
An Integrated Approach for Processor Allocation and Scheduling of
Mixed-Parallel Applications∗

N. Vydyanathan†, S. Krishnamoorthy†, G. Sabin†, U. Catalyurek‡, T. Kurc‡, P. Sadayappan†, J. Saltz‡
† Dept. of Computer Science and Engineering, ‡ Dept. of Biomedical Informatics

The Ohio State University

Abstract

Computationally complex applications can often be
viewed as a collection of coarse-grained data-parallel tasks
with precedence constraints. Researchers have shown that
combining task and data parallelism (mixed parallelism)
can be an effective approach for executing these applica-
tions, as compared to pure task or data parallelism. In this
paper, we present an approach to determine the appropri-
ate mix of task and data parallelism, i.e., the set of tasks that
should be run concurrently and the number of processors to
be allocated to each task. An iterative algorithm is proposed
that couples processor allocation and scheduling, of mixed-
parallel applications on compute clusters so as to minimize
the parallel completion time (makespan). Our algorithm it-
eratively reduces the makespan by increasing the degree of
data parallelism of tasks on the critical path that have good
scalability and a low degree of potential task parallelism.
The approach employs a look-ahead technique to escape
local minima and uses priority based backfill scheduling to
efficiently schedule the parallel tasks onto processors. Eval-
uation using benchmark task graphs derived from real ap-
plications as well as synthetic graphs shows that our algo-
rithm consistently performs better than CPR and CPA, two
previously proposed scheduling schemes, as well as pure
task and data parallelism.

1 Introduction

Parallel applications can often be decomposed into
coarse-grained data-parallel tasks with precedence con-
straints that signify data and control dependences. These
applications can benefit from two forms of parallelism: task
and data parallelism. In a pure task-parallel approach, each
task is assigned to a single processor and multiple tasks are
executed concurrently as long as precedence constraints are
not violated and there are sufficient number of processors in

∗This research was supported in part by the National Science Founda-
tion under Grants #CCF-0342615 and #CNS-0403342.

the system. In a pure data-parallel approach, the tasks are
run in a sequence on all available processors. However, a
pure task- or pure data-parallel approach may not be the op-
timal execution paradigm. Most applications exhibit limited
task parallelism due to precedence constraints. The sub-
linear speedups achieved leads to poor performance of pure
data-parallel schedules. In fact, researchers have shown
that a combination of both, called mixed parallelism, yields
better speedups [17, 8]. In mixed-parallel execution, sev-
eral data-parallel tasks are executed concurrently in a task-
parallel manner.

This paper proposes a single-step approach for processor
allocation and scheduling of mixed-parallel executions of
applications consisting of coarse-grained parallel tasks with
dependences. The goal is to minimize the parallel comple-
tion time (makespan) of an application task graph, given
the runtime estimates and speedup functions of the con-
stituent tasks. Starting from an initial processor allocation
and schedule, the proposed algorithm iteratively reduces the
makespan by increasing the degree of data parallelism of
selected tasks on the critical path. A look-ahead mecha-
nism is used to escape local minima. backfill scheduling
is used to improve processor utilization. We compare the
proposed approach with two previously proposed schedul-
ing schemes: Critical Path Reduction (CPR) [15] and Crit-
ical Path and Allocation (CPA) [16], which have been
shown to give good improvement over other approaches like
TSAS [17] and TwoL [18], as well as pure task-parallel and
pure data-parallel schemes. The approach is evaluated us-
ing synthetic task graphs and task graphs based on appli-
cations from the Standard Task Graph Repository [1], as
well as task graphs from the domains of Tensor Contrac-
tion Engine [2] and Strassen Matrix Multiplication [7]. We
show that our algorithm consistently performs better than
the other scheduling approaches.

This paper is organized as follows. The next section in-
troduces the task graph model. Section 3 describes the pro-
posed allocation and scheduling algorithm. Section 4 eval-
uates our scheduling scheme. Section 5 gives an overview
of the related work. Section 6 presents our conclusions and

outlines possible directions for future research.

