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Abstract

Molecular Dynamics, a computationally intensive appli-
cation is used by researchers in various fields. The inherent
parallelism [13] in the computations involved with this ap-
plication can be exploited in parallel and distributed envi-
ronments. However, in distributed environments such as the
Grid [6], the available resources, namely the network and
computational power, are continually changing with respect
to every available node. To optimally utilize these dynamic
resources, a scheduler should be able to continually adapt
to the changes and suitably vary the load scheduled to ev-
ery available node. We propose one such scheduling algo-
rithm. The proposed scheduling algorithm builds and con-
tinually updates a model of the distributed system, which it
then uses to make decisions about how to optimally redis-
tribute the load in the system at every time step of the MD
simulation. The scheduling algorithm can additionally han-
dle dynamic changes in the number of nodes available for
computation at runtime. We then demonstrate the efficiency
of our scheduling algorithm when applied to MD simula-
tions in a distributed environment.

1 Introduction

Molecular Dynamics (MD) is a powerful technique used
to obtain static or dynamic properties of liquids and solids.
It can more formally be defined as a computer simulation
technique where the time evolution of a set of interacting
atoms is followed by integrating their equations of motion
[2]. There are numerous applications for MD simulations in
diverse fields of science and technology such as chemistry,
astronomy, biophysics, solid-state physics, material science
and fluid dynamics to mention a few.

MD simulations are not very memory intensive. Their
space complexity grows linearly with the number of atoms
being simulated. However, their time complexity grows

quadratically with the number of atoms being simulated.
Being a very computationally intensive application [15],
various solutions to improve execution times have been in-
vestigated. The most common methods for improving per-
formance are parallelization[5] and using custom hardware
[16].

With the advent of technologies such as the Grid [6], a
very large number of heterogeneous nodes are becoming
available for researchers to run large jobs on. To be able
to utilize such resources efficiently, an adaptive load bal-
ancing mechanism is essential. The reason for requiring the
load balancing to be adaptive is that the available computa-
tional power on each of the available nodes is not constant.
Further, even the available network bandwidth and memory
latencies can vary dramatically over time.

In this paper, we design and implement an adaptive load
balancing scheduler for long range molecular dynamics.
Our scheduler determines the number of atoms to assign
to each client node based on its performance during the
previous time step. Our solution is capable of taking into
consideration the dynamic variations in the available com-
putational power available and network bandwidth and la-
tency with respect to every node taking part in the compu-
tation. It can also handle client nodes becoming available
at arbitrary times during the MD simulation. Our current
implementation does not handle node failures yet, however,
once an efficient way to detect node failure is determined,
our scheduling algorithm will be capable of handling it ef-
ficiently.

Despite using our algorithm to schedule MD in a dis-
tributed environment in this paper, the proposed scheduler
can also be used for a wide range of computational prob-
lems such as numerous matrix operations, image processing
algorithms, partial differential equation solvers etc.

Some of the techniques previously used to load balance
MD simulations include the orthogonal recursive bisection
[3] [7], hashed oct-tree [18], costzones [9], cell redistribu-
tion [1] and morton-ordering [11]. However, all of these
techniques take into consideration the spatial distribution of



the atoms in the system since they they assume that the spa-
tial decomposition method is used for parallelization. In this
paper, we focus on load balancing the atom-decomposition
method. The performance of this method is independent
of the spatial distribution of the atoms in the system. This
method is commonly used for long-range MD and MD sim-
ulations of very dense systems.

The rest of this paper is organized as follows: In section
2, we describe the basic aspects of an MD simulation, then
in section 3, we detail our framework for deploying MD in a
distributed environment, in section 4, we describe the model
that we use to predict the performance of the distributed
system, in section 5 we formulate how the system model
can be used to determine an optimal schedule, in section 6,
we describe our scheduling algorithm, in 7 we determine a
few enhancements to the proposed scheduler that allows it
to improve the utilization of available resources, in section
8, we evaluate the performance of our scheduling algorithm,
in section 9 we list possible directions for future work and
we conclude the paper in section 10.

