
This paper appeared in the Proceedings of the 34th International Conference on Parallel Processing
 (ICPP 2005), pp. 5-12, Norway, June 14-17, 2005.

SAREC: A Security-Aware Scheduling Strategy for
Real-Time Applications on Clusters

Tao Xie Xiao Qin Andrew Sung
Department of Computer Science

New Mexico Institute of Mining and Technology
801 Leroy Place, Socorro, New Mexico 87801-4796

{xietao, xqin, sung}@cs.nmt.edu

Abstract

Security requirements of security-critical real-time

applications must be met in addition to satisfying timing
constraints. However, conventional real-time scheduling
algorithms ignore the applications’ security requirements.
In recognition that an increasing number of applications
running on clusters demand both real-time performance
and security, we investigate the problem of scheduling a
set of independent real-time tasks with various security
requirements. We propose a security overhead model that
is capable of measuring security overheads incurred by
security-critical tasks. Further, we propose a security-
aware scheduling strategy, or SAREC, which integrates
security requirements into scheduling for real-time
applications by employing our security overhead model.
To evaluate the effectiveness of SAREC, we implement a
security-aware real-time scheduling algorithm (SAREC-
EDF), which incorporates the earliest deadline first
(EDF) scheduling algorithm into SAREC. Extensive
simulation experiments show that SAREC-EDF
significantly improves overall system performance over
three baseline scheduling algorithms (variations of EDF)
by up to 72.55%.

1. Introduction

With rapid advances in processing power, network
bandwidth, and storage capacity of commodity off-the-
shelf PCs in recent years, clusters have increasingly
become the most cost-effective and viable platforms for
scientific applications [21][22]. It becomes crucial to take
advantage of cluster systems, where nodes are
interconnected through high-speed networks, e.g. Myrinet
or fast Ethernet, to meet the needs of highly complex
scientific problems [20].

Recently there have been some efforts devoted to
development of real-time applications on clusters [16]
[23][24]. Real-time applications depend not only on
results of computation, but also on time instants at which
these results become available [13]. The consequences of

missing deadlines of hard real-time systems may be
catastrophic, whereas such consequences for soft real-time
systems are relatively less damaging.

In addition to satisfying timing constraints in real-time
applications, security is usually required in many
applications [2][10]. Today there exist a growing number
of systems that have real time and security considerations,
because sensitive data and processing require special
safeguard and protection against unauthorized access. In
particular, real-time applications running on clusters
require security protections to completely fulfill their
security-critical needs. However, conventional real time
systems, which are developed to guarantee timing
constraints while possibly posing unacceptable security
risks, are not adequate for real-time applications with
requirements of information security and assurance.

In recognition that an increasing number of
applications on clusters demand both real-time capabilities
and security, we proposed a security-aware scheduling
strategy, or SAREC, which is intended to integrate
security requirements into real-time scheduling for
applications running on clusters. SAREC can achieve high
quality of security for real-time applications while meeting
timing constraints imposed by these applications.

The contributions of this paper include: (1) an analysis
of security and real-time performance needs of various
applications running on clusters; (2) a security overhead
model used to quantitatively measure overhead posted by
various security services and security levels; (3) an
security-aware real-time scheduling strategy; (4) definition
of security and real-time performance metrics to evaluate
our approach; and (5) a simulator where the SAREC-EDF
algorithm is implemented and evaluated.

The rest of the paper is organized in the following
way. Section 2 includes a summary of related work in this
area. Section 3 discusses the system architecture and task
model with security requirements. Section 4 proposes a
security overhead model. Section 5 presents the security-
aware real-time scheduling strategy. Performance analysis
of the SAREC-EDF algorithm is explained in Section 6.
Section7 concludes the paper with summary and future
research directions.

2

2. Related work

Scheduling algorithms for clusters have been
extensively studied in the past both experimentally and
theoretically [29][31]. Subramani et al. incorporated a
buddy scheme for contiguous node allocation into a
backfilling job scheduler for clusters [29]. Vallee et al.
proposed a global scheduler architecture that can
dynamically change scheduling policies while applications
are running on clusters [31]. However, these scheduling
algorithms are not suitable for real-time applications,
because there is no guarantee to finish real-time tasks in
specified time intervals.