2 Task Graph Model

A mixed-parallel program can be represented as a macro
data-flow graph [17] which is a weighted directed acyclic
graph (DAG), G = (V,E), where V , the set of vertices,
represents the data-parallel tasks and E, the set of edges,
represents precedence constraints. Each data-parallel task
can be executed on any number of processors. There are
two distinguished vertices in the graph: the source vertex
which precedes all other vertices and the sink vertex which
succeeds all other vertices. Please note that the terms, ver-
tices and tasks are used interchangeably in the paper.

The weight of each vertex corresponds to the execution
time of the parallel task it represents. The execution time
of a task is a function of the number of processors allocated
to it. This function can be provided by the application de-
veloper, or obtained by profiling the execution of the task
on different numbers of processors. It is assumed that the
communication costs within a data-parallel task dominate
communication costs between data-parallel tasks. This as-
sumption holds when each vertex of the DAG is a coarse-
grained parallel program. Each task is assumed to run non-
preemptively and can start only after the completion of all
its predecessors.

The length of a path in a DAG G is the sum of the
weights of the vertices along that path. The critical path
of G, denoted by CP (G), is defined as the longest path in
G. The top level of a vertex v in G, denoted by topL(v),
is defined as the length of the longest path from the source
vertex to v, excluding the vertex weight of v. The bottom
level of a vertex v in G, denoted by bottomL(v), is defined
as the length of the longest path from v to the sink, includ-
ing the vertex weight of v. Any vertex v with maximum
value of the sum of topL(v) and bottomL(v) belongs to a
critical path in G.

Let st(t) denote the start time of a task t, and ft(t) de-
note its finish time. A task t is eligible to start after all its
predecessors are finished, i.e., the earliest start time of t is
defined as est(t) = max(t′,t)∈E ft(t′). Due to resource
limitations the start time of a task t might be later than its
earliest start time, i.e., st(t) ≥ est(t). Note that with non-
preemptive execution of tasks, ft(t) = st(t)+ et(t, np(t)),
where np(t) is the number of processors allocated to task t,
and et(t, p) is the execution time of t on p processors. The
parallel completion time (makespan) of G is the finish time
of the sink vertex.

3 Processor Allocation and Scheduling

This section describes iCASLB (an iterative Coupled
processor Allocation and Scheduling algorithm with Looka-

Task t np(t) et(t, np(t))
T1 4 10
T2 3 7
T3 2 5
T4 4 8

Figure 1. (a) Task Graph G, (b) Processor al-
location, (c) Modified Task Graph, G′.

head and Backfill), a new algorithm for processor allocation
and scheduling of mixed-parallel applications to reduce the
makespan of a DAG. Unlike schemes that dissociate the al-
location and scheduling phases [16, 17], iCASLB is a one-
phase algorithm that simultaneously determines both task
allocation and scheduling. To reduce the makespan, it takes
an integrated approach that can exploit detailed knowledge
of both application structure and resource availability. It as-
signs more processors to tasks on the schedule’s critical path
that are scalable and have a low degree of potential task par-
allelism. It also uses priority based backfilling to increase
utilization and look-ahead to avoid local optima.

As confirmed by the experimental results, these features
allow iCASLB to produce better schedules than previous
schemes. The rest of this section presents the salient fea-
tures of iCASLB in detail.

3.1 Initial Allocation and Schedule-DAG
Generation

iCASLB starts with an initial allocation and schedule
and iteratively reduces the makespan. To compute the ini-
tial allocation, for each task, we over-estimate the number
of “possibly concurrent tasks” and compute the minimum
available number of processors; assuming we allocate the
best number of processors to each of those concurrent tasks.
The best number of processors for a task is defined as the
number of processors on which the task’s minimum execu-
tion time is expected. If the number of available processors
is more than one, the minimum of the task’s best number of
processors and the number of available processors is allo-
cated. Otherwise one processor is allocated to the task.

iCASLB iteratively refines this initial allocation by iden-
tifying the best candidate task and increasing its proces-
sor allocation. Candidate tasks lie on the critical path of
the schedule. The critical path of the schedule is given
by CP (G′), where G′, the schedule-DAG, is the original
DAG G with pseudo-edges added because of induced de-
pendences due to resource limitations. CP (G′) represents
the longest path in the current schedule, hence reducing this
path length will tend to reduce the makespan. The addition
of pseudo-edges to form the schedule-DAG is illustrated in
Figure 1. Consider scheduling the task graph in Figure 1(a)

Number of Processors
Tasks 1 2 3 4

T1 12.0 9.0 7.0 5.6
T2 35.0 20.0 13.0 11.0
T3 100.0 65.0 48.0 35.0

Figure 2. (a) Task Graph G, (b) Execution time
profile.