2 Computational Aspects of MD Simulations

2.1 Basic Equations

The computational task of an MD simulation [2] is
to perform the time integration of the differential equa-
tion (1), (2) with given initial atom positions and ve-
locities i.e. {−→r i(0),

−→v i(0)|i = 1, 2, . . . , N} and ob-
tain the positions and velocities at a later time i.e.
{−→r i(t),

−→v i(t)|i = 1, 2, . . . , N}.
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is the kronecker delta function and u(r) is the potential
function.

Forces are computed as the negative gradient of the po-
tential as
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where V (−→r k) =
∑

i<j u(−→r ij) and −→r ij = −→r i −
−→r j .

2.2 Potential Function

The long range potential function that we use in our sim-
ulation is the Stockmayer potential [4]. The Stockmayer
potential is similar to the Lennard-Jones potential [8] except
that it adds an inverse third power term to model strong elec-
trostatic contributions in polar molecules like ammonia and
water vapor. The potential function is described by equation
5
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where, δ is a dimensionless constant that measures the
polarization of a substance, ε and σ (which have dimensions
of energy and length, respectively) are constants character-
istic of the chemical species of the colliding atoms, and r is
the inter-atomic separation.

2.3 Time Integration

We use the velocity-verlet [17] algorithm to perform the
time integration of the forces. It has moderate short term en-
ergy conservation. But there is very little long term energy
drift. The algorithm is based on equations 6 and 7.

r(t + δt) = r(t) + v(t) · δt +
1

2
· a(t) · δt2 (6)

v(t + δt) = v(t) +
1

2
· [a(t) + a(t + δt)] δt (7)

2.4 Implementation

The general algorithm for a MD simulation is illustrated
in (Fig. 1). Since we are using a pair-potential, computa-
tion of the forces requires the calculation of N 2 interactions
inside a double nested loop.

1: Read initial positions and velocities of all the atoms.
2: Use a specified potential interaction V , a function of

atom positions.
3: for every time-step do
4: Compute the non-bonded forces on every atom i,

Fi = − ∂V
∂ri

=
∑

j Fij .
5: If required, compute forces due to bonded interac-

tions, restraining forces and external forces.
6: Compute the kinetic and potential energies.
7: Update the configuration of the system by numeri-

cally integrating Newton’s equations of motion.
8: If required, output positions, velocities, accelera-

tions, energies, temperature, pressure, etc.
9: end for

Figure 1. General MD algorithm



We use the atom-decomposition algorithm [12] for par-
allelization since the faster spatial-decomposition [13] tech-
niques work well only with short-range potentials. The
atom decomposition method assigns each node a subset
of the atoms. The assignment of atoms to the nodes re-
mains the same irrespective of the atoms physical location
at any time step in the simulation. Each node computes
the forces and updates the positions and velocities of its as-
signed atoms and hence the name atom-decomposition. At
the start of every time step, all the atomic positions have to
be distributed among all the nodes.

One can imagine an N × N force matrix where the
(i, j)th entry represents the force exerted by atom j on atom
i. This matrix is dense if a long range potential is used.
It is also skew symmetric due to Newton’s third law i.e.
Fij = −Fji for a pair-potential. In an actual implemen-
tation, this is just stored as a 1-dimensional array whose
elements are the sum of the forces on each atom.

3 Distributed framework for MD

We assume a very heterogeneous distributed environ-
ment such as a condor pool [10] for our MD simulation.
The available computational power even on a single node
in such an environment can vary significantly over time. It
is the responsibility of our proposed scheduler to track such
changes and optimize the number of atoms assigned to the
client nodes for force computation. Further, in such an envi-
ronment, the number of clients available to take part in the
computation also varies over time.

We use a client-server model for deploying MD in a
Grid. The server is comprised of a control thread for con-
trolling the entire simulation as shown in Fig. 3, a server
thread which spawns a new client handler for every client
that connects to the server and client handler threads as
shown in Fig. 4 that handle communication with each client
node. The primary role of the server is distributing the
atoms to all the clients and load balancing the work assigned
to each client. A client waits for atom positions from the
server and computes the forces on the assigned atoms and
returns these forces to the server.

