
Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand ∗

Qi Gao Weikuan Yu Wei Huang Dhabaleswar K. Panda

Network-Based Computing Laboratory
Department of Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{gaoq, yuw, huanwei, panda}@cse.ohio-state.edu

Abstract
Ultra-scale computer clusters with high speed intercon-

nects, such as InfiniBand, are being widely deployed for their
excellent performance and cost effectiveness. However, the
failure rate on these clusters also increases along with their
augmented number of components. Thus, it becomes criti-
cal for such systems to be equipped with fault tolerance sup-
port. In this paper, we present our design and implementation
of checkpoint/restart framework for MPI programs running
over InfiniBand clusters. Our design enables low-overhead,
application-transparent checkpointing. It uses coordinated
protocol to save the current state of the whole MPI job to
reliable storage, which allows users to perform rollback re-
covery if the system runs into faulty states later. Our solution
has been incorporated into MVAPICH2, an open-source high
performance MPI-2 implementation over InfiniBand. Perfor-
mance evaluation of this implementation has been carried out
using NAS benchmarks, HPL benchmark, and a real-world
application called GROMACS. Experimental results indicate
that in our design, the overhead to take checkpoints is low,
and the performance impact for checkpointing applications
periodically is insignificant. For example, time for check-
pointing GROMACS is less than 0.3% of the execution time,
and its performance only decreases by 4% with checkpoints
taken every minute. To the best of our knowledge, this work
is the first report of checkpoint/restart support for MPI over
InfiniBand clusters in the literature.

1 Introduction

High End Computing (HEC) systems are quickly gaining
in their speed and size. In particular, more and more computer
clusters with multi-thousand nodes are getting deployed dur-
ing recent years because of their low price/performance ratio.

∗This research is supported in part by a DOE grant #DE-FC02-
01ER25506 and NSF Grants #CNS-0403342 and #CNS-0509452; grants
from Intel, Mellanox, Cisco Systems, Linux Networx, and Sun MicroSys-
tems; and equipment donations from Intel, Mellanox, AMD, Apple, Appro,
Dell, Microway, PathScale, IBM, SilverStorm, and Sun MicroSystems.

While the failure rate of an entire system grows rapidly with
the number of the components, few of such large-scale sys-
tems are equipped with built-in fault tolerance support. The
applications running over these systems also tend to be more
error-prone because the failure of any single component can
cascade widely to other components due to the interaction and
dependence among them.

The Message Passing Interface (MPI) [21] is the de facto
programming model on which parallel applications are typ-
ically written. However, it has no specification about the
fault tolerance support that a particular implementation must
achieve. As a result, most MPI implementations are designed
without the fault tolerant support, providing only two modes
of the working state: RUNNING or FAILED. Faults occurred
during the execution time often abort the program and the pro-
gram has to restart from the beginning. For long running
programs, this can waste a large amount of computing re-
sources because all the computation that has already been ac-
complished is lost. To save the valuable computing resources,
it is desirable that a parallel application can restart from some
previous state before a failure occurs and continue the execu-
tion. Thus checkpointing and rollback recovery is one of the
commonly used techniques in fault recovery.

The InfiniBand Architecture (IBA) [18] has been recently
standardized in industry to design next generation high-end
clusters for both data-center and high performance comput-
ing. Large cluster systems with InfiniBand are being de-
ployed. For example, in the Top500 list recently released
on November 2005 [31], the 5th, 20th, and 51st most pow-
erful supercomputers use InfiniBand as their parallel applica-
tion communication interconnect. These systems can have as
many as 8,000 processors. It becomes critical for such large-
scale systems to be deployed with checkpoint/restart support
so that the long-running MPI parallel programs are able to
recover from failures. However, it is still an open challenge
to provide checkpoint/restart support for MPI programs over
InfiniBand clusters.