Number of Processors
Tasks 1 2 3

T1 10.0 7.0 5.0
T2 8.0 6.0 5.0
T3 9.0 7.0 5.0
T4 7.0 5.0 4.0

Figure 3. (a) Task Graph G, (b) Execution time
profile.

on 4 processors. Due to resource limitations tasks T2 and
T3 are serialized in the schedule. Hence, the modified DAG
G′ (Fig 1(c)) which represents the schedule, includes an
additional pseudo-edge between vertices T2 and T3. The
critical path length of 30 of G′ is the makespan of the appli-
cation.

3.2 Best Candidate Task Selection

Once the candidate tasks are selected, the best candidate
task must be chosen for expansion in a given iteration. A
poor choice of the best candidate will affect the quality of
the resulting schedule. Let the task graph in 2(a) be sched-
uled on 4 processors and each task be initially allocated one
processor. Tasks T1 and T3 lie on the critical path and ei-
ther of them could be chosen to decrease the critical path
length. If T1 were chosen and were allocated 4 proces-
sors, a data parallel schedule would be generated, with a
makespan of 51.6. On the other hand, if T3 were cho-
sen, the resulting schedule would have shorter makespan
of 48 by allocating 4 processors to T3, 1 processor to T1
and 3 processors to T2. iCASLB selects the best candi-
date task by considering two aspects: 1) scalability of the
tasks and 2) global structure of the DAG. The goal of choos-
ing a best candidate task is to choose a task which will
reduce the makespan the most. First, the improvement in
execution time of each candidate task ct is computed as
et(ct, np(ct)) − et(ct, np(ct) + 1). However, picking the
candidate task just based on the execution time improve-
ment is a greedy choice that does not consider the global
structure of the DAG and may result in a poor schedule. An

increase in processor allocation to a task limits the number
of tasks that can be run concurrently. Consider that the task
graph in 3(a) is to be scheduled on 3 processors. Each task
is initially allocated one processor each. Tasks T1 and T2
lie on the critical path and T1 has the maximum decrease in
execution time. However, increasing the processor alloca-
tion of T1 will serialize the execution of T3 or T4, resulting
finally in a makespan of 17. A better choice in this example
is to choose T2 as the best candidate, and schedule it on 3
processors, leading to a makespan of 15.

Taking this into account, iCASLB chooses a candidate
task that not only provides a good execution time improve-
ment, but also has a low concurrency ratio. The concur-
rency ratio of task t, cr(t) is a measure of the amount of
work that can potentially be done concurrent to t, relative to
its own work. It is given by:

cr(t) =

∑
t′∈cG(t) et(t′, 1)

et(t, 1)

where cG(t) represents the maximal set of tasks that can run
concurrent to t. A task t′ is said to be concurrent to a task t
in G, if there is no path between t and t′ in G. This means
that there is no direct or indirect dependence between t′ and
t, hence t′ can potentially run concurrently with t. Depth
First Search (DFS) is used to identify the dependent tasks.
First, a DFS from task t on G is used to compute a list of
tasks that depend on t. Next, a DFS on the transpose of G,
GT , (obtained by reversing the direction of the edges on G)
computes the task which t is dependent on. The remaining
tasks constitutes the maximal set of concurrent tasks in G
for task t: cG(t) = V − (DFS(G, t) + DFS(GT , t)).

To select the best candidate task, the tasks in CP (G′)
are sorted in non-increasing order based on the amount of
decrease in execution time. From a certain percentage of
tasks at the top of the list, the task with the minimum con-
currency ratio is chosen as the best candidate. Inspecting
the top 10% of the tasks from the list yielded good results
for all our experiments. To summarize, iCASLB widens
tasks that scale well and are competing for resources with
relatively few other “heavy” tasks.