1: Establish a connection with the server.
2: while true do
3: Wait for positions of all N atoms from the server.
4: Compute forces on the assigned ni atoms.
5: Return the forces computed and the time taken to do

so to the server.
6: end while

Figure 2. Client Algorithm

The server’s control thread is responsible for reading the

initial positions and velocities of the atoms from a file and
distributing all the initial positions to all the clients. It
is also responsible for determining how many atoms each
client will compute the forces exerted on by all the other
atoms. The optimal number of atoms for client i is de-
noted as ni, 1 ≤ i ≤ p, where p is the number of clients
at the time the scheduler begins execution. The schedul-
ing algorithm that we have developed computes the optimal
ni,∀i at every time step based on a continually and dynam-
ically updated system model. The scheduling algorithm is
implemented on the server side as part of this thread. It also
performs the time integration of all the received forces. In
practice, it is possible to parallelize the time integration, but
we chose not to since it is of linear complexity and can be
computed very fast in serial.

1: Read initial positions and velocities from file.
2: Spawn the server thread.
3: for each timestep do
4: Call the scheduler to determine the optimal ni, 1 ≤

i ≤ p.
5: Signal to the client handlers that the position vector

is ready.
6: Wait for all the clients to return their forces.
7: Perform time integration.
8: end for

Figure 3. Control thread of server

The server’s server thread is responsible for spawning a
new client handler thread every time a new client establishes
a connection with the server. It is also responsible for keep-
ing track of the available nodes and which nodes are taking
part in the current time step’s computation.

The server’s client handler thread shown in Fig. 4, first
benchmarks the client node’s performance by running three
test MD simulations. The size of these simulations is much
smaller than the real simulation being performed. A wider
separation in the number of atoms used in the benchmark
allows our system model (Section 4) to perform more accu-
rately. The execution times are noted both on the server side
and on the client side, allowing us to compute two poly-
nomials. The server side polynomial f s

i (x) allows us to
model the computation and communication time, while the
client side polynomial f c

i (x) allows us to model the com-
putation time on the client node. Once the benchmark is
completed, it informs the main control thread that client i
is ready for computation and when it is assigned atoms to
compute forces on, it first distributes all N atom positions
and informs the client on which atoms it should compute
forces. The execution time of the client node is again mea-
sured both from the server side and the client side and the
previously generated polynomials are updated with this new



data. We use the lagrange interpolation technique to gen-
erate these polynomials. When updating the polynomial,
we replace the previously used point with the largest x−
co-ordinate before evaluating the lagrange interpolation for-
mula since this is the point that dominates the behavior of
the polynomial.

The scheduling algorithm is described in more detail in
Section 5. The scheduler considers only clients that are
available at the start of its execution. Clients that join in
after the scheduler begins execution are not scheduled for
the current time step, but are considered when scheduling
for the next time step.

1: Create three systems of atoms with Na, Nb and Nc

atoms each.
2: Have client i compute the forces on all the atoms for

each of the systems of atoms generated.
3: Let tsa, tsb, t

s
c be the time taken to obtain the forces at the

server side corresponding to the above simulations.
4: Let tca, tcb, t

c
c be the execution times observed at the

client side.
5: Compute a second-degree polynomial f s

i (x) based
on (Na, tsa), (Nb, t

s
b), (Nc, t

s
c) using lagrange interpo-

lation.
6: Compute a second-degree polynomial f c

i (x) based
on (Na, tca), (Nb, t

c
b), (Nc, t

c
c) using lagrange interpola-

tion.
7: while true do
8: Wait for the control thread to signal that the position

vector is ready.
9: Send the positions of all N atoms to client i.

10: Let tsx be the execution time of the clients force com-
putation measured from the server side.

11: Let tcx be the execution time of the clients force com-
putation measured from the client side.

12: Update the polynomials f c
i (x) and fs

i (x) based on
the points (N, tcx ·N/ni) and (N, tsx ·N/ni) respec-
tively using lagrange interpolation.

13: Signal that force computation by client i is com-
pleted.

14: end while

Figure 4. Client handler thread of server for
client i

Since the communication is always client initiated in this
model, our framework works well in real-world settings
since it is not hindered by firewalls and NATs on the client
side. As long as a machine can establish outbound connec-
tions (which is the usual firewall policy), it can take part
in the computation. The server is the only machine that
has to be directly connected to the network and has a single
port opened to allow incoming connections from the clients.