In this paper, we take on this challenge to enable
checkpoint/restart for MPI programs over InfiniBand clus-



ters. Based on the capability of Berkeley Lab’s Check-
point/Restart(BLCR) [12] to take snapshots of processes on
a single node, we design a checkpoint/restart framework to
take global checkpoints of the entire MPI program while en-
suring the global consistency. We have implemented our de-
sign of checkpoint/restart in MVAPICH2 [24], which is an
open-source high performance MPI-2 implementation over
InfiniBand, and is widely used by the high performance com-
puting community. Checkpoing/restart-capable MVAPICH2
enables low-overhead, application-transparent checkpointing
for MPI applications with only insignificant performance im-
pact. For example, time for checkpointing GROMACS [11]
is less than 0.3% of the execution time, and its performance
only decreases by 4% with checkpoints taken every minute.

The rest of the paper is organized as follows: In section 2
and section 3, we describe the background of our work, and
identify the challenges involved in checkpointing InfiniBand
parallel applications. In section 4, we present our design in
detail with discussions on some key design issues. In sec-
tion 5, we describe the experimental results of our current im-
plementation. In section 6, we discuss related works. Finally,
we provide our conclusions and describe future works in sec-
tion 7.

2 Background
2.1 InfiniBand and MVAPICH2

InfiniBand[18] is an open standard of next generation high
speed interconnect. In addition to send/receive semantics,
the native transport services, a.k.a InfiniBand verbs, provide
memory-based semantics, Remote Direct Memory Access
(RDMA), for high performance interprocess communication.
By directly accessing and/or modifying the contents of remote
memory, RDMA operations are one sided and do not incur
CPU overhead on the remote side. Because of its high perfor-
mance, InfiniBand is gaining wider deployment as high end
computing platforms [31].

Designed and implemented based on its predecessor MVA-
PICH [20] and MPICH2 [1], MVAPICH2 is an open-source
high performance implementation of MPI-2 standard. MVA-
PICH2, along with MVAPICH, is currently being used by
more than 355 organizations across the world. Currently en-
abling several large-scale InfiniBand clusters, MVAPICH2 in-
cludes a high performance transport device over InfiniBand,
which takes advantage of RDMA capabilities.

2.2 Checkpointing and Rollback Recovery

Checkpointing and rollback recovery is one of the most
commonly used techniques for failure recovery in distributed
computing. A detailed comparison of various rollback re-
covery protocols including both checkpointing and message-
logging can be found in [13]. In our work we choose co-
ordinated checkpointing because: (a) message logging can
potentially impose considerable overhead in the environ-
ment of high-bandwidth interconnects such as InfiniBand,

and (b) solely uncoordinated checkpointing is susceptible to
the domino effect [26], where the dependencies between pro-
cesses make all processes roll back to the initial state.

With respect to the transparency to user application, check-
point/restart techniques can be divided into two categories:
application-level checkpointing and system-level checkpoint-
ing. The former usually involves user application in the
checkpointing procedure. While gaining advantages of ef-
ficiency with assistance from the user application, this ap-
proach has a major drawback: the source code of user ap-
plications need to be tailored to the checkpointing interface,
which often involves a significant amount of work for each
application. The latter is application-transparent, because OS
takes care of saving the state of running processes. Although
it may involve more overhead, it does not need any code mod-
ification of applications. Thus we follow this approach.

3 Challenges

Most studies on checkpointing parallel applications as-
sume the communication is based on TCP/IP stack. Although
InfiniBand also provides TCP/IP support using IP over IB
(IPoIB), it does not deliver as good performance as native In-
finiBand verbs. In this section, we identify the challenging
issues in checkpointing the parallel programs that are built
over native InfiniBand protocols as follows.

First, parallel processes over InfiniBand communicate via
an OS-bypass user-level protocol. In regular TCP/IP net-
works, the operating system (OS) kernel handles all net-
work activities, so these network activities can be temporar-
ily stopped in an application-transparent manner. However,
InfiniBand provides its high performance communication via
OS-bypass capabilities in its user-level protocol [6]. The use
of these user-level protocols has the following side effect: the
operating system is skipped in the actual communication and
does not maintain the complete information of ongoing net-
work activities. Because of this gap of information regarding
the communication activities between the OS kernel and the
user-land of application process, it becomes difficult for the
operating system to directly stop network activities and take
checkpoints without loosing consistency.