The issue of scheduling for real-time applications was
previously reported in the literature, where various aspects
of a complicated scheduling problem were addressed. In
practice, real-time scheduling algorithms generally fall
into two camps: static (off-line) [1] and dynamic (on-line)
[7]. While many algorithms assume that real-time tasks
are independent of one another [30], others schedule tasks
with precedence constraints [1], which are represented by
directed acyclic graphs. Conventional real-time scheduling
algorithms such as Rate Monotonic (RM) algorithm [19],
Earliest Deadline First (EDF) [28], and Spring scheduling
algorithm [25] were successfully applied in real-time
systems. However, most of existing real-time scheduling
algorithms perform poorly for real-time and security-
sensitive applications due to the oversight and ignorance
of security requirements imposed by the applications.

Recently increasing attention has been drawn toward
security-awareness in the context of clusters [3], because
security has become a baseline requirement. Wright et al.
proposed a security architecture for a network of
computers bound together by an overlying framework
used to provide users a powerful virtual heterogeneous
machine [32]. Connelly and Chien proposed an approach
to protecting tightly coupled, high-performance
component communication [8]. Azzedin and Maheswaran

integrated the notion of “trust” into resource management
of a large-scale wide-area system [4]. However, the
aforementioned security techniques are not appropriate for
real-time applications due to the lack of ability to express
and handle timing constraints.

Some work has been done to incorporate security into a
variety of real-time applications [26]. George and Haritsa
proposed concurrency control protocols to support
applications with real-time and security requirements [12].
Ahmed and Vrbsky developed a secure optimistic
concurrency control protocol that can make trade-offs
between security and real-time requirements [2]. Our work
is fundamentally different from the above approaches
because they are focused on concurrency control protocols
whereas ours is intended to develop a security-aware real-
time scheduling strategy, which can meet security
constraints in addition to real-time requirements of tasks
running on clusters. In our previous study, we proposed a
dynamic security-aware scheduling algorithm for a single
machine [33]. Simulation results show that the proposed
algorithm can improve system performance under a wide
range of workload conditions.

3. Security and Real-Time Requirements

3.1. System Model

In this study, we consider the queuing architecture of

an n-node cluster in which n identical nodes are connected
via a high-speed network to process soft real-time tasks
submitted by m users. Let N = {N1, N2, …, Nn} denote the
set of identical nodes. The system model, depicted in Fig.
1, is composed of a security level controller, an admission
controller, and a real-time scheduler where the earliest
deadline first algorithm (EDF) is applied in our
experiment. The function of the admission controller is to
determine if an arriving task in the schedule queue can be
accepted or not, whereas the security level controller is

User m

User 2

User 1

Schedule
Queue

Admission
Controller

Rejected Queue

Accepted
Queue

Real-time
Scheduler

Dispatch
Queue

Security Level
Controller

Local Queue
N1

N2

Nn

Figure 1. System model of the SAREC strategy.

intended to maximize the security levels of admitted tasks.
A schedule queue used to accommodate incoming real-

time tasks is maintained by the admission controller. If the
incoming tasks can be scheduled, the admission controller
will place the tasks in the accepted queue for further
processing. Otherwise, the task will be dropped into the
rejected queue. The real-time scheduler processes all the
accepted tasks by its scheduling policy before transmits
them into the dispatch queue, where the security level
controller escalates the security level of the first task under
two conditions: (1) the security level promotion will not
miss its deadline; and (2) the security level promotion will
not result in any accepted subsequent task to be failed.
After being handled by the security level controller, the
tasks are dispatched to one of the designated node Ni ∈ N
referred to as processing nodes for execution. The
processing nodes, each of which maintains a local queue,
can execute tasks in parallel.

3.2. Real-time tasks with security requirements

We consider a class of real-time systems where an

application is comprised of a collection of tasks performed
to accomplish an overall mission. It is assumed that tasks
with soft deadlines are independent of one another. Each
task requires a set of security services with various
security levels specified by a user. Values of security
levels are normalized to the range from 0 to 1. Note that
the same security level value in different security services
may have various meanings.

