆V is a point x (on a link or at one 
of the nodes) which represents the position at which the 
greatest distance from x to any destination in P is 
minimized. Note that the distance from x to a given 
destination in P is defined as the length of the shortest 
path (with respect to link weights) connecting them. 

We let A(G) denote the continuum set of points on 
the edges of G. For any point x in A(G), which may or 
may not be a vertex of G, and a destination node v∈P, 
we let dG(x, v) denote the length of a shortest path in G 
between x and v. For each x in A(G) define F(x) = 
maxv∈P dG(x, v). The absolute subset 1-center problem 

(AS1CP) in graph G is to find a location x which 
minimizes F(x). A point x* in A(G) is an absolute 
subset 1-center for subset P in G if the function F 
attains its minimum at x*. 

Theorem 3: Let x* be an absolute subset 1-center 
of P in G and let T(x*) be a shortest path tree 
connecting x* to all nodes in P. Then T(x*) is a 
minimum diameter Steiner tree connecting all nodes in 
P. (See [14] for proof.)  

We develop our MDStT algorithm based on the 
algorithms for the absolute center problem [1]. The 
main idea is to identify a local absolute subset 1-center 
for each link in the graph. The global absolute center 
can be found by selecting the optimal one from the |E| 
local centers. The local center is defined as the point 
minimizing F(x) among every possible point on the link. 
To find the local center for a specific link (A, B), the 
functions from any point x to VPN endpoints Fi(x) are 
first computed. Then F(x) can be obtained by taking 
the upper envelope of these Fi(x), i= 1, 2, …, |P|. The 
local center is easily identified as the point minimizing 
F(x). 

The MDStT algorithm finds the minimum diameter 
Steiner tree in a general graph, and hence supports the 
lowest delay requirement using a tree structure in the 
enhanced hose model. Given the distances from the 
nodes to all VPN endpoints, the RC and DC heuristics 
need only O(|V|) time to identify the center,  compared 
to O(|E| p + |V|plogp) of the optimal MDStT algorithm 
which is more expensive. The following theorem shows 
that the RC and the DC heuristics are 2-approximations 
of the optimal MDStT algorithm with respect to the 
minimum delay requirement supported. 

Theorem 4: The diameters of the trees constructed 
by the RC heuristic and the DC heuristic are at most 
twice the diameter of the minimum diameter Steiner 
tree constructed by the MDStT algorithm. (See [14] for 
proof.)  

5. Lowering Provisioning Cost 

Phase 1 finds a set of candidate centers satisfying 
the delay requirement D. This set consists of network 
nodes if RC and DC heuristics are used, but will 
contain only one virtual node if the MDStT algorithm 
is used, which is the absolute center identified for the 
minimum diameter Steiner tree. The objective of Phase 
2 is to build a low-provisioning-cost tree rooted at a 
specific candidate center. Four types of trees are 
considered in this work. 

5.1. Least Delay Tree 

The Least-delay (LD) Tree uses the least-delay tree 
rooted at the center to connect the VPN endpoints. The 



delay values from the center to the VPN endpoints are 
minimized in this case. Because of the way the 
candidate center is chosen, the delay requirement D 
will always be satisfied. However, no effort is made to 
minimize the total bandwidth reserved. 

5.2. QDMR (QoS Dependent Multicast 
Routing) Tree 

The QDMR tree [8] tries to minimize the number of 
hops in the constructed tree in order to reduce the 
bandwidth reserved. The delay constraint from the 
center to any of the VPN endpoints is set to D/2. 

5.3. LCLD (Least Cost Least Delay) Tree 

The third variation is to construct a LCLD tree [11]. 
Given a center c, each VPN endpoint v tries to connect 
to the center using its LCLD path. The LCLD path 
from VPN endpoint v to the center c goes along the 
Min-Hop path as long as the delay bound Dshared = D/2 
is not violated. It then switches to the Least-Delay path 
from the current node to the center when going further 
along the Min-Hop path would violate the constraint. 
Switching to the least-delay path from the current node 
will satisfy the delay constraint and would not cause 
backtracking. 

Theorem 5: The shared tree constructed using the 
LCLD approach is loop free and satisfies the delay 
requirement D. (See [14] for proof.)  