3.3 Intelligent Look-ahead

Once the best candidate is selected, its processor allo-
cation is incremented by one and a new schedule is com-
puted using Priority-based Backfill Scheduling Algorithm
described in the next sub-section. The makespan of the new
schedule might be more than that of last schedule computed.
If only schedules that decrease the makespan from the pre-
vious schedule were allowed, there is a possibility of get-
ting trapped in a local minima. Consider the DAG shown in
Figure 4 and the execution profile assuming linear speedup.
Assume that this DAG has to be scheduled on 4 processors.

Number of Processors
Tasks 1 2 3 4

T1 40.0 20.0 13.3 10.0
T2 80.0 40.0 26.7 20.0

Figure 4. (a) Task Graph G, (b) Execution time
profile (linear speedup).

As T2 is more critical, T2 would be chosen to be widened to
3 processors. In the next iteration, T1 is more critical. How-
ever, increasing the processor allocation of T1 to 2 causes
an increase in the makespan from 40.0 to 46.7. If the algo-
rithm does not allow temporary increases in makespan, the
schedule is stuck in a local minima: allocating 3 processors
to T2 and 1 processor to T1. However, the data parallel
schedule, i.e., running T1 and T2 on all 4 processors, leads
to the smallest makespan of 30.0.

To alleviate this problem, iCASLB uses an intelligent
look-ahead mechanism that allows allocations that cause an
increase in makespan for a bounded number of iterations.
After these iterations, the allocation with the minimum
makespan is chosen and committed. The bound for the
number of iterations is taken to be 2×maxt∈V (P −np(t)).
This is motivated by the observation that an increase in
makespan is caused by two previously concurrent tasks be-
ing serialized due to resource limitations. Therefore, choos-
ing the number of iterations in this way allows any two tasks
to transform from a task parallel to data parallel execution
(using the maximum number of processors).

3.4 Priority Based Backfill Scheduling

Priority based list scheduling is a popular approach for
scheduling task graphs containing sequential tasks with
dependences [11]. The tasks are prioritized and at each
scheduling step the ready task with the highest priority is
scheduled. This approach keeps track of the latest free
time for each processor, and forces all tasks to be executed
in strict priority order.This strict priority ordering tends to
needlessly waste compute cycles. Parallel job schedulers
use backfilling [19] to allow lower priority jobs to use
unused processor cycles without delaying higher priority
jobs, thereby increasing processor utilization. Parallel job
scheduling can be viewed as a 2D chart with time along
one axis and the number of processors along the other axis,
where the purpose is to efficiently pack the 2D chart (sched-
ule) with jobs. Each job is modeled as a rectangle whose
height is the estimated run time and the width is the number
of processors allocated. Backfilling works by identifying
”holes” in the 2D chart and moving forward smaller jobs
that fit those holes. iCASLB uses a conservative backfill-
ing strategy to backfill tasks of lower priority that fit in the
”holes” as long as they do not delay a previously scheduled

higher priority task.

Algorithm 1 Coupled Allocation and Scheduling
1: for all t ∈ V do
2: p← P −

∑
t′∈cG(t)

Pbest(t
′) . number

of available processors if we allocate best number of
processors to each of the concurrent tasks

3: if p > 1 then
4: np(t)← min(Pbest(t), p)
5: else
6: np(t)← 1
7: best Alloc← {(t, np(t))|t ∈ V } . Best allocation is the

initial allocation
8: (best sl, G′)← PrBS(G, best Alloc)
9: repeat

10: {(t, np(t))|t ∈ V } ← best Alloc . Start with best
allocation

11: old sl← best sl . and best schedule
12: LookAheadDepth← 2×maxt∈V (P − np(t))
13: iter cnt← 0
14: while iter cnt ≤ LookAheadDepth do
15: CP ← Critical Path in G′

16: tbest ← BestCandidate in CP with np(t) <
min(P, Pbest(t)) and t is not marked if
iter cnt = 0

