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Abstract 

 
Security requirements of security-critical real-time 

applications must be met in addition to satisfying timing 
constraints. However, conventional real-time scheduling 
algorithms ignore the applications’ security requirements. 
In recognition that an increasing number of applications 
running on clusters demand both real-time performance 
and security, we investigate the problem of scheduling a 
set of independent real-time tasks with various security 
requirements. We propose a security overhead model that 
is capable of measuring security overheads incurred by 
security-critical tasks. Further, we propose a security-
aware scheduling strategy, or SAREC, which integrates 
security requirements into scheduling for real-time 
applications by employing our security overhead model. 
To evaluate the effectiveness of SAREC, we implement a 
security-aware real-time scheduling algorithm (SAREC-
EDF), which incorporates the earliest deadline first 
(EDF) scheduling algorithm into SAREC. Extensive 
simulation experiments show that SAREC-EDF 
significantly improves overall system performance over 
three baseline scheduling algorithms (variations of EDF) 
by up to 72.55%. 

 
 

1. Introduction 
 

With rapid advances in processing power, network 
bandwidth, and storage capacity of commodity off-the-
shelf PCs in recent years, clusters have increasingly 
become the most cost-effective and viable platforms for 
scientific applications [21][22]. It becomes crucial to take 
advantage of cluster systems, where nodes are 
interconnected through high-speed networks, e.g. Myrinet 
or fast Ethernet, to meet the needs of highly complex 
scientific problems [20].  

Recently there have been some efforts devoted to 
development of real-time applications on clusters [16] 
[23][24]. Real-time applications depend not only on 
results of computation, but also on time instants at which 
these results become available [13]. The consequences of 

missing deadlines of hard real-time systems may be 
catastrophic, whereas such consequences for soft real-time 
systems are relatively less damaging.  

In addition to satisfying timing constraints in real-time 
applications, security is usually required in many 
applications [2][10]. Today there exist a growing number 
of systems that have real time and security considerations, 
because sensitive data and processing require special 
safeguard and protection against unauthorized access. In 
particular, real-time applications running on clusters 
require security protections to completely fulfill their 
security-critical needs. However, conventional real time 
systems, which are developed to guarantee timing 
constraints while possibly posing unacceptable security 
risks, are not adequate for real-time applications with 
requirements of information security and assurance.  

In recognition that an increasing number of 
applications on clusters demand both real-time capabilities 
and security, we proposed a security-aware scheduling 
strategy, or SAREC, which is intended to integrate 
security requirements into real-time scheduling for 
applications running on clusters. SAREC can achieve high 
quality of security for real-time applications while meeting 
timing constraints imposed by these applications.  

The contributions of this paper include: (1) an analysis 
of security and real-time performance needs of various 
applications running on clusters; (2) a security overhead 
model used to quantitatively measure overhead posted by 
various security services and security levels; (3) an 
security-aware real-time scheduling strategy; (4) definition 
of security and real-time performance metrics to evaluate 
our approach; and (5) a simulator where the SAREC-EDF 
algorithm is implemented and evaluated.  

The rest of the paper is organized in the following 
way. Section 2 includes a summary of related work in this 
area. Section 3 discusses the system architecture and task 
model with security requirements. Section 4 proposes a 
security overhead model. Section 5 presents the security-
aware real-time scheduling strategy. Performance analysis 
of the SAREC-EDF algorithm is explained in Section 6. 
Section7 concludes the paper with summary and future 
research directions.  
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2. Related work 
 

Scheduling algorithms for clusters have been 
extensively studied in the past both experimentally and 
theoretically [29][31]. Subramani et al. incorporated a 
buddy scheme for contiguous node allocation into a 
backfilling job scheduler for clusters [29].  Vallee et al. 
proposed a global scheduler architecture that can 
dynamically change scheduling policies while applications 
are running on clusters [31]. However, these scheduling 
algorithms are not suitable for real-time applications, 
because there is no guarantee to finish real-time tasks in 
specified time intervals.  