5.4. BFS (Breadth-First-Search) Tree 

The LCLD tree can reduce the provisioning cost as 
shown by simulation results in Sec. 8. However, going 
along the min-hop path and switching to the least-delay 
path may not always be the best choice. The Breadth-
First-Search (BFS) tree first finds independent delay-
constrained min-hop (DCMH) paths from the center to 
the endpoints using the CBF algorithm [13]. Then these 
DCMH paths are merged to form the final BFS tree.  

A by-product of this merging procedure is that there 
may be loops resulting from simple union of these 
DCMH paths. Therefore, we need to form an induced 
graph by the union of the paths, and perform a final 
round of the shortest-path algorithm from the center to 
the VPN endpoints in the induced graph. This 
procedure would eliminate all loops and leave only a 
Steiner tree spanning the VPN endpoints. 

6. Reducing Computation Overhead 

In large networks with relatively loose delay 
requirements, the number of candidate centers obtained 
in Phase 1 may be quite large. This will cause high 
computation overhead in Phase 3. The objective of 
Phase 2 is to reduce the number of candidate centers in 

the CCS, thereby reducing the computation overhead in 
Phase 3. Let us denote the minimum radius of the 
centers in the CCS by rmin. The radius of each 
candidate center v in the original CCS is checked to see 
if |r-rmin|≤δrmin, where δ is a predefined threshold. 
Candidate centers failing to satisfy the condition are 
deleted from the set. If δ is set to the extreme value 0, 
the CCS will be pruned to only one candidate center 
with the minimum radius. If computation overhead is 
not a major concern, or the number of centers obtained 
in Phase 1 is small, Phase 2 can be omitted and all 
nodes in the original candidate center set are used in 
Phase 3. 

7. Simulation Results 

We conducted a number of simulation experiments 
to measure the performance of the three approaches 
described in Section 3 and the algorithms proposed for 
the shared tree approach in Sections 4, 5, and 6. The 
results show that the shared tree approach is able to 
support a given delay requirement with a scalable tree 
structure at lower reserved bandwidth compared to the 
other two approaches. Given the advantages of the 
shared tree approach, we further study the performance 
of its various implementation alternatives.  

7.1. Network Topologies 

Two sets of topologies were used in our simulations. 
The first set is taken from the Rocketfuel project [10]. 
Among all the topologies, we selected four tier-1 ISP 
topologies as listed in Table 1 below. They represent 
real-world toplogies. The link delays of these 
topologies were computed based on their geographical 
distances. The setting of delay values is reasonable 
since transmission delay and queueing delay values are 
very small in these ISP backbone networks. 

Table 1. Rocketfuel ISP topologies used in the 
simulations. 

 Name Tier Dominant 
Presence 

Degree # of 
nodes 

701 UUNet 1 US 2569 83 
209 Qwest 1 US 887 58 
1239 Sprint 1 US 1735 52 
7018 ATT 1 US 1490 115 

The second set was randomly generated using the 
Waxman Model [12]. Since we can easily control the 
size of the topologies, we use them to study the effect 
of network size on algorithm performance. In this 
model, the nodes are placed on a 3000 × 2400 Km2 
plane, roughly the size of the USA. The probability for 
two nodes to be connected by a link decreases 
exponentially with the Euclidean distance between 
them according to the following probability function: 



)]/(),(exp[),( θρ LvulvuPe −=  (3) 

where L is the maximum distance between any two 
nodes in the network and l(u, v) is the distance between 
u and v. The parameter θ controls the ratio of short 
links to long links, while the parameter ρ controls the 
average node degree of the network. A large value of θ 
increases the number of long links, and a large value of 
ρ results in a large average node degree. In the 
experiments, θ and ρ were set at 0.15 and 2.2 
respectively. These values were selected to obtain 
random networks which closely resemble real networks. 
Like the Rocketfuel topologies, the link delay values of 
the random networks were calculated according to their 
geographic distances. Link capacities were randomly 
chosen from one of the three: OC3, OC12, and OC48. 

For both sets of topologies, the VPN endpoints were 
randomly selected from the network nodes. The 
number of VPN endpoints was set to be 10% of the 
total number of nodes in the network unless explicitly 
specified. The bandwidth requirement of each VPN 
endpoint was uniformly chosen between 2 and 100 
Mbps. A parameter r is associated with each endpoint, 
representing the ratio between the ingress and egress 
bandwidth requirements. This asymmetry ratio varies 
from 1 to 256 in our simulation experiments. The delay 
requirement of the endpoints was generated uniformly 
between 20ms and 100ms. Each simulation result given 
below is the average of 10 rounds of experiments. 