This way, the clients can be submitted as jobs to condor
pools, PBS queues, LSF queues etc., and as soon as they
are scheduled to run, they will contact the server and begin
computation. The server can dynamically handle the addi-
tion of nodes. In theory, it can also handle a node failure.
However, deciding when a node has failed is a challenge.
We have not yet implemented node failure detection in our
code.

Our implementation is in C++ using sockets. Directly
using Berkley sockets avoids having to depend on the client
machine having libraries like PVM and MPI installed. Fur-
ther, the communication patterns in this application are sim-
ple enough to implement directly in Berkley sockets. How-
ever, since threads are used, the actual implementation has
to deal with synchronization issues and signals have to be
emulated by conditional variables along with mutexes.

4 System Model

Since we are using a pair potential to model inter-atomic
interactions, the time complexity for the molecular dynam-
ics simulation is Θ(N2). This allows the running time to be
approximated by a second degree polynomial. In practice,
we have observed that the running time can be extrapolated
from such a polynomial within a tolerable relative error. For
example, using the execution times of systems with 23328,
10976 and 5324 atoms, the execution time of a system with
131072 atoms can be predicted with a relative error of 2.2%.

The polynomial can be constructed for a given node by
benchmarking it with simulations of sizes that are as widely
separated as possible, such as {n, n

2 , n
4 }, and observing the

corresponding running times {t1, t2, t3}. Now, the polyno-
mial coefficients can be computed using lagrange interpola-
tion within a tolerable relative error.

If we have p nodes, we can construct the following model
for the running times tsi ’s and tci ’s, measured from the server
side and client side respectively, in terms of the simulation
size xi as follows:

ts1 = fs
1 (x1) = as

1x
2
1 + bs

1x1 + cs
1,

ts2 = fs
2 (x2) = as

2x
2
2 + bs

2x2 + cs
2,

...
...

...
tsp = fs

p (xp) = as
px

2
p + bs

pxp + cs
p,

tc1 = f c
1 (x1) = ac

1x
2
1 + bs

1x1 + cs
1,

tc2 = f c
2 (x2) = ac

2x
2
2 + bc

2x2 + cc
2,

...
...

...
tcp = f c

p(xp) = ac
px

2
p + bc

pxp + cc
p.

where, as
i , b

s
i , c

s
i , a

c
i , b

c
iandcc

i are constants that are de-
termined by an initial benchmark.



The fraction of time that a client node i will spend on
communication can be predicted as

commi
frac =

fs
i (N)− f c

i (N)

fs
i (N)

(8)

This model also allows us to predict the mean fraction of
time that will be spent on communication as:

commfrac =

∑p
i=1 ni [fs

i (N)− f c
i (N)]

∑p
i=1 nifs

i (N)
(9)

The client handler thread for client node i (Fig. 4) can
additionally compute commi

frac to determine whether it is
above a specified threshold to ensure that we are not wast-
ing too much time in communicating with the client node i
instead of performing computation on it. If it is above the
threshold, the client node can be rejected. Similarly, the ex-
pression commfrac can be evaluated and used to determine
whether we should stop accepting new client nodes due to
diminishing returns.

The communication bandwidth requirements are linear
in the number of atoms. Hence, it will be modeled dom-
inantly by the linear term in the server’s polynomial. The
startup times and network latencies are a constant overhead
and will be modeled by the constant term in both the poly-
nomials. The computational complexity is modeled domi-
nantly by the quadratic term in the polynomials.

5 Scheduling Problem

An optimal schedule can be determined based on the sys-
tem model described in section 4. If the current number of
atoms being simulated is N , the execution time on node i
is ti = fs

i (N), 1 ≤ i ≤ p. If we are computing the forces
exerted only on ni atoms, the execution time on node i from
the server’s point of view can be approximated as

ti =
ni

N
fs

i (N), 1 ≤ i ≤ p (10)

An optimal scheduler will determine the number of
atoms to assign to each client node such that they all have
the same execution time. The optimal execution time for all
the nodes topt, can be determined as follows:

topt = t1 = t2 = . . . = tp

=
n1

N
fs
1 (N) =

n2

N
fs
2 (N) = . . .

np

N
fs

p (N)(11)

subject to

{
∑

ni = N, 1 ≤ i ≤ p
ni ∈ Z

+,∀i

In the case of a simple pair potential, we have a set of lin-
ear equations modeling the execution times on the available
nodes. In this case, it is simple to solve the entire model

in closed form. However, the algorithm we present in sec-
tion 6 is capable of finding an optimal assignment without
taking into consideration the form of the equations used to
model the execution times (i.e. it will work for arbitrary de-
gree polynomials and even non-linear forms). This can be
the case when using potentials that are more complex than
the simple pair-potential that we use in this paper. The only
requirement is that the equations used in the model must be
strictly increasing functions (a reasonable assumption since
the execution time grows with the problem size).