The issue of scheduling for real-time applications was 
previously reported in the literature, where various aspects 
of a complicated scheduling problem were addressed. In 
practice, real-time scheduling algorithms generally fall 
into two camps: static (off-line) [1] and dynamic (on-line) 
[7]. While many algorithms assume that real-time tasks 
are independent of one another [30], others schedule tasks 
with precedence constraints [1], which are represented by 
directed acyclic graphs. Conventional real-time scheduling 
algorithms such as Rate Monotonic (RM) algorithm [19], 
Earliest Deadline First (EDF) [28], and Spring scheduling 
algorithm [25] were successfully applied in real-time 
systems. However, most of existing real-time scheduling 
algorithms perform poorly for real-time and security-
sensitive applications due to the oversight and ignorance 
of security requirements imposed by the applications. 

Recently increasing attention has been drawn toward 
security-awareness in the context of clusters [3], because 
security has become a baseline requirement. Wright et al. 
proposed a security architecture for a network of 
computers bound together by an overlying framework 
used to provide users a powerful virtual heterogeneous 
machine [32]. Connelly and Chien proposed an approach 
to protecting tightly coupled, high-performance 
component communication [8]. Azzedin and Maheswaran 

integrated the notion of “trust” into resource management 
of a large-scale wide-area system [4]. However, the 
aforementioned security techniques are not appropriate for 
real-time applications due to the lack of ability to express 
and handle timing constraints. 

Some work has been done to incorporate security into a 
variety of real-time applications [26]. George and Haritsa 
proposed concurrency control protocols to support 
applications with real-time and security requirements [12]. 
Ahmed and Vrbsky developed a secure optimistic 
concurrency control protocol that can make trade-offs 
between security and real-time requirements [2]. Our work 
is fundamentally different from the above approaches 
because they are focused on concurrency control protocols 
whereas ours is intended to develop a security-aware real-
time scheduling strategy, which can meet security 
constraints in addition to real-time requirements of tasks 
running on clusters. In our previous study, we proposed a 
dynamic security-aware scheduling algorithm for a single 
machine [33]. Simulation results show that the proposed 
algorithm can improve system performance under a wide 
range of workload conditions. 

 
3. Security and Real-Time Requirements 
 
3.1. System Model  

 
In this study, we consider the queuing architecture of 

an n-node cluster in which n identical nodes are connected 
via a high-speed network to process soft real-time tasks 
submitted by m users. Let N = {N1, N2, …, Nn} denote the 
set of identical nodes. The system model, depicted in Fig. 
1, is composed of a security level controller, an admission 
controller, and a real-time scheduler where the earliest 
deadline first algorithm (EDF) is applied in our 
experiment. The function of the admission controller is to 
determine if an arriving task in the schedule queue can be 
accepted or not, whereas the security level controller is 
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Figure 1. System model of the SAREC strategy. 

 

 
 
 
 
 



intended to maximize the security levels of admitted tasks. 
A schedule queue used to accommodate incoming real-

time tasks is maintained by the admission controller. If the 
incoming tasks can be scheduled, the admission controller 
will place the tasks in the accepted queue for further 
processing. Otherwise, the task will be dropped into the 
rejected queue. The real-time scheduler processes all the 
accepted tasks by its scheduling policy before transmits 
them into the dispatch queue, where the security level 
controller escalates the security level of the first task under 
two conditions: (1) the security level promotion will not 
miss its deadline; and (2) the security level promotion will 
not result in any accepted subsequent task to be failed. 
After being handled by the security level controller, the 
tasks are dispatched to one of the designated node Ni ∈ N 
referred to as processing nodes for execution. The 
processing nodes, each of which maintains a local queue, 
can execute tasks in parallel. 

  
3.2. Real-time tasks with security requirements 

 
We consider a class of real-time systems where an 

application is comprised of a collection of tasks performed 
to accomplish an overall mission. It is assumed that tasks 
with soft deadlines are independent of one another. Each 
task requires a set of security services with various 
security levels specified by a user. Values of security 
levels are normalized to the range from 0 to 1. Note that 
the same security level value in different security services 
may have various meanings. 