Second, the context of network connection is available
only in network adapter. In regular TCP/IP networks, the
network communication context is stored in kernel memory,
which can be saved to checkpoints. Different from TCP/IP
networks, InfiniBand network adapter stores the network con-
nection context in the adapter memory. This part of informa-
tion is designed to be volatile, and thus very difficult to be
reused by restarted process. Therefore, network connection
context has to be released before checkpoint, and rebuilt af-
terwards. As InfiniBand uses user-level protocol, some net-
work context information, such as Queue Pairs (QPs), is also
cached in user memory, which must be reconstructed accord-
ing to new network connection context before a process con-
tinues communication. And the releasing/rebuilding of net-
work connections should be totally transparent to applica-



tions.
Third, some network connection context is even cached on

the remote node. Because of their high performance, many
applications take advantage of the RDMA operations pro-
vided by InfiniBand. Different from some other RDMA ca-
pable networks such as Myrinet [22], InfiniBand requires au-
thentication for accessing remote memory. Before process A
accesses remote memory in process B, process B must regis-
ter the memory to network adapter, and then inform process
A about the virtual address of the registered memory and the
remote key to access that part of memory. Then process A
must cache that key and include it in the RDMA requests so
that the network adapter for process A can match the keys and
authorize the memory access. Since these keys will become
invalid when network connection context is rebuilt, potential
inconsistency may be introduced by the invalid keys.

4 Checkpoint/Restart Framework and Design
Issues

In this section, we present the detailed checkpoint/restart
framework for MPI over InfiniBand and some key design is-
sues. As we characterize the issues, we focus on these issues
in particular: (a) how to stop an MPI program into a state
which can be consistently saved to a checkpoint, and (b) how
to resume an MPI program based on a checkpoint. There are
three design objectives for this framework:
• Consistency: the global consistency of the MPI program

must be preserved.
• Transparency: the checkpoints must be taken transpar-

ently to MPI application.
• Responsiveness: requests for checkpointing can be is-

sued at any point of the execution, and upon a request,
the checkpoint must be taken as soon as possible.

We design a protocol to coordinate all MPI processes in the
MPI job to consistently and transparently suspend all Infini-
Band communication channels between them, and preserve
the communication channel states to checkpoint, which pro-
vides high responsiveness.

In the remaining part of this section, we start with the
Checkpoint/Restart (C/R) framework, describing components
in the framework and their functionalities. Then we pro-
vide a global view of the C/R procedure by describing the
overall state diagram and state transition. Finally, we dis-
cuss some design issues in a local view to show how to sus-
pend/reactivate InfiniBand communication channels.

4.1 Checkpoint/Restart Framework

In a cluster environment, a typical MPI program consists
of: a front-end MPI job console, a process manager cross-
ing multiple nodes, and individual MPI processes running on
these nodes. Multi Purpose Daemon (MPD) [8] is the default
process manager for MVAPICH2. All the MPD daemons are
connected as a ring. As depicted in Figure 1, the proposed

C/R framework is built upon the MPI job structure, and there
are five key components in this framework described as fol-
lows:
• Global C/R Coordinator is a part of MPI job console,

responsible for global management of checkpoint/restart
the whole MPI job. It can be configured to initiate check-
points periodically and/or handle checkpoint/restart re-
quests from users or administrators.

• Control Message Manager provides an interface be-
tween global C/R coordinator and local C/R controller.
It utilizes the process manager already deployed in the
cluster to provide out-of-band messaging between MPI
processes and the job console. In our current implemen-
tation, we extend the functionality of MPD to support
C/R control messages.

• Local C/R Controller takes the responsibility of local
management of the C/R operations for each MPI pro-
cess. Its functionality can be described as follows: (a) to
take C/R requests from and report the results to global
C/R coordinator; (b) to cooperate with communication
channel managers and other C/R controllers in peer MPI
processes to converge the whole MPI job to a state which
can be consistently checkpointed; and (c) to invoke C/R
library to take checkpoints locally. In our current design,
the C/R controller is implemented as a separate thread,
which wakes up only when a checkpoint request comes.

• C/R Library is responsible for checkpointing/restarting
the local process. Checkpointing a single process on a
single node has been studied extensively and there are
several packages available to the community. In our
current implementation, we use Berkeley Lab’s Check-
point/Restart (BLCR) [15] package.