For a linear model, the closed form solution can be de-
termined by simple algebraic manipulation. The optimal
execution time and optimal assignment of atoms are deter-
mined by equations 12 and 13.

topt =
1

∑

1
fs

i
(N)

(12)

ni =
N

fs
i (N)

∑

1
fs

i
(N)

(13)

We evaluate the accuracy of our scheduling algorithm
presented in section 6 with the results obtained when using
equations 12 and 13.

6 Scheduling Algorithm

It can be seen that the ni values monotonically increase
with ti since the fs

i (N)’s are positive and constant within
each time step. This allows the optimal assignment of force
computations to the clients to be determined using a binary
search algorithm as shown in (Fig. 5). The scheduling al-
gorithm makes use of the system model that we construct
at the beginning of the simulation and update at every time
step.

The algorithm works by picking an initial value for t
and computing the number of atoms that can be assigned
to each client node ni such that all of them are busy com-
puting the forces on the assigned atoms for exactly t units of
time. Then, the sum

∑p
i=1 ni is computed which gives the

total number of atoms on which forces can be computed in
time t using all the available client nodes. If this sum is less
than the number of atoms in the simulation N , we increase
t until we can compute the forces on all N atoms using all
the available p client nodes. Instead of searching linearly,
we use a binary search to improve the time complexity of
the scheduler. The algorithm terminates when Nopt is suf-
ficiently close to N (determined by δ). After termination,
if N 6= Nopt, the unassigned atoms if any (which can be at
most δ) are assigned to the nodes in a uniform fashion.

From the pseudo code of Fig. 5, it can be seen that
the algorithm executes in O(p · log t

(0)
U ) time. The initial



1: tU ← t
(0)
U

2: tL ← 0
3: while (tL < tU ) do
4: t← (tL + tU )/2
5: Nopt ←

∑p
i=1 ROUND(Nt/f s

i (N))
6: if (|Nopt −N | < δ) then
7: break
8: else if (Nopt < N ) then
9: tL ← t

10: else
11: tU ← t
12: end if
13: end while
14: topt ← t
15: ni ← Ntopt/f

s
i (N)

16: if (Nopt 6= N) then
17: δ′ ← |Nopt −N |
18: if (δ′ > p) then
19: for every node i do
20: ni ← ni + b δ′

p
c

21: end for
22: δ′ ← δ′ − pb δ′

p
c

23: end if
24: for the first δ′ nodes i do
25: ni ← ni + 1
26: end for
27: end if

Figure 5. Optimal Scheduling Algorithm

value t
(0)
U can be approximated by using any of the poly-

nomials fs
k(x) to determine the execution time if all nodes

performed the same as node k i.e. 1
p
fs

k(N) and multiply
this value by some sufficiently large constant λ. In practice,
the value λ depends on how heterogeneous the underlying
distributed system is. For most cases, a value between 5 and
10 seems to be sufficient. In all of our tests, we have seen
convergence within 20 iterations of the binary search.

7 Potential Enhancements to the Scheduler

The performance of the scheduling algorithm described
above can be improved using the techniques described in
this section.

In a very dynamic environment, i.e. the available compu-
tational power on the client nodes varies significantly with
time, instead of updating the polynomial coefficients with
data from the previous time step, we can update the polyno-
mials with a weighted average of the execution times over
multiple steps in the past. The weights can either be de-
termined experimentally or specified a priori. The reason
for doing so is a large continuous variance in the available

computational power on the client nodes can introduce sig-
nificant oscillations in the relative error of our model.