Suppose there is a task Ti submitted by a user, Ti is
modeled as a set of rational parameters, e.g., Ti = (ai, ei, fi,
di, li, Si), where ai, ei, and fi are the arrival, execution, and
finish times, di is the deadline, and li denotes the amount
of data (measured in KB) to be protected. ei can be
estimated by code profiling and statistical prediction [7].
Suppose Ti, requires q security services, Si = (, , …,

), a vector of security level ranges, characterizes the
security requirements of the task. is the security level
range of the jth security service required by T

1
iS 2

iS
q
iS

j
iS

i.
Furthermore, the security value controller is intended to
determine the most appropriate point si in space Si, e.g., si
=(, , …,), where 1

is 2
is q

is ,j
i

j
i Ss ∈ .1 qj ≤≤

A security-aware scheduler has to make use of a
function to measure the security benefits gained by each
admitted task. In particular, the security benefit of task Ti
is quantitatively modeled as a security level function
denoted by SL: Si → ℜ, where ℜ is the set of positive real

numbers: , and∑ . (1) ∑
=

=
q

j

j
i

j
ii swsSL

1
)(10 ≤≤ j

iw
=

=
q

j

j
iw

1
1

Note that is the weight of the jth security service for
task T

j
iw

i.

Let Xi be all possible schedules for task Ti, and xi ∈ Xi
be a scheduling decision of Ti. xi is a feasible schedule if
(1) deadline di can be met, e.g., , and (2) the
security requirements are satisfied, e.g.,

 Given a real-time task , the security benefit of
 is expected to be maximized by the security level

controller (See Fig. 1) under the timing constraint:

ii df ≤
≤≤ j

i
j

i sS)min(
).max(j

iS iT

iT

 , (2) (){ }
⎭
⎬
⎫

⎩
⎨
⎧

== ∑
=∈∈

q

j
i

j
i

j
iXxiiXxi xswxsSLxSB

iiii 1
)(max)(max)(

where the security level of the jth service is
obtained under schedule , and

 and are the minimum and
maximum security requirements of task .

)(i
j

i xs

ix)()min(i
j

i
j

i xsS ≤
).max(j

iS≤)min(j
iS)max(j

iS

iT
A security-aware scheduler strives to maximize the

system’s quality of security, or security value, defined by
the sum of the security levels of admitted tasks (See
Equation 1). Thus, the following security value function
needs to be maximized, subjecting to certain timing and
security constraints:

 , (3)
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
=∈

p

i
iiXx

xSByxSV
1

)(max)(

where p is the number of submitted tasks, yi is set to 1 if
task Ti is accepted, and is set to 0 otherwise. Substituting
Equation (2) into (3) yields the following security value
objective function. Thus, our proposed security-aware
scheduling algorithm makes an effort to schedule tasks in
a way to maximize Equation (4):

 (4)
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

= ∑ ∑
= =∈∈

p

i

q

j
i

j
i

j
iXxiXx

xswyxSV
ii1 1

)(maxmax)(

4. Security Overhead Model

Since security is achieved at the cost of performance
degradation, it is fundamental to quantitatively measure
overheads posed by various security services [17]. To
enforce security in real-time applications while making
security-aware scheduling algorithms practical, in this
section we proposed an effective model that is capable of
measuring security overheads experienced by tasks with
security requirements. With the security overhead model
in place, schedulers are enabled to be aware of security
overheads, thereby incorporating the overheads into the
process of scheduling tasks. Particularly, the model can be
employed to compute the earliest start times and the
minimal security overhead (see Equations 10 and 11).
Without loss of generality, we consider three security
services widely deployed in real-time systems, namely,
encryption, integrity, and authentication. The security
overhead model (described in section 4.4) consists of the
following three overhead items (section 4.1~4.3).

3

4.1. Encryption Overhead

Encryption is used to encrypt real-time applications
(executable file) and the data they produced such that a
third party is unable to discover users’ private algorithms
embedded in the executable applications or understand the
data created by the applications. Suppose the 3DES
encryption algorithm is applied to a real-time cluster
consisting of 100 MIPS machines. The time complexity of
3DES indicates an 800 bps (bit per second) encryption rate
on a 100 MIPS machine [11]. Further, computation
overhead caused by encryption is a linear function of the
amount of data (input file size) to be protected [11]. As
mentioned in Section 3.2, li (measured in KB) denotes the
amount of data in task Ti needed to be protected. Let
(measured in milliseconds) be the CPU time spent in
encrypting all data of T

e
iπ

i, and is obtained by: e
iπ

 = (le
iπ i / 120 bytes)* 1.2 ms = 10.24 li ms (5)

Let () be the encryption security level. If
10% of data l

e
is]0.1,0[∈e

is

i has to be encrypted, the value is set to
0.1. Similarly, setting the value of to 1.0 indicates that
all data must be encrypted. Given a task T

e
is

e
is

i with encryption
security level , the computation overhead for encryption
is referred as , which can be computed by Equation (6).