7.2. Efficiency of the Shared Tree Approach 

The performance of the pipe mesh approach, the 
multiple source-based tree approach, and the shared 
tree approach were compared. Moreover, the effect of 
varying the network size and the number of VPN 
endpoints on performance was also investigated. In our 
study, the provisioning cost (the total bandwidth 
reserved) and the minimum delay requirement that can 
be supported were used as performance indices. The 
second metric is of interest because it describes the 
ability of meeting stringent delay requirements. 
Minimum delay requirement supported 

Figure 2 shows the minimum delay requirement that 
can be supported using each of the three approaches. 
We used both rocketfuel and random topologies. The 
name of the random topologies indicates the number of 
nodes in the network (e.g., “ran100” is a random 
topology with 100 nodes). The number of VPN 
endpoints in the networks is fixed at 10% of the total 
number of nodes. The first three bars are the three 
variations of the shared tree approach, with different 
methods of forming the candidate center set in phase 1. 

The last bar shows the performance of the pipe-mesh 
approach and the multiple source-based trees approach.  
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Figure 2. Minimum delay requirements supported by 
the approaches. 

From the figure, the following observations can be 
made. First, the pipe-mesh approach and the multiple 
source-based trees approach perform identically with 
respect to supporting the minimum delay requirement. 
This is because when the delay requirement is stringent, 
the source-based trees are identical to the least-delay 
trees. These two approaches support smaller delay 
requirements than the shared tree approach. Second, 
the minimum delay requirement supported by the 
shared tree approach is higher than the other two 
approaches, although the difference is not large, 
especially for real-world topologies.  
Total bandwidth reserved 

Figure 3 shows the provisioning costs of the three 
approaches. The network parameter settings were the 
same as before. For each network configuration, the 
delay requirement is chosen randomly from [20, 100ms] 
as long as all three approaches can find feasible 
solutions. For the shared tree approach, we used the LD 
tree in phase 2. The shared tree approach exhibits 
better performance than the other two approaches, 
reducing the provisioning cost by a factor of 2 or more 
for a wide range of network parameters. 

7.3. Meeting Delay Requirements 

Figure 2 also shows the minimum delay requirement 
that can be supported using the three technologies in 
phase 1 of the shared tree approach. The MDStT 
algorithm supports the minimum delay requirement that 
can be supported by a tree structure. This provides a 
lower bound for the RC and DC heuristics. The 
performance of the two heuristics is also near-optimal 
although they are only 2-approximations in theory. In 
most cases, the DC heuristic performs close to the 
optimal MDStT algorithm. This suggests that the DC 
heuristic is a good choice in phase 1 since it is fast and 
yields near-optimal tree diameters. 



 

0

5000

10000

15000

20000

25000

UUNet Qwest Sprint ATT
Topologies

Pr
ov

is
io

ni
ng

 c
os

ts
 (

M
bp

s) pipemesh

multiple trees

Shared Tree (LD)

 
(a) 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

ran100 ran200 ran300 ran400 ran500
Topologies

P
ro

vi
si

on
in

g 
co

st
 (

M
bp

s)

pipemesh

multiple trees

Shared Tree (LD)

 
(b) 

Figure 3. The provisioning costs of the approaches. 

7.4. Lowering Provisioning Cost 

The performance of the four implementation 
techniques in Phase 3, i.e., LD tree, QDMR tree, LCLD 
tree, and BFS tree, is exhibited in Figure 4. For each 
network configuration, the minimum delay requirement 
Dmin that the four heuristics can support was the same. 
The delay requirements had to be carefully selected to 
show the different performance of the heuristics. If it is 
too small, the latter three trees will be very similar to 
the LD tree. If it is too large, the delay constraint will 
be meaningless and the LCLD tree and the BFS tree 
will become the min-hop tree, which definitely reserves 
less bandwidth than the LD tree approach. In Figure 4, 
the delay requirement was set to 1.15×Dmin. The results 
show that using the LCLD tree and the BFS tree in 
Phase 3 needs less bandwidth reservation than using 
either the LD tree or the QDMR tree. The difference is 
small for rocketfuel topologies. This is because the 
sizes of these topologies are small, which leaves less 
room for LCLD and BFS trees to go along alternative 
paths other than least-delay paths. The same is true 
with the randomly generated graph “ran100”. When the 
network size increases, we see obvious advantage of 
LCLD and BFS trees over LD and QDMR trees. 
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Figure 4. The provisioning costs of the four heuristics 

of the shared tree approach. 