From the pseudo code of the scheduler shown in Fig. 5,
it can be noticed that the performance of the client nodes is
sampled every time step. However, since the execution time
of a time step is relatively long, a better schedule can be
computed if the performance is sampled more frequently.
This can be achieved by using a multi-round scheduling
technique. In multi-round scheduling, instead of having
the scheduler compute the forces on all N atoms, it can be
modified to compute the forces on only N/r atoms within a
round, where r is the number of rounds per time step. This
allows for a finer granularity in the scheduling since we now
sample the client nodes r times every time step instead of
just once per time step as before. With multi-round schedul-
ing, there is no significant increase in the total amount of
data sent over the network. It is only the force vectors that
are returned to the server by the client nodes that are sent in
r chunks instead of as a single vector. The number of rounds
should not be too large since this method is affected by net-
work latencies. Thus, multi-round scheduling will allow us
to get a more accurate performance model of the system.

Another technique that can be used, if the performance
model is continually erring in its predictions for a given
node, is to disallow it from taking part in the next time step
and benchmarking it with additional data sets of varying
sizes. This allows us to evaluate the lagrange interpolation
formula on three fresh points. Since the time for execu-
tion of a time step is much larger than the time it takes to
perform a benchmark, it makes more sense to use this tech-
nique when multi-round scheduling is used, since the node
will be unavailable for computation only for the duration of
a round.

8 Performance Evaluation

We use condor as the testbed for the proposed MD
framework. Condor is a cycle scavenging batch scheduler.
It seeks to utilize the idle time on nodes and regular desk-
tops to run jobs that are submitted to its queue. It is highly
configurable and supports advanced features such as job
check pointing and migration. To run our MD application,
we submit as many instances of the client program as re-
quired to condor. When condor finds nodes that are idle, it
schedules the client jobs to run on those nodes.

To observe the impact of the heterogeneity of the dis-
tributed system on our application, we assign each client to
compute the forces on exactly N/p atoms, where p is the
number of clients nodes. Figure 6 illustrates the execution
times on 5 client nodes over a period of 9 time steps of the
MD simulation. It can be seen that the faster nodes such as
node 4 and node 5 spend a lot of time waiting for the slower
client nodes to complete execution.
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Figure 6. Simple scheduling: equally dis-
tributing the load among the nodes. Illus-
trates the differences in available compute
power.

To depict the variance in available computational power
for a given client node, (Fig. 7) plots the execution times
on each client node for multiple time steps with the same
number of atoms (N/p) scheduled to the client nodes for
all the time steps. A variation of about 4 seconds in the ex-
ecution times can be observed in the client nodes. When
repeated for a few hundred time steps, a variation of about
8% was observed. The reason for this is that the compu-
tational resources on the client nodes are shared with the
node’s owners background jobs such as email software, au-
tomatic operating system updates, anti-virus software, fire-
wall software etc. These instabilities are of a lower order
if the client jobs are submitted to a queueing system in a
cluster environment such as PBS or LSF since nodes are
dedicated to the jobs submitted to them.

Next, we use the scheduler developed in this paper to de-
termine the optimal assignment of atoms to compute forces
on the client nodes. Figure 8 depicts these atom assign-
ments. It can be observed that the faster client nodes are
assigned more atoms. Figure 9 illustrates our scheduling al-
gorithm varying the atom assignments to client nodes based
on the performance of the node in the previous time step.
This is achieved by the recomputing of polynomial coeffi-
cients at every time step based on the execution time in the
previous time step.

Figure 10 plots the execution time on the client nodes for
6 time steps. The aim of the scheduler is to use the system
model to ensure that all client nodes complete execution at
the same time. It does so by using the system model to pre-
dict the execution time for a particular assignment of atoms
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Figure 7. Execution of equal load multiple
times. Illustrates the variations in available
compute power.

to client nodes. The efficiency of the scheduler depends on
the accuracy of the system model. The horizontal lines in
the plot depict the predicted execution times for all the client
nodes. It can be seen that most of the client nodes finish ex-
ecution very close to these lines and the ones that do not, get
closer to the predicted value in the next time step, since the
polynomials in the system model were updated based on the
execution time in the previous time step. Since the polyno-
mial based on server measured time is used in scheduling, it
can track changes in the network as well as in the available
computational power of the client nodes.