e
is
e
ic

 , where (6) e
i

e
i

e
i

e
i ssc π=)(e

i
e
i Ss ∈

Table 1. Hash Functions Used for Integrity

Hash

Functions

 g
is

Security Level
)(g

i
g sµ

 KB/ms

MD4 0.1 23.90
MD5 0.2 17.09
RIPEMD 0.3 12.00
RIPEMD-128 0.4 9.73
SHA-1 0.5 6.88
RIPEMD-160 0.6 5.69
Tiger 0.7 4.36
Snefru-128 0.8 0.75
Snefru-256 0.9 0.50

4

4.2. Integrity Overhead

Integrity services make it possible to ensure that no one
can modify or tamper applications while they are
executing on clusters. This can be accomplished by using
a variety of hash functions [5]. Nine commonly used hash
functions and their performance (evaluated on a 90 MHz
Pentium machine) are shown in Table 1. Based on their
performance, each hash function is assigned a

corresponding security level in the range from 0.1 to 0.9.
For example, level 0.1 implies that we use MD4, which is
the fastest hash function among the alternatives. Level 0.9
means that Snefru-256 is employed for integrity, and
Snefru-256 is the slowest yet strongest function among the
competitors.

Let be the integrity security level of Tg
is i, and the

computation overhead of the integrity service can be
calculated using Equation (7), where li is the amount of
data whose integrity must be guaranteed, and is a
function used to map a security level to its corresponding
hash function’s performance.

)(g
i

g sµ

)()(g
i

g
i

g
i

g
i slsc µ= . (7)

4.3. Authentication Overhead

Tasks must be submitted from authenticated users and,

thus, authentication services are deployed to authenticate
users who wish to access clusters [9][11][14]. Table 2 lists
three authentication techniques: weak authentication using
HMAC-MD5; acceptable authentication using HMAC-
SHA-1, fair authentication using CBC-MAC-AES. Each
authentication technique is assigned a security level
based on the performance. Thus, authentication overhead

 is a function of security level .

a
is

)(a
i

a
i sc a

is

Table 2. Authentication Methods
Authentication

Methods

a
is : Security

Level
)(a

i
a
i sc : Computation

Time (ms)
HMAC-MD5 0.3 90

HMAC-SHA-1 0.6 148
CBC-MAC-AES 0.9 163

4.4. Security Overhead Model

Now we can derive security overhead, which is the sum

of the three items above. Suppose task Ti requires q
security services, which are provided in sequential order.
Let and be the security level and overhead of
the jth security service, the security overhead c

j
is)(j

i
j

i sc
i

experienced by Ti, can be computed using Equation (8).
The security overhead of Ti with security requirements for
the three services above is modeled by Equation (9).

 , where (8) ∑
=

=
q

j

j
i

j
ii scc

1
)(j

i
j

i Ss ∈

 ∑
∈

=
},,{

)(
geaj

j
i

j
ii scc , where (9) j

i
j

i Ss ∈

It is to be noted that , , and in
Equation (9) are derived from Equations (6)-(7) and Table
2. In section 5, Equation (9) will be used to calculated the
earliest start times and minimal security overhead. (See
Equations 10 and 11).

)(e
i

e
i sc)(g

i
g
i sc)(a

i
a
i sc

5

5. The SAREC-EDF Algorithm

Now we are in a position to evaluate the effectiveness
of SAREC by developing a novel security-aware real-time
scheduling algorithm, or SAREC-EDF, which
incorporates the earliest deadline first (EDF) scheduling
algorithm into the SAREC strategy. The schedule of a task
is feasible if the task is completed before its deadline.
Hence, a task has a feasible schedule on a cluster if there
exists at least one node, where a valid schedule is
available for the task. More formally, this fact can be
express by the following property. The earliest start
time can be computed by Equation (10).)(es ij T

 , (10)

where represents the remaining overall execution time

of a task currently running on the jth node, and

∑ ∑
≤∈ ∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

ikjk ddNT geal

l
k

l
kkjij scerT

, },,{
)()(es

jr

∑
∈

+
},,{

)(
geal

l
k

l
kk sce is the overall execution time of task Tk

whose deadline is earlier than that of Ti. Thus, the earliest
start time of Tk is a sum of the remaining overall execution
time of the running task and the overall execution times of
the tasks with earlier deadlines. The minimal security
overhead of Tmin

ic i can be efficiently calculated by the
following equation.