Suppose there is a task Ti submitted by a user, Ti is 
modeled as a set of rational parameters, e.g., Ti = (ai, ei, fi, 
di, li, Si), where ai, ei, and fi are the arrival, execution, and 
finish times, di is the deadline, and li denotes the amount 
of data (measured in KB)  to be protected. ei can be 
estimated by code profiling and statistical prediction [7]. 
Suppose Ti, requires q security services, Si = ( , , …, 

), a vector of security level ranges, characterizes the 
security requirements of the task.   is the security level 
range of the jth security service required by T
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A security-aware scheduler has to make use of a 
function to measure the security benefits gained by each 
admitted task. In particular, the security benefit of task Ti 
is quantitatively modeled as a security level function 
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Let Xi be all possible schedules for task Ti, and xi ∈ Xi  
be a scheduling decision of Ti. xi is a feasible schedule if 
(1) deadline di can be met, e.g., , and (2) the 
security requirements are satisfied, e.g.,  

 Given a real-time task , the security benefit of 
 is expected to be maximized by the security level 

controller (See Fig. 1) under the timing constraint: 
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A security-aware scheduler strives to maximize the 

system’s quality of security, or security value, defined by 
the sum of the security levels of admitted tasks (See 
Equation 1). Thus, the following security value function 
needs to be maximized, subjecting to certain timing and 
security constraints: 
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where p is the number of submitted tasks, yi is set to 1 if 
task Ti is accepted, and is set to 0 otherwise. Substituting 
Equation (2) into (3) yields the following security value 
objective function. Thus, our proposed security-aware 
scheduling algorithm makes an effort to schedule tasks in 
a way to maximize Equation (4):  
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4. Security Overhead Model 
 

Since security is achieved at the cost of performance 
degradation, it is fundamental to quantitatively measure 
overheads posed by various security services [17]. To 
enforce security in real-time applications while making 
security-aware scheduling algorithms practical, in this 
section we proposed an effective model that is capable of 
measuring security overheads experienced by tasks with 
security requirements. With the security overhead model 
in place, schedulers are enabled to be aware of security 
overheads, thereby incorporating the overheads into the 
process of scheduling tasks. Particularly, the model can be 
employed to compute the earliest start times and the 
minimal security overhead (see Equations 10 and 11). 
Without loss of generality, we consider three security 
services widely deployed in real-time systems, namely, 
encryption, integrity, and authentication. The security 
overhead model (described in section 4.4) consists of the 
following three overhead items (section 4.1~4.3). 
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4.1. Encryption Overhead 
 

Encryption is used to encrypt real-time applications 
(executable file) and the data they produced such that a 
third party is unable to discover users’ private algorithms 
embedded in the executable applications or understand the 
data created by the applications. Suppose the 3DES 
encryption algorithm is applied to a real-time cluster 
consisting of 100 MIPS machines. The time complexity of 
3DES indicates an 800 bps (bit per second) encryption rate 
on a 100 MIPS machine [11]. Further, computation 
overhead caused by encryption is a linear function of the 
amount of data (input file size) to be protected [11]. As 
mentioned in Section 3.2, li (measured in KB) denotes the 
amount of data in task Ti needed to be protected. Let  
(measured in milliseconds) be the CPU time spent in 
encrypting all data of T

e
iπ

i, and  is obtained by: e
iπ

      = (le
iπ i / 120 bytes)* 1.2 ms = 10.24 li ms            (5) 

Let  ( ) be the encryption security level. If 
10% of data l

e
is ]0.1,0[∈e

is

i has to be encrypted, the value  is set to 
0.1. Similarly, setting the value of  to 1.0 indicates that 
all data must be encrypted. Given a task T

e
is

e
is

i with encryption 
security level , the computation overhead for encryption 
is referred as , which can be computed by Equation (6). 
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Table 1. Hash Functions Used for Integrity  

Hash 

Functions 

        g
is

Security Level 
)( g

i
g sµ  

  KB/ms 

MD4 0.1 23.90 
MD5 0.2 17.09 
RIPEMD 0.3 12.00 
RIPEMD-128 0.4 9.73 
SHA-1 0.5 6.88 
RIPEMD-160 0.6 5.69 
Tiger 0.7 4.36 
Snefru-128 0.8 0.75 
Snefru-256 0.9 0.50 
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4.2. Integrity Overhead 
 