• Communication Channel Manager controls the in-band
message passing. In C/R framework, it has extended
functionalities of suspending/reactivating the communi-
cation channel, and the temporary suspension does not
impair the channel consistency, and is transparent to up-
per layers. Currently, we implement the C/R function-
ality on the InfiniBand channel based on OpenIB [25]
Gen2 stack.

4.2 Overall Checkpoint/Restart Procedure

Initial
SynchronizationRunning

Pre-checkpoint
Coordination

Restarting

Post-checkpoint
Coordination

Local
Checkpointing

Storage

Normal Start

Restart

Figure 2. State Diagram for Checkpoint/Restart

Figure 2 shows the state diagram of our checkpoint/restart
framework. During a normal run, the job can go over the



Global C/R
Coordinator MPI

Process

MPI
Process

MPI
Process

MPI
Process

Communication
Channel

 Manager

Control Message Manager

MPI
Process

Control Message Manager

Local C/R
 Controller

C/R Library C/R Library

Process Manager (Extended with C/R Messaging)

MPI Job
Console

Communication
Channel

 Manager
MPI

Process

Local C/R
 Controller

Inf iniBand
 Channel

Figure 1. Checkpoint/Restart Framework

checkpointing cycle upon user requests or periodically, which
consists of four phases:

• Initial Synchronization Phase: All processes in the MPI
job synchronize with each other and prepare for pre-
checkpoint coordination. First, the global C/R coordi-
nator in the job console propagates a checkpoint request
to all local C/R controllers running in individual MPI
processes. Then, upon the arrival of the request, the
local C/R controller wakes up and locks the communi-
cation channels to prevent main thread from accessing
them during the checkpointing procedure.

• Pre-checkpoint Coordination Phase: C/R controllers co-
ordinate with each other to make all MPI processes indi-
vidually checkpointable. To do so, C/R controllers coop-
erate with communication channel managers to suspend
all communication channels temporarily and release the
network connections in these channels.

• Local Checkpointing Phase: C/R controllers invoke C/R
library to save the current state of the local MPI process,
including the state of suspended communication chan-
nels to a checkpoint file.

• Post-checkpoint Coordination Phase: C/R controllers
cooperate with communication channel managers to re-
activate communication channels. This step involves re-
building the low level network connections and resolving
the possible inconsistency introduced by the potentially
different network connection information.

The details about how to suspend/reactivate communication
channels consistently and transparently will be discussed in
section 4.3.

To restart from a checkpoint, a restarting procedure is
performed, which consists of restarting phase and post-
checkpoint coordination phase. In Restarting Phase, the
global C/R coordinator first propagates the restart request to
each node, where the C/R library is responsible for restarting
the local MPI process from the checkpoint file. Then, local
C/R controller reestablishes the connection between a MPI
process and its process manager and performs necessary coor-
dination between them. At this point, the MPI job is restarted
from a state identical with the previous state in local check-
pointing phase. Therefore, to continue running, it first goes
to post-checkpoint coordination phase, and when all commu-

nication channels are reactivated, it comes back to running
state.

4.3 Suspension/Reactivation InfiniBand Channel

CQs MRs PDsQPs

Registered
User

Buffers
Network

Connection
Information

Dedicated
Communication

Buffers

Channel Progress Information

MVAPICH2 (Upper Layers)

MVAPICH2 (InfiniBand Channel)

InfiniBand Channel Host Adaptor (HCA)

Rebuild

Update

Preserve

Software

Hardware

User Application

Figure 3. InfiniBand Channel for MVAPICH2

During the checkpoint/restart procedure described in pre-
vious section, the consistency and transparency are two key
requirements. In this section, we explain how we transpar-
ently suspend/reactivate the InfiniBand communication chan-
nel while preserving the channel consistency.

The structure of InfiniBand communication channel in
MVAPICH2 is described by Figure 3. Below the MVAPICH2
InfiniBand channel is the InfiniBand Host Channel Adapter
(HCA), which maintains the network connection context,
such as Queue Pairs (QPs), Completion Queues (CQs), Mem-
ory Regions (MRs), and Protection Domains (PDs). MVA-
PICH2 InfiniBand channel state consists of four parts:
• Network connection information is the user-level data

structures corresponding to the network connection con-
text.