1.for each task Ti submitted to the schedule queue do
2. for each node Nj in the cluster do
3. Use (10) to computer es ,)(ij T
4. Use (11) to obtain c of task Tmin

i i;
5. if es then

i
min
iiij dceT ≤++)(

6. Sort the security service weights, e.g.,
 , 321 v

i
v
i

v
i www << ;31},,,{ ≤≤∈ lgeavl

7. for each security service do ,31},,,{ ≤≤∈ lgeavl

8. { };min ll v
i

v
i Ss = /* Initialize the security value*/

9. for each security service do ,31},,,{ ≤≤∈ lgeavl

10. while do }max{ ll v
i

v
i Ss <

11. increase security level ;lv
is

12. Use (9) to calculate security overhead ci(Nj)
13.(a) if or

iiiij dceT >++)(es
13.(b) ∃ then

kjiikjikjk dNceTddNT >++>∈)()(es, :

j
ij SLNN

14. decrease security level break; ;lv
is

15. end while
16. end for
17. /* Obtain the security level */);(i

j
i sSLSL ←

18. else /* Set the security level to 0 */ ;0←j
iSL

19. end for
20. if ∃ then 0: >∈
21. y /* Accept task T;1←i i */
22. /* Optimize quality of security*/

 Find node Nk for Ti, subject to: { };max
1

j
inj

k
i SLSL

≤≤
=

23. dispatch task Ti to Nk based on the above schedule;
24. else /* Reject T;0←iy i */
25. end for
26.end for

 { }()∑
∈

=
},,{

min
geaj

j
i

j
i

min
i Scc , (11)

where denotes the overhead of the jth security
service when the minimal requirement is satisfied.

{ }(j
i

j
i Sc min)

The SAREC-EDF algorithm is outlined in Figure 2.
Before optimizing the security level of task Ti on Nj,
SAREC-EDF attempts to meet the real-time requirement
of Ti. This can be accomplished by calculating the earliest
start time (use Equation 10) and the minimal security
overhead of Ti (use Equation 11) in Steps 3 and 4,
followed by checking if Ti can be completed before its
deadline (see Step 5). If the deadline can not be met by Nj,
Step 18 sets Ti’ security level on Nj to 0, implying that Ti
can not be allocation to node Nj. If no node can produce a
feasible schedule for Ti, it is rejected by Step 24.

6. Simulation Studies

Using extensive simulation experiments based on real
trace consisting of 29695 tasks, we compared SAREC-
EDF against three baseline algorithms: SHMIN-EDF,
SHMAX-EDF, and SHRND-EDF. These three algorithms
are variations of the conventional EDF algorithm. For the
sake of simplicity, throughout this section SAREC-EDF is
referred to as SAREC. Similarly, the baseline algorithms
are referred to as SHMIN, SHMAX, and SHRND,
respectively. The baseline algorithms are described below.

Figure 2. The SAREC-EDF

(1) SHMIN: The admission controller intentionally
selects the lowest security level of each security
services required by an incoming task.

(2) SHMAX: The admission controller chooses the
highest security level for each security requirement
posed by an arriving task.

(3) SHRND: Unlike the above two baseline algorithms,
SHRND randomly picks a value within the security
level range of each service required by a task.

6.1. Simulator and Simulation Parameters

Table 3 summarizes the key configuration parameters
of the simulated clusters used in our experiments. The
parameters of nodes are chosen to resemble real-world
workstations like Sun SPARC-20 and Sun Ultra 10.
 We modified the traces used in [15] by adding deadlines
for all tasks. The assignment of deadlines is controlled by

the parameter β (We use Tbase for β in the following
figures), which sets an upper bound on tasks’ slack times.
We use Equation (12) to generate Ti’s deadline di.
 d (12) ,β+++= max

iiii cea
where ai and ei are the arrival and execution times
obtained from the traces. c is the maximal security
overhead, which is computed by Equation (13).

max
i

 c (13) { }(∑
∈

=
},,{

max max
geaj

j
i

j
ii Sc

6

 (a) Guarantee ratio (b) Security value (c) Overall system performance
Figure 3. Simulation performance of four scheduling algorithms.

)
)where is the overhead of the jth security

service for T
{ }(j

i
j

i Sc max
i with the maximal requirements being met.