Integrity services make it possible to ensure that no one 
can modify or tamper applications while they are 
executing on clusters. This can be accomplished by using 
a variety of hash functions [5]. Nine commonly used hash 
functions and their performance (evaluated on a 90 MHz 
Pentium machine) are shown in Table 1. Based on their 
performance, each hash function is assigned a 

corresponding security level in the range from 0.1 to 0.9. 
For example, level 0.1 implies that we use MD4, which is 
the fastest hash function among the alternatives. Level 0.9 
means that Snefru-256 is employed for integrity, and 
Snefru-256 is the slowest yet strongest function among the 
competitors.  

Let  be the integrity security level of Tg
is i, and the 

computation overhead of the integrity service can be 
calculated using Equation (7), where li is the amount of 
data whose integrity must be guaranteed, and  is a 
function used to map a security level to its corresponding 
hash function’s performance.  
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4.3. Authentication Overhead 

 
Tasks must be submitted from authenticated users and, 

thus, authentication services are deployed to authenticate 
users who wish to access clusters [9][11][14]. Table 2 lists 
three authentication techniques: weak authentication using 
HMAC-MD5; acceptable authentication using HMAC-
SHA-1, fair authentication using CBC-MAC-AES. Each 
authentication technique is assigned a security level  
based on the performance. Thus, authentication overhead 

 is a function of security level .  

a
is

)( a
i

a
i sc a

is

Table 2. Authentication Methods  
Authentication 

Methods 

a
is : Security 

Level 
)( a

i
a
i sc : Computation 

Time (ms) 
HMAC-MD5 0.3 90 

HMAC-SHA-1 0.6 148 
CBC-MAC-AES 0.9 163 
 

4.4. Security Overhead Model  
 
Now we can derive security overhead, which is the sum 

of the three items above. Suppose task Ti requires q 
security services, which are provided in sequential order. 
Let  and be the security level and overhead of 
the jth security service, the security overhead c

j
is )( j

i
j

i sc
i 

experienced by Ti, can be computed using Equation (8). 
The security overhead of Ti with security requirements for 
the three services above is modeled by Equation (9). 
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It is to be noted that , , and  in 
Equation (9) are derived from Equations (6)-(7) and Table 
2. In section 5, Equation (9) will be used to calculated the 
earliest start times and minimal security overhead. (See 
Equations 10 and 11). 
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5. The SAREC-EDF Algorithm 
 

Now we are in a position to evaluate the effectiveness 
of SAREC by developing a novel security-aware real-time 
scheduling algorithm, or SAREC-EDF, which 
incorporates the earliest deadline first (EDF) scheduling 
algorithm into the SAREC strategy. The schedule of a task 
is feasible if the task is completed before its deadline. 
Hence, a task has a feasible schedule on a cluster if there 
exists at least one node, where a valid schedule is 
available for the task. More formally, this fact can be 
express by the following property. The earliest start 
time  can be computed by Equation (10). )(es ij T

     ,   (10) 

where  represents the remaining overall execution time 

of a task currently running on the jth node, and 
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whose deadline is earlier than that of Ti. Thus, the earliest 
start time of Tk is a sum of the remaining overall execution 
time of the running task and the overall execution times of 
the tasks with earlier deadlines. The minimal security 
overhead of Tmin

ic i can be efficiently calculated by the 
following equation.  

1.for each task Ti submitted to the schedule queue do 
2.   for each node Nj in the cluster do 
3.    Use (10) to computer es ,  )( ij T
4.  Use (11) to obtain c of task Tmin

i i; 
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22.     /* Optimize quality of security*/ 
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23.   dispatch task Ti  to Nk based on the above schedule; 
24.   else /* Reject T;0←iy i  */  
25.  end for 
26.end for 

                    { }( )∑
∈

=
},,{

min
geaj

j
i

j
i

min
i Scc ,                    (11)  

where  denotes the overhead of the jth security 
service when the minimal requirement is satisfied. 
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The SAREC-EDF algorithm is outlined in Figure 2. 
Before optimizing the security level of task Ti on Nj, 
SAREC-EDF attempts to meet the real-time requirement 
of Ti. This can be accomplished by calculating the earliest 
start time (use Equation 10) and the minimal security 
overhead of Ti (use Equation 11) in Steps 3 and 4, 
followed by checking if Ti  can be completed before its 
deadline (see Step 5). If the deadline can not be met by Nj, 
Step 18 sets Ti’ security level on Nj to 0, implying that Ti 
can not be allocation to node Nj. If no node can produce a 
feasible schedule for Ti, it is rejected by Step 24. 
 