17: if iter cnt = 0 then
18: tentry ← tbest . tentry signifies the point of

start of this look-ahead search
19: np(tbest)← np(tbest) + 1
20: A′ ← {(t, np(t))|t ∈ V }
21: (cur sl, G′)← PrBS(G, A′)
22: if cur sl < best sl then
23: best Alloc← {(t, np(t))|t ∈ V }
24: (best sl, G′)← PrBS(G, best Alloc)
25: iter cnt← iter cnt + 1
26: if best sl ≥ old sl then
27: Mark tentry as a bad starting point for future searches
28: else
29: Commit this allocation and unmark all marked tasks
30: until for all tasks t ∈ CP , t is either marked or np(t) =

min(P, Pbest(t))

Algorithm 1 outlines iCASLB. The initial allocation of
processors to tasks is described in (steps 1-6). In the main
repeat-until loop (steps 9-30), starting from the current best
solution, the algorithm does a look-ahead (steps 14-25) and
keeps the best solution found so far (step 22-24). If the look-
ahead process does not yield a better solution, the task that
was the first best candidate in that look-ahead process, is
marked as a bad starting point for future search. However,
if a better makespan was found, all marked tasks are un-
marked, the current allocation is committed and the search
continues from this state. The look-ahead, marking, un-
marking, and committing steps are repeated until either all
tasks in the critical path are marked or are allocated the best
possible number of processors. Algorithm 2 presents the

(a) (b)

Figure 5. Relative performance for (a) Robot Control DAG (b) Sparse Matrix Solver DAG

Algorithm 2 PrBS - Priority-Based Backfill Scheduling
1: function PRBS(G, {(t, np(t))|t ∈ V })
2: G′ ← G
3: while not all tasks scheduled do
4: Let t be the task with highest value of bottomL(t)
5: st(t) ← earliest time (>= est(t)) at which np(t)

processors are available for duration et(t, np(t))

6: if st(t) > est(t) then
7: Select a set of tasks t′ ∈ V , such that ft(t′) =

st(t) and
∑

np(t′) ≥ np(t)
8: Add a pseudo-edge between each task in this set

and t
9: return <Schedule length, G′ >

pseudo code for the scheduling algorithm PrBS. PrBS
picks the task t with the largest bottom level and schedules
it at the earliest time (>= est(t)) when enough processors
are available for duration et(t, np(t) (steps 4-5). If t is not
scheduled to start as soon as it becomes ready to execute
(step 6), the set of tasks that ”touch” t in the schedule are
computed and pseudo-edges are added between tasks in this
set and t (steps 7-8). These pseudo-edges signify potential
induced dependences among tasks due to resource limita-
tions.

PrBS takes (a) O(|V | + |E|) steps for computing the
bottom levels of tasks, (b) O(|V |log|V |) to sort them in
the decreasing order of their bottom levels, and (c) O(|V |2)
to schedule the tasks. Thus, the complexity of PrBS is
O(|E| + |V |2). iCASLB requires O(|V | + |E′|) steps to
compute CP (G′) and choosing the best candidate takes
constant time. Therefore, the while loop in steps 14-25
is O(P (|E′| + |V |2)). The repeat-until loop in steps 9-
30, has at most |V |P iterations, as there are at most |V |
tasks in CP and each can be allocated at most P pro-
cessors. Hence, the worst-case complexity of iCASLB is
O(|V |3P 2 + |V |P 2|E′|). On the other hand, complexity of
CPR is O(|E||V |2P + |V |3P (log|V |+ PlogP)). CPA is a
low cost algorithm with complexity O(|V |P (|V |+ |E|)).

4 Performance Analysis

This section compares the quality (makespan) of the
schedules generated by iCASLB with those generated by
CPR, CPA, pure task-parallel (TASK) and pure data-parallel
schemes (DATA). CPR is a single-step approach while CPA
is a two-phase scheme. TASK allocates one processor to
each task and DATA executes each task in a sequence on
all processors. The algorithms are evaluated using task
graphs from the Standard Task Graph Set (STG) [1], and
task graphs from two applications through simulations.