Table 3. Characteristics of System Parameters
Parameter Value (Fixed) - (Varied)

CPU speed 100 million instructions/second
β (Tbase) (100 ms) – (100, 500, …, 60000ms)

Number of nodes (64) – (8, 16, 32, 64, 96, 128, 256)
Mean size of data to
be secured

50KB for short jobs, 500KB for
middle jobs, 1MB for long jobs

Required security
services

Encryption, Integrity and
Authentication

The performance metrics by which we evaluate system

performance include: security value (see Equation 4),
guarantee ratio (measured as a fraction of total submitted
tasks that are found to be schedulable), and overall system
performance (defined as a product of security value and
guarantee ratio).

6.2. Overall Performance Comparisons

To stress the evaluation, we assume that each task
arrived in the cluster requires the three security services.
Figure 3 shows the simulation results for these four
algorithms on a cluster with 64 nodes where the CPU
power is fixed at 100MIPS. We observe from Figure 3 (a)
that SAREC and SHMIN exhibit similar performance in
terms of guarantee ratio (the performance difference is
less than 5%), whereas the SAREC noticeably

outperforms SHMAX and SHRND. We attribute the
performance improvement of SAREC to the fact that
SAREC judiciously boosts the security levels of accepted
tasks under the condition that the deadlines of the tasks are
guaranteed, thereby maintaining relatively high guarantee
ratios. Unlike SAREC, SHMAX and SHRND improve
quality of security at the cost of missing deadlines.

Figure 3 (a) illustrates that the guarantee ratios of four
algorithms increase with the increasing value of the
deadline base. This is because the large deadline base
leads to long slack times, which, in turn, make the dead-
lines more likely to be guaranteed. Figure 3 (b) plots
security values of the four algorithms when the deadline
base is increased from 0.1 to 60 ms. It reveals that SAREC
consistently performs better, with respect to quality of
security, than SHMIN and SHRND. When the deadlines
are tight, the security values of SAREC are very close to
those of SHMAX. However, SAREC significantly out-
performs SHMAX when the deadline base becomes large.
This is because that SAREC can accept for tasks
compared with SHMAX. Interestingly, when the deadlines
become loose, the performance improvements of SAREC
over the three competitors are more pronounced. The
results clearly indicate that clusters can gain more
performance benefits from SAREC under the
circumstance that real-time tasks have loose deadlines.

The overall system performance improvements
achieved by SAREC are plotted in Figure 3(c). The first
observation deduced from Figure 3(c) is that the value of
overall system performance increases with the deadline
base. This is because the overall system performance is a
product of security value and guarantee ratio, which
become higher when deadlines are loose. A second
observation is that SAREC significantly outperforms the
other alternatives. This can be explained by the fact that
SAREC improves security values, while achieving higher
guarantee ratio. Figure 3(c) indicates that the overall
performance improvement achieved by SAREC becomes
more pronounced when the deadlines are looser, implying
that more performance benefits can be obtained for real-
time tasks with large slack times.

 (a) Guarantee ratio (b) Security value (c) Overall system performance
Figure 4. Scalabilities of the four scheduling algorithms.

6.3. Scalability

This experiment is intended to investigate the

scalability of the SAREC algorithm. We scale the number
of nodes in a cluster from 8 to 256. Figure 4 plots the
performances as functions of the number of nodes in the
cluster. The results show that the SAREC approach
exhibits good scalability.

7

 Figure 5. Impact of the number of nodes on the
overall system performance improvement.

Figure 5 shows the improvement of SAREC in overall
system performance over the other three heuristics. It is
observed from Figure 5 that the amount of improvement
over SHMIN becomes more prominent with the increasing
value of node number. This result can be explained by the
conservative nature of SHMIN, which merely meets the
minimal security requirements for tasks accepted by the
cluster. Conversely, the amount of improvement over
SHMAX decreases as the number of nodes increases. This
is partially because SHMAX can guarantee the maximal
security requirements of more accepted tasks when more
nodes are available in the cluster. It is interesting to note
that the trend of the improvement over SHRND is not
monotonous, because SHRND randomly decides security
levels for tasks.

7. Summary and Future Work

In this paper, we presented a strategy SAREC for

security-aware scheduling of real-time applications on
clusters. This strategy is capable for the design of security-
aware real-time scheduling algorithms like SAREC-EDF.
To make security-aware scheduling algorithms practical,
we also proposed a security overhead model to measure
overheads of security services.