7.5. Reducing Computation Overhead 

The pruning technique in Phase 2 is a compromise 
between performance and overhead. Table 2 depicts 
the relation between provisioning cost and the 
threshold δ used to prune the set. The table also shows 
the number of centers left in the CCS when the value of 
δ increases. We used one of the rocket fuel topologies, 
the Sprint topology in the simulation. Delay 
requirements are set at 1.5 of the minimum value 
supported by the shared tree approach. The DC 
heuristic is used in Phase 1 and the LCLD trees are 
used in Phase 2.  

When δ was 0, only 1 center was left in the CCS. 
When δ was increased to 0.18, 12 out of 36 candidate 
centers were left in the pruned set. This means we only 
need to build 12 trees in Phase 3 instead of 36 if the set 
is not pruned, and these 12 trees already give optimal 
provisioning cost. Further increasing the value of δ and 
including more nodes in the set did not improve the 
cost. This leads to the conclusion that a small δ (< 0.2) 
can significantly reduce the computation overhead 
without sacrificing much provisioning cost. In most 
cases, the overhead would be around 1/3 of the original. 

Table 2. Performance of the pruning technique 
δ 0 0.1 0.18 0.2 0.4 0.8 

Number of centers 1 11 12 14 23 36 

Provisioning cost  1408 1098 1061 1061 1061 1061 
Overhead over non-

pruning 
2.8% 31% 33% 39% 64% 100% 

Excessive cost 32.7% 3.5% 0 0 0 0 

7.6. Asymmetric Ingress-Egress Bandwidth 
Requirements 

In real networks, the ingress and egress bandwidth 
requirements are not necessarily the same. Using the 
same experiment settings as [7], we model this 
asymmetry with an asymmetry ratio r, which defines 
the ratio between the ingress/egress bandwidth 
requirements. Figure 5, shows the provisioning cost of 



the four heuristics with different tree types for the 
shared tree approach as the asymmetry ratio increased 
from 1 to 256. The number of nodes was 200 and the 
number of endpoints was fixed at 5. The provisioning 
costs of the heuristics increase with the asymmetry 
ratio while their relative ranking remains the same. 
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Figure 5. Effect of asymmetry ratio. 

8. Conclusions 

We extend the original hose model to incorporate 
delay requirements. Three approaches, namely the 
“Pipe Mesh” approach, the “Multiple Source-based 
Trees” approach, and the “Shared Tree” approach are 
proposed for provisioning VPNs in the enhanced model. 
For the “Shared Tree” approach, because of its 
scalability and ease of routing and restoration, several 
heuristics are developed using different techniques to 
implement the three phases in constructing the tree. 

Simulation is used to evaluate the performance of 
the approaches. The “Pipe Mesh” approach satisfies the 
most stringent delay requirements, but requires more 
bandwidth to be reserved than the other approaches. 
The “Multiple Source-Based Trees” approach reserves 
less bandwidth than the “Pipe Mesh” approach since 
statistical multiplexing can be used within each of the 
trees, especially at the roots. The “Shared Tree” 
approach requires the least total bandwidth to be 
reserved, but the minimum delay requirement that can 
be supported is higher than the other two approaches.  

The results suggest that the “Shared Tree” approach 
can be tuned to improve performance. In Phase 1, we 
obtain the minimum delay requirement that a tree can 
support by transforming it into the MDStT problem. 
The RC and DC heuristics are 2-approximations of 
MDStT algorithm and yield near-optimal tree 
diameters. In Phase 3, the LCLD and BFS trees require 
less total bandwidth to be reserved than the L trees and 
the QDMR trees. Finally, the pruning threshold δ in 
Phase 2 can be tuned to control the computation 
overhead while still yielding near-optimal provisioning 
cost. 
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