6. Simulation Studies  
 

Using extensive simulation experiments based on real 
trace consisting of 29695 tasks, we compared SAREC-
EDF against three baseline algorithms: SHMIN-EDF, 
SHMAX-EDF, and SHRND-EDF. These three algorithms 
are variations of the conventional EDF algorithm. For the 
sake of simplicity, throughout this section SAREC-EDF is 
referred to as SAREC. Similarly, the baseline algorithms 
are referred to as SHMIN, SHMAX, and SHRND, 
respectively. The baseline algorithms are described below.  

Figure 2. The SAREC-EDF 

(1) SHMIN:  The admission controller intentionally 
selects the lowest security level of each security 
services required by an incoming task.  

(2) SHMAX: The admission controller chooses the 
highest security level for each security requirement 
posed by an arriving task. 

(3) SHRND: Unlike the above two baseline algorithms, 
SHRND randomly picks a value within the security 
level range of each service required by a task.  

  
6.1. Simulator and Simulation Parameters  

Table 3 summarizes the key configuration parameters 
of the simulated clusters used in our experiments. The 
parameters of nodes are chosen to resemble real-world 
workstations like Sun SPARC-20 and Sun Ultra 10. 
    We modified the traces used in [15] by adding deadlines 
for all tasks. The assignment of deadlines is controlled by 

 

 
 
 
 
 



the parameter β (We use Tbase for β in the following 
figures), which sets an upper bound on tasks’ slack times. 
We use Equation (12) to generate Ti’s deadline di. 
                               d                     (12) ,β+++= max

iiii cea
where ai and ei are the arrival and execution times  
obtained from the traces. c is the maximal security 
overhead, which is computed by Equation (13). 
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 (a) Guarantee ratio                           (b) Security value                    (c) Overall system performance          
Figure 3. Simulation performance of four scheduling algorithms. 

)
)where  is the overhead of the jth security 

service for T
{ }( j

i
j

i Sc max
i with the maximal requirements being met. 

Table 3. Characteristics of System Parameters 
Parameter Value (Fixed) - (Varied) 

CPU speed 100 million instructions/second  
β (Tbase)   (100 ms) – (100, 500, …, 60000ms)   

Number of nodes (64) – (8, 16, 32, 64, 96, 128, 256) 
Mean size of data to 
be secured 

50KB for short jobs, 500KB for 
middle jobs, 1MB for long jobs 

Required security 
services 

Encryption, Integrity  and 
Authentication  

  
The performance metrics by which we evaluate system 

performance include: security value (see Equation 4), 
guarantee ratio (measured as a fraction of total submitted 
tasks that are found to be schedulable), and overall system 
performance (defined as a product of security value and 
guarantee ratio). 

 
6.2. Overall Performance Comparisons  

To stress the evaluation, we assume that each task 
arrived in the cluster requires the three security services.  
Figure 3 shows the simulation results for these four 
algorithms on a cluster with 64 nodes where the CPU 
power is fixed at 100MIPS. We observe from Figure 3 (a) 
that SAREC and SHMIN exhibit similar performance in 
terms of guarantee ratio (the performance difference is 
less than 5%), whereas the SAREC noticeably 

outperforms SHMAX and SHRND. We attribute the 
performance improvement of SAREC to the fact that 
SAREC judiciously boosts the security levels of accepted 
tasks under the condition that the deadlines of the tasks are 
guaranteed, thereby maintaining relatively high guarantee 
ratios. Unlike SAREC, SHMAX and SHRND improve 
quality of security at the cost of missing deadlines.  