To evaluate the performance of our SAREC-EDF
algorithm, we developed a trace-driven simulator and
proposed two performance metrics: security value and
overall system performance defined as the product of
security value and guarantee ratio. Compared with three
baseline algorithms, SAREC-EDF, on average, achieved
improvement of 72.55%, 32.93% and 63.54%,
respectively, in overall system performance. In addition,
extensive experimental results show that compared with
the three security-heuristic EDF algorithms above,
SAREC-EDF consistently improves the overall system
performance in terms of quality of security and system
guarantee ratio under a wide range of workload
characteristics and execution environments.

We qualitatively assigned security levels to the security
services based on their respective security capacities. In
our future work, we intend to investigate a quantitative
way of reasonably specifying the security level of each
security mechanism.

In this study we simply consider CPU time in the
security overhead model. For future work, we will
integrate multi-dimensional computing resources, e.g.,
memory, network bandwidth, and storage systems, into
our model.

Acknowledgements
This work was partially supported by a start-up research
fund (103295) from the research and economic
development office of the New Mexico Tech and a DoD
IASP Capacity Building grant.

References

[1] T.F. Abdelzaher and K.G. Shin., “Combined Task and

Message Scheduling in Distributed Real-Time Systems,”
IEEE Trans. Parallel and Distributed Systems, Vol. 10, No.
11, Nov. 1999.

[2] Q. Ahmed and S. Vrbsky, “Maintaining security in firm real-
time database systems,” Proc. 14th Ann. Computer Security
Application Conf., 1998.

[3] A. Apvrille and M. Pourzandi, “XML Distributed Security
Policy for Clusters,” Computers & Security Journal,
Elsevier, Vol.23, No.8, pp. 649-658, Dec. 2004.

[4] F. Azzedin, M. Maheswaran, “Towards trust-aware resource
management in grid computing systems,” Proc. 2nd
IEEE/ACM Int’l Symp. Cluster Computing and the Grid,
May 2002.

[5] A. Bosselaers, R. Govaerts and J. Vandewalle, “Fast hashing
on the Pentium,” Proc. Advances in Cryptology, LNCS 1109,
pp. 298-312, Springer-Verlag, 1996.

[6] T. D. Braun et al., “A comparison study of static mapping
heuristics for a class of meta-tasks on heterogeneous
computing systems,” Proc. Workshop on Heterogeneous
Computing, pp.15-29, Apr. 1999.

[7] S. Cheng and Y. Huang, “Dynamic real-time scheduling for
multi-processor tasks using genetic algorithm,” Proc. Ann.
Int’l Conf. Computer Software and App., 2004.

[8] K. Connelly and A. A. Chien, “Breaking the barriers: high
performance security for high performance computing,”
Proc. Workshop on New security paradigms, Sept. 2002.

[9] J. Deepakumara, H.M. Heys, and R. Venkatesan,
“Performance comparison of message authentication code
(MAC) algorithms for Internet protocol security (IPSEC),”
Proc. Newfoundland Electrical and Computer Engineering
Conf., St. John's, Newfoundland, Nov. 2003.

[10] G. Donoho, “Building a Web Service to Provide Real-Time
Stock Quotes,” MCAD.Net, February, 2004.

[11] O. Elkeelany, M. Matalgah, K. Sheikh, M. Thaker, G.
Chaudhry, D. Medhi, J. Qaddouri, “Performance analysis of
IPSec protocol: encryption and authentication,” Proc. IEEE
Int’l Conf. Communications, pp. 1164-1168, 2002.

[12] B. George and J. Haritsa, “Secure transaction processing in
firm real-time database systems,” Proc. ACM SIGMOD
Conf., May, 1997.

[13] W. A. Halang, et al., “Measuring the performance of real-
time systems,” Int’l Journal of Time-Critical Computing
Systems, 18, pp. 59-68, 2000.

[14] A. Harbitter and D. A. Menasce, “The performance of
public key enabled Kerberos authentication in mobile
computing applications,” Proc. of the 8th ACM Conf.
Computer and Comm. Security, pp. 78-85, 2001.

[15] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balacing,” ACM Trans.
Computer Systems, vol. 3, no. 31, 1997.

[16] L. He, A. Jatvis, and D. P. Spooner, “Dynamic scheduling
of parallel real-time jobs by modelling spare capabilities in
heterogeneous clusters,” Proc. Int’l Conf. Cluster
Computing, pp. 2-10, Dec. 2003.

[17] C. Irvine and T. Levin, “Towards a taxonomy and costing
method for security services,” Proc. 15th Annual Computer
Security Applications Conference, 1999.