4.1 Task Graphs from STG

The Standard Task Graph Set (STG) [1] is a benchmark
suite for the evaluation of multi-processor scheduling al-
gorithms that contain both random task graphs and task
graphs modeled from applications. The following experi-
ments use random DAGs and two application DAGs: Robot
Control (Newton-Euler dynamic control calculation [10]),
and Sparse Matrix Solver (sparse matrix solver of an elec-
tronic circuit simulation). The robot control DAG contains
88 tasks, while the sparse matrix solver DAG contains 96
tasks. Due to limited space, they are not shown here. Par-
allel task speedup is calculated using Downey’s model [4],
which is a non-linear function of two parameters: A, the
average parallelism of a task, and σ, a measure of the varia-
tions of parallelism. Based on this model, the task speedup
S as a function of the number of processors n is given by:

S(n) =

An

A+σ(n−1)/2
(σ ≤ 1) ∧ (1 ≤ n ≤ A)

An
σ(A−1/2)+n(1−σ/2)

(σ ≤ 1) ∧ (A ≤ n ≤ 2A − 1)

A (σ ≤ 1) ∧ (n ≥ 2A − 1)
nA(σ+1)

σ(n+A−1)+A
(σ ≥ 1) ∧ (1 ≤ n ≤ A + Aσ − σ)

A (σ ≥ 1) ∧ (n ≥ A + Aσ − σ)

For our experiments, we generated A and σ as uniform ran-
dom variables in the intervals [1-32] and [0-2.0] respec-
tively, to represent the common scalability characteristics
of many parallel jobs [5].

Figure 5 shows the relative performance of the differ-
ent schemes for these two applications as the number of

processors in the system is increased. The relative per-
formance of an algorithm is computed as the ratio of the
makespan produced by iCASLB to that of the given algo-
rithm, when both are applied on the same number of pro-
cessors. Therefore, a ratio less than one implies lower per-
formance than that achieved by iCASLB. For the robot con-
trol application, iCASLB achieves upto 30% improvement
over CPR and upto 47% over CPA. iCALSB also achieves
upto 81% and 68% improvement over TASK and DATA.
The performance improvement of our scheme over the other
approaches increases as we increase the number of proces-
sors in the system. For the sparse matrix solver application,
iCASLB, CPR and CPA perform similar to TASK upto 16
processors as the DAG is very wide. Beyond 16 processors
the performance of the various schemes begins to differen-
tiate. When the number of processors is increased to 128,
iCASLB shows an improvement of upto 40% over CPR,
25% over CPA, and 67% and 86% over TASK and DATA,
respectively. DATA performs poorly as the tasks have sub-
linear speedup and the sparse matrix DAG is wide.

Figure 6. Relative performance for Synthetic
DAGs

Figure 6 shows the average relative performance of the
schemes for 20 random graphs in the Standard Task Graph
Set, having 50 tasks each. Again, we see similar trends as
for the application DAGs and iCASLB performs the best.

4.2 Task Graphs from Applications

The first task graph in this group comes from an appli-
cation called Tensor Contraction Engine (TCE). The Ten-
sor Contraction Engine [2] is a domain-specific compiler
for expressing ab initio quantum chemistry models. The
TCE takes as input, a high-level specification of a com-
putation expressed as a set of tensor contraction expres-
sions and transforms it into efficient parallel code. The
tensor contractions are generalized matrix multiplications
in a computation that form a directed acyclic graph, and
are processed over multiple iterations until convergence is
achieved. Equations from the coupled-cluster theory with

single and double excitations (CCSD) are used to evaluate
the scheduling schemes. Figure 7(a) displays the DAG for
the CCSD-T1 computation, where each vertex represents a
tensor contraction which is a binary operation between two
input tensors to generate a result. The edges in the figure de-
note inter-task dependences and hence many of the vertices
have a single incident edge. Some of the results are accu-
mulated to form a partial product. Contractions that take a
partial product and another tensor as input have multiple in-
cident edges. The second application is the Strassen Matrix
Multiplication [7] shown in Figure 7(b). The vertices rep-
resent matrix operations and the edges represent inter-task
dependences.