• Dedicated communication buffers are the registered
buffers which can be directly accessed by HCA for send-
ing/receiving small messages.

• Channel progress information is the data structures for
book-keeping and flow control, such as pending re-
quests, credits, etc.

• Registered user buffers are the memory allocated by user
applications. These buffers are registered by commu-
nication channel to HCA for zero-copy transmission of
large messages.

These four parts need to be handled differently according
to their different natures when performing checkpointing.



Network connection information needs to be cleaned before
checkpointing and re-initialized afterwards, as the network
connection context in HCA is released and rebuilt. Dedi-
cated communication buffers, and channel progress informa-
tion need to be mostly kept same but also updated partially
because they are closely coupled with network connection in-
formation. Registered user buffers need to be re-registered
but the content of them need to be totally preserved.

Now we explain the protocol for suspending and reactivat-
ing communication channel, including the discussion on some
design issues.

In pre-checkpoint coordination phase, to suspend commu-
nication channels, channel managers first drain all the in-
transit messages, because otherwise these messages will be
lost when releasing network context. So the protocol must
guarantee that to a certain point, all the messages before this
point must have been delivered and all the messages after this
point must have not been posted to network. Two things need
to be noted here: (a) the word ‘messages’ refer to the network
level messages rather than MPI level messages, and one MPI
level message may involve several network level messages,
and (b) the synchronization points for different channels do
not need to correspond to the same time point, and each chan-
nel can have its own synchronization point.

Due to the First-In-First-Out (FIFO) and reliable nature of
InfiniBand Reliable Connection-based (RC) channel, draining
in-transit messages can be achieved by exchanging flag mes-
sages between each pair of channel managers, which means,
each process sends flags through all channels it has and waits
for receiving flags from all the channels. Once these send
and receive operations complete, all in-transit messages are
known to be drained from the network because the flag mes-
sages are the last ones in channels. Then, the channel manager
releases the underlying network connection.

One issue involved is when the channel manager should
handle the drained in-transit messages. Because the commu-
nication channel is designed to execute the transmission pro-
tocol chosen by upper layers in the MPI library, processing an
incoming message may cause sending a response message,
which will also need to be drained and in the worst case may
lead to an infinite ‘ping-pong’ livelock condition. To avoid
that, the channel manager has to either buffer the drained
messages for future processing, or process these messages
but buffer the response messages instead of sending them im-
mediately. We choose the latter approach because: (a) some
control messages need to be processed immediately, and these
control messages will not lead to any response message; (b)
the overhead for buffering is lower as the number of response
messages is generally smaller than the number of incoming
messages.

In post-checkpoint coordination phase, after rebuilding un-
derlying network connections, the channel manager first up-
dates the local communication channel as we described be-
fore, and then sends control messages to update the other side
of the channel. The remote updating is to resolve the potential
inconsistency introduced by invalid remote keys for RDMA

Benchmark: lu.C.8 bt.C.9 sp.C.9
Checkpoint File Size (MBs): 126 213 193

Table 1. Checkpoint File Size per Process

operation. This issue has been discussed in Section 3. For
example, for performance reasons, the rendezvous protocol
for transmitting large messages is implemented by RDMA
write operation. To achieve high responsiveness and trans-
parency, our design allows rendezvous protocol being inter-
rupted by checkpointing. Therefore the remote keys cached
on the sender side for RDMA write will become invalid be-
cause of the re-registration on the receiver side. Hence, the
channel manager on the receiver side needs to capture the re-
freshed remote keys and send them to the sender side.

5 Performance Evaluation

In this section, we describe experimental results and an-
alyze the performance of our current implementation based
on MVAPICH2-0.9.2. The experiments are conducted on an
InfiniBand cluster of 12 nodes. Each node is equipped with
dual Intel Xeon 3.4GHz CPUs, 2GB memory and a Mellanox
MT25208 PCI-Express InfiniBand HCA. The operating sys-
tem used is Redhat Linux AS4 with kernel 2.6.11. The filesys-
tem we use is ext3 on top of local SATA disk.