[18] Z. Lan and P. Deshikachar, “Performance analysis of large-

scale cosmology application on three cluster systems,” Proc.
IEEE Int’l Conf. Cluster Computing, pp. 56-63, Dec. 2003.

[19] C. L. Liu, J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,”
Journal of the ACM, Vol.20, No.1, pp. 46-61, 1973.

[20] X. Qin, H. Jiang, Y. Zhu, and D. R. Swanson, “Towards
Load Balancing Support for I/O-Intensive Parallel Jobs in a
Cluster of Workstations,” Proc. 5th IEEE Int’l Conf. on
Cluster Computing, pp.100-107, Dec. 2003.

[21] X. Qin and H. Jiang, “Improving Effective Bandwidth of
Networks on Clusters using Load Balancing for
Communication-Intensive Applications,” Proc. 24th IEEE
Int’l Performance, Computing, and Communications Conf.,
Phoenix, Arizona, April 2005.

[22] X. Qin, “Improving Network Performance through Task
Duplication for Parallel Applications on Clusters,” Proc.
24th IEEE Int’l Performance, Computing, and
Communications Conference, Phoenix, Arizona, April 2005.

[23] X. Qin, H. Jiang, D. R. Swanson, “An Efficient Fault-
tolerant Scheduling Algorithm for Real-time Tasks with
Precedence Constraints in Heterogeneous Systems,” Proc.
31st Int’l Conf. Parallel Processing, pp.360-368. Aug. 2002.

[24] X. Qin and H. Jiang, “Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous
Systems,” Proc. 30th Int’l Conf. Parallel Processing,
pp.113-122, Sept. 2001.

[25] K. Ramamritham, J. A. Stankovic, “Dynamic task
scheduling in distributed hard real-time system,” IEEE
Software, Vol. 1, No. 3, July 1984.

[26] S. H. Son, R. Zimmerman, and J. Hansson, “An adaptable
security manager for real-time transactions,” Proc. 12th
Euromicro Conf. Real-Time Sys., pp. 63 – 70, June 2000.

[27] S. H. Son, R. Mukkamala, and R. David, “Integrating
security and real-time requirements using covert channel
capacity,” IEEE Trans. Knowledge and Data Engineering,
Vol. 12 , No. 6, pp. 865 – 879, Nov.-Dec. 2000.

[28] J. A. Stankovic, M. Spuri, K. Ramamritham, G.C. buttazzo,
“Deadline Scheduling for Real-Time Systems – EDF and
Related Algorithms,” Kluwer Academic Publishers, 1998.

[29] V. Subramani, V., R. Kettimuthu, S. Srinivasan, J.
Johnston, and P. Sadayappan, “Selective buddy allocation for
scheduling parallel jobs on clusters,” Proc. IEEE Int’l Conf.
Cluster Computing, pp. 107 – 116, Sept. 2002.

[30] M.E. Thomadakis and J.-C. Liu, “On the efficient
scheduling of non-periodic tasks in hard real-time systems,”
Proc. 20th IEEE Real-Time Sys. Symp., pp.148-151, 1999.

[31] G. Vallee, C. Morin, J.-Y. Berthou, and L. Rilling, “A new
approach to configurable dynamic scheduling in clusters
based on single system image technologies,” Proc. Int’l
Symp. Parallel and Distributed Processing, April 2003.

[32] R. Wright, D. J. Shifflett, C. E. Irvine, “Security
Architecture for a Virtual Heterogeneous Machine,” Proc.
14th Ann. Computer Security Applications Conf., 1998.

[33] T. Xie, A. Sung, and X. Qin, "Dynamic Task Scheduling
with Security Awareness in Real-Time Systems", Proc. Int’l
Symp. Parallel and Distributed Processing, the 4th Int'l
Workshop on Performance Modeling, Evaluation, and
Optimization of Parallel and Distributed Sys., April 2005.

8

	1. Introduction
	2. Related work
	3. Security and Real-Time Requirements
	3.1. System Model
	3.2. Real-time tasks with security requirements

	4. Security Overhead Model
	4.1. Encryption Overhead
	4.2. Integrity Overhead
	4.3. Authentication Overhead
	4.4. Security Overhead Model

	5. The SAREC-EDF Algorithm
	6. Simulation Studies
	6.1. Simulator and Simulation Parameters
	6.2. Overall Performance Comparisons
	6.3. Scalability

	7. Summary and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