The speedup curves of the tasks in these applications
were obtained by profiling them on a cluster of Itanium-2
machines with 4GB memory per node and connected by a
2Gbps Myrinet interconnect. The relative performance and
scheduling times of the schemes for the CCSD T1 equation
and Strassen Multiplication are shown in Figure 8 and Fig-
ure 9 respectively. Currently, the TCE task graphs are exe-
cuted assuming a pure data-parallel schedule. As the CCSD
T1 DAG is characterized by a few large tasks and many
small tasks which are not scalable, DATA performs poorly.
iCASLB shows upto 48% improvement over DATA. CPR
also performs well and is only upto 8% worse than iCASLB.
CPA is upto 25% worse than iCASLB. For Strassen, we find
that iCASLB shows 32% and 23% improvement over CPR
and 48% and 34% over CPA for 8 and 16 processors for
matrix size of 1024 × 1024. iCASLB also achieves upto
48% and 42% improvement over TASK and DATA, respec-
tively. When the matrix size is increased by 4 times, the
performance of DATA improves as the tasks become more
scalable (Figure 10).

With respect to scheduling times, CPA is a low cost al-
gorithm and is quick in computing the allocation and sched-
ule. iCASLB scales better than CPR as the number of pro-
cessors is increased. Similar trends were observed in the
case of synthetic DAGS. In all cases, the scheduling time
is orders of magnitude smaller than the makespan, suggest-
ing that scheduling is not a time critical operation for these
applications.

5 Related Work

Optimal scheduling even in the context of sequential task
graphs has been shown to be a hard problem to solve [13, 6].
Hence, several researchers have proposed heuristic solu-
tions and approximation algorithms [21, 12, 9].

Ramaswamy et al. [17] introduce the Macro Dataflow
Graph (MDG) which is a directed acyclic graph, to repre-
sent the structure of mixed-parallel programs. They propose
a two-step allocation and scheduling scheme for MDGs
called TSAS, that uses a convex programming formula-

Figure 7. The CCSD task graph T1 computation (left) Strassen Matrix Multiplication (right).

(a) (b)

Figure 8. CCSD T1 computation (a) Relative performance (b) Scheduling time

tion to decide the processor allocation followed by schedul-
ing through a prioritized list scheduling algorithm. A low
cost two-step approach has also been proposed by Rad-
ulescu et al. [16], where a greedy heuristic is used to it-
eratively compute the processor allocation. Both these ap-
proaches attempt to minimize the maximum of average pro-
cessor area and critical path length, but are limited in the
quality of schedules they can produce due to the decou-
pling of the allocation and scheduling phases. Another
work by Radulescu et al. [15] proposes a single-step heuris-
tic, CPR (Critical Path Reduction) that starts from a one-
processor allocation for each task, and iteratively increases
the allocation until there is no improvement in makespan.
Though iCASLB is also a one-step iterative approach, it
employs effective heuristics for choosing the correct crit-
ical task for widening that will decrease the makespan if
the degree of data parallelism is increased , utilizes an in-
telligent look-ahead mechanism to avoid local minima, and
uses priority-based backfilling to increase processor utiliza-
tion. Boudet et al. [3] propose an approach for scheduling
task graphs which assumes the execution platform to be a
set of pre-determined processor grids. In this paper, we tar-
get a generic system, where a parallel task can execute on
any number of processors.

Some researchers have proposed approaches for opti-
mal scheduling for specific task graph topologies. These
include Subhlok and Vandron’s approach for scheduling

pipelined linear chains of parallel tasks [20], and Prasanna’s
scheme [14] for scheduling of tree DAGS and series parallel
graphs for specific speedup functions.

6 Conclusions and Future Work

This paper presents iCASLB, an iterative coupled pro-
cessor allocation and scheduling strategy for mixed paral-
lel applications. iCASLB makes intelligent allocation and
scheduling decisions based on the global structure of the
application task graph and the scalability curves of its con-
stituent tasks. The look-ahead mechanism avoids local min-
ima and backfill scheduling improves processor utilization.
Experimental results using synthetic task graphs and those
from applications show that iCASLB achieves good perfor-
mance improvement over schemes like CPR, CPA, TASK
and DATA.

Our future work will be focused on: 1) scheduling of
mixed-parallel applications with significant inter-task com-
munication costs and 2) developing a run-time framework
for on-line scheduling of these applications.

References

[1] Standard task graph set. Kasahara Laboratory, Waseda Uni-
versity. http://www.kasahara.elec.waseda.ac.jp/schedule.