As mentioned earlier, our scheduling algorithm can
handle new client nodes becoming available arbitrarily.
Scheduling decisions are made at the start of every time
step. New client nodes that become available during the ex-
ecution of a time step are assigned atoms to compute forces
during the next time step. Figure 11 plots the adaptation to
a new client node being added to the simulation at time step
3. Since the new client node is already benchmarked at the
time the scheduler executes, it can be optimally scheduled
even for the first time step of the computation it takes part
in.

Figure 12 plots the relative error of the predictions made
by our scheduler over a period of 100 time steps. When
computing the relative error, we do not use the absolute
value function in the numerator, since the sign of the er-
ror can tell us whether real execution time was less than or
greater than the predicted execution time. A positive rel-
ative error indicates that the real execution time exceeded
the predicted execution time and vice versa. Client node
6 is added to the computation only at time step 36. From
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Figure 8. The proposed scheduling algorithm
adjusting the number of atoms sent to each
node based on its performance during the
previous time step.

the plots, it can be observed that adaptive changes to the
polynomial coefficients allows the changes in the available
computational power to be compensated for within the next
few time steps.

If a client node takes longer to execute than predicted
(due to some transient load), it is assigned fewer atoms to
compute forces on in the next time step due to the adaptiv-
ity in our scheduling algorithm. However, if the previous
transient load disappears during the next time step, the real
execution time will be less than the predicted value. This
is the reason for the alternating positive and negative rela-
tive errors in the plot. The magnitude of these oscillations
can be reduced by using some of the techniques described
in section 7.

All the MD simulations performed in the above experi-
ments involved systems of 62500 atoms initialized to a FCC
lattice. The client nodes on which the simulations were
scheduled have different CPU speeds and memory capac-
ities. Three of the nodes were connected to via a 100Mbps
network and the other via a 10Mbps network. Random net-
work traffic was generated during the experiments by run-
ning a bittorrent [14] client and having it download a Linux
ISO file.

9 Future Work

There exist many interesting aspects of the proposed
scheduling technique that can be investigated further. The
Grid is a very dynamic environment in which new nodes
can appear at anytime and existing nodes may arbitrarily
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Figure 9. Atom assignments using the pro-
posed scheduling algorithm. More atoms are
sent to the faster nodes. The simple N/P
method on the other hand assigns 12500
atoms to all the nodes.

go down. Our algorithm currently handles the case of new
nodes being added to the computation dynamically. It can
deal with nodes arbitrarily going down if it can efficiently
detect that a node is no longer available for the computa-
tion. We are currently investigating various techniques to
deal with detecting and handling client node failure. Some
of the issues with this problem involve how long to wait be-
fore deciding that a node is dead and the optimal way to deal
with the failure. Further, we are also looking into how to de-
termine the optimal number of rounds to use when using the
multi-round scheduling discussed in section 7. We are also
looking into combining our approach with other scheduling
techniques such as divisible load theory and control theory.
Our goal is to create a generalized framework that can be
used for other scientific applications including those whose
execution time cannot be well approximated by a nth de-
gree polynomial.

The developed scheduling algorithm is not specific only
to MD. It can be used with any parallel application where
the execution time can be approximated by an nth degree
polynomial. There are numerous applications that fall under
this category such as most matrix operations on dense ma-
trices, image processing algorithms, numerical algorithms
for solving partial differential equations, etc. Many appli-
cations whose execution time depends only on the size of
the input data set and not on the nature of the elements in
the input data set fall under this category.
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10 Conclusion

Computational molecular dynamics is a very computa-
tionally intensive application. Fortunately, it can be par-
allelized. However, when scheduling in a heterogeneous
distributed environment such as the Grid, the continually
changing available network latency, bandwidth and com-
putational power with respect to each client node must be
taken into consideration. We present an efficient schedul-
ing algorithm that is capable of dynamically load balanc-
ing long range MD. The algorithm is capable of adapting
to changes in the performance of the client nodes at run-
time by continually examining their past performance and
varying the distributed load accordingly. Our algorithm can
be used for other similar applications and will work as long
as the execution times can be modeled by monotonically in-
creasing functions. We have also evaluated the performance
of the scheduling algorithm in a condor pool with heteroge-
neous networking and available compute power.
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