Figure 3 (a) illustrates that the guarantee ratios of four 
algorithms increase with the increasing value of the 
deadline base. This is because the large deadline base 
leads to long slack times, which, in turn, make the dead-
lines more likely to be guaranteed. Figure 3 (b) plots 
security values of the four algorithms when the deadline 
base is increased from 0.1 to 60 ms. It reveals that SAREC 
consistently performs better, with respect to quality of 
security, than SHMIN and SHRND. When the deadlines 
are tight, the security values of SAREC are very close to 
those of SHMAX. However, SAREC significantly out-
performs SHMAX when the deadline base becomes large. 
This is because that SAREC can accept for tasks 
compared with SHMAX. Interestingly, when the deadlines 
become loose, the performance improvements of SAREC 
over the three competitors are more pronounced. The 
results clearly indicate that clusters can gain more 
performance benefits from SAREC under the 
circumstance that real-time tasks have loose deadlines. 

The overall system performance improvements 
achieved by SAREC are plotted in Figure 3(c). The first 
observation deduced from Figure 3(c) is that the value of 
overall system performance increases with the deadline 
base. This is because the overall system performance is a 
product of security value and guarantee ratio, which 
become higher when deadlines are loose. A second 
observation is that SAREC significantly outperforms the 
other alternatives. This can be explained by the fact that 
SAREC improves security values, while achieving higher 
guarantee ratio. Figure 3(c) indicates that the overall 
performance improvement achieved by SAREC becomes 
more pronounced when the deadlines are looser, implying 
that more performance benefits can be obtained for real-
time tasks with large slack times.  



   (a) Guarantee ratio                            (b) Security value         (c) Overall system performance 
Figure 4. Scalabilities of the four scheduling algorithms. 

 
6.3. Scalability 

 
This experiment is intended to investigate the 

scalability of the SAREC algorithm. We scale the number 
of nodes in a cluster from 8 to 256. Figure 4 plots the 
performances as functions of the number of nodes in the 
cluster. The results show that the SAREC approach 
exhibits good scalability. 
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 Figure 5. Impact of the number of nodes on the
overall system performance improvement. 

Figure 5 shows the improvement of SAREC in overall 
system performance over the other three heuristics. It is 
observed from Figure 5 that the amount of improvement 
over SHMIN becomes more prominent with the increasing 
value of node number. This result can be explained by the 
conservative nature of SHMIN, which merely meets the 
minimal security requirements for tasks accepted by the 
cluster. Conversely, the amount of improvement over 
SHMAX decreases as the number of nodes increases. This 
is partially because SHMAX can guarantee the maximal 
security requirements of more accepted tasks when more 
nodes are available in the cluster. It is interesting to note 
that the trend of the improvement over SHRND is not 
monotonous, because SHRND randomly decides security 
levels for tasks. 

 
7. Summary and Future Work 

 
In this paper, we presented a strategy SAREC for 

security-aware scheduling of real-time applications on 
clusters. This strategy is capable for the design of security-
aware real-time scheduling algorithms like SAREC-EDF. 
To make security-aware scheduling algorithms practical, 
we also proposed a security overhead model to measure 
overheads of security services.  

To evaluate the performance of our SAREC-EDF 
algorithm, we developed a trace-driven simulator and 
proposed two performance metrics: security value and 
overall system performance defined as the product of 
security value and guarantee ratio. Compared with three 
baseline algorithms, SAREC-EDF, on average, achieved 
improvement of 72.55%, 32.93% and 63.54%, 
respectively, in overall system performance. In addition, 
extensive experimental results show that compared with 
the three security-heuristic EDF algorithms above, 
SAREC-EDF consistently improves the overall system 
performance in terms of quality of security and system 
guarantee ratio under a wide range of workload 
characteristics and execution environments. 

We qualitatively assigned security levels to the security 
services based on their respective security capacities. In 
our future work, we intend to investigate a quantitative 
way of reasonably specifying the security level of each 
security mechanism.  

In this study we simply consider CPU time in the 
security overhead model. For future work, we will 
integrate multi-dimensional computing resources, e.g., 
memory, network bandwidth, and storage systems, into 
our model. 
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