(a) (b)

Figure 9. Strassen (1024× 1024 matrix size) (a) Relative performance (b) Scheduling time

Figure 10. Relative performance for Strassen
(2048× 2048 matrix size)

[2] G. Baumgartner, D. Bernholdt, D. Cociorva, R. Harrison,
S. Hirata, C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam,
and P. Sadayappan. A High-Level Approach to Synthesis of
High-Performance Codes for Quantum Chemistry. In Proc.
of Supercomputing 2002, November 2002.

[3] V. Boudet, F. Desprez, and F. Suter. One-Step Algorithm
for Mixed Data and Task Parallel Scheduling Without Data
Replication. In Proc. of the 17th Intl. Parallel and Distrib.
Processing Symp., France, Apr. 2003.

[4] A. B. Downey. A model for speedup of parallel programs.
Technical Report CSD-97-933, 1997.

[5] A. B. Downey. A parallel workload model and its implica-
tions for processor allocation. In Proc. of the 6th Intl. Symp.
on High Perf. Distrib. Comput., pages 112–123, 1997.

[6] J. Du and J. Y.-T. Leung. Complexity of scheduling parallel
task systems. SIAM J. Discret. Math., 2(4):473–487, 1989.

[7] G. H. Golub and C. F. V. Loan. Matrix computations (3rd
ed.). Johns Hopkins University Press, 1996.

[8] S. B. Hassen, H. E. Bal, and C. J. H. Jacobs. A task and
data-parallel programming language based on shared ob-
jects. ACM Trans. Program. Lang. Syst., 20(6):1131–1170,
1998.

[9] K. Jansen and H. Zhang. Scheduling malleable tasks with
precedence constraints. In Proc. of the 17th ACM Symp. on
Parallelism in Algorithms and Archit., pages 86–95, 2005.

[10] H. Kasahara and S. Narita. Parallel processing of robot-arm
control computation on a multiprocessor system. IEEE J.
Robotics and Automation, A-1(2):104–113, 1985.

[11] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors. ACM
Comput. Surv., 31(4):406–471, 1999.

[12] R. Lepere, D. Trystram, and G. J. Woeginger. Approxima-
tion algorithms for scheduling malleable tasks under prece-
dence constraints. In Proc. of the 9th European Symp. on
Algorithms, pages 146–157, 2001.

[13] C. Papadimitriou and M. Yannakakis. Towards an
architecture-independent analysis of parallel algorithms. In
Proc. of the 20th ACM Symp. on Theory of Computing, pages
510–513, 1988.

[14] G. N. S. Prasanna and B. R. Musicus. Generalised multi-
processor scheduling using optimal control. In Proc. of the
3rd ACM Symp. on Parallel Algorithms and Archit., pages
216–228, 1991.

[15] A. Radulescu, C. Nicolescu, A. J. C. van Gemund, and
P. Jonker. Cpr: Mixed task and data parallel scheduling for
distrib. systems. In Proc. of the 15th Intl. Parallel & Distrib.
Processing Symp., 2001.

[16] A. Radulescu and A. van Gemund. A low-cost approach
towards mixed task and data parallel scheduling. In Proc. of
Intl. Conf. on Parallel Processing, pages 69 –76, September
2001.

[17] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A frame-
work for exploiting task and data parallelism on distrib.
memory multicomputers. IEEE Trans. Parallel Distrib.
Syst., 8(11):1098–1116, 1997.

[18] T. Rauber and G. Rünger. Compiler support for task schedul-
ing in hierarchical execution models. J. Syst. Archit., 45(6-
7):483–503, 1999.

[19] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayap-
pan. Characterization of backfilling strategies for parallel
job scheduling. In Proc. of the Intl. Conf. on Parallel Pro-
cessing Workshops, pages 514–519, 2002.

[20] J. Subhlok and G. Vondran. Optimal latency-throughput
tradeoffs for data parallel pipelines. In Proc. of the 8th
ACM Symp. on Parallel Algorithms and Archit., pages 62–
71, 1996.

[21] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms
scheduling parallelizable tasks. In Proc. of the 4th ACM
Symp. on Parallel Algorithms and Archit., pages 323–332,
1992.