We evaluate the performance of our implementation using
NAS parallel Benchmarks [32], High-Performance Linpack
(HPL) [2] Benchmark, and GROMACS [11]. First, we ana-
lyze the overhead for taking checkpoints and restarting from
checkpoints, and then we show the performance impact to ap-
plications for taking checkpoints periodically.

5.1 Overhead Analysis for Checkpoint/Restart

In this section, we analyze the overhead for C/R in terms of
checkpoint file size, checkpointing time, and restarting time.
We choose BT, LU, and SP from NAS Parallel Benchmarks
and HPL Benchmarks, because they reflect the computation
kernel commonly used in scientific applications.

Because checkpointing involves saving the current state of
running processes into reliable storage, taking a system-level
full checkpoint involves writing all used memory pages within
process address space to the checkpoint file, therefore, check-
point file size is determined by the memory footprint of the
process, in this case, MPI process. Table 1 shows the check-
point file sizes per process for BT, LU, and SP, class C, using
8 or 9 processes.

Time for checkpointing/restarting is determined mainly by
two factors: the time for coordination, which increases with
the system size; the time for writing/reading the checkpoint
file to/from file systems, which depends on both the check-
point file size and the performance of the underlying file sys-
tem.

Figure 4 shows the time for checkpointing/restarting NAS
benchmarks. It also provides the file accessing time for the



Figure 4. Overall Time for Checkpointing/Restarting
NAS

checkpoint file for comparison. On our testbed, we have ob-
served that the file accessing time is the dominating factor. In
the real-world deployment, file writing can be designed to be
non-blocking and overlapping with program execution. And
incremental checkpointing techniques can also be applied to
reduce the checkpoint file size. We plan to further investigate
the issues on how to speed up the commitment of checkpoint
files.

Figure 5. Coordination Time for Checkpoint-
ing/Restarting NAS

To further analyze the coordination overhead, we excluded
the file accessing time and broke the coordination time down
to individual phases. As shown in Figure 5, for check-
pointing, post-checkpoint coordination consumes most of the
time. The reason is that this step involves a relatively time-
consuming component, the establishment of InfiniBand con-
nections, which has been explored in our previous study [34].
For restarting, the post-checkpoint coordination consumes al-
most the same amount of time as for checkpointing, but the
major part of time is in restarting phase, mainly spent by MPD
and BLCR for spawning processes on multiple nodes.

To evaluate the scalability of our design, we measure the
average coordination time for checkpointing HPL benchmark
using 2, 4, 6, 8, 10, and 12 processes with one process on

each node. In the experiment we choose the problem size
to let HPL benchmark consume around 800MB memory for
each process.

Figure 6. Coordination Time for Checkpointing HPL

To improve the scalability, we adopt the technique of boot-
strap channel described in [34] to reduce the InfiniBand con-
nection establishment time from the order of O(N2) to O(N),
where N is the number of connections. As shown in Figure 6,
because the dominating factor, post-checkpoint coordination
time, is O(N), the overall coordination time is also in the
order of O(N). To further improve the scalability of check-
point/restart, we plan to utilize adaptive connection manage-
ment model [33] to reduce the number of active InfiniBand
connections.

Nonetheless, with current performance, we believe our de-
sign is sufficient for checkpointing many applications because
the time for checkpointing/restarting is insignificant when
comparing to the execution time of applications.

5.2 Performance Impact for Checkpointing

Figure 7. Performance Impact for Checkpointing
NAS

In this section, we evaluate the performance of our system
in a working scenario. In real world, periodically checkpoint-
ing MPI applications is a commonly used method to achieve
fault tolerance. We conduct experiments to analyze the per-
formance impact for taking checkpoints at different frequen-
cies during the execution time of applications. We used LU,



Figure 8. Performance Impact for CheckpointingHPL

BT, and SP from NAS benchmarks and HPL benchmark to
simulate user application. And we also include a real-world
application called GROMACS [11], which is a package to
perform molecular dynamics for biochemical analysis.

In our design, there is very little extra book-keeping over-
head on data communication introduced by C/R functional-
ity, so that our checkpoing/restart-capable MVAPICH2 has
almost the same performance as original MVAPICH2 if no
checkpoint is taken.

As shown in Figure 7, the total running time of LU, BT,
and SP decreases as the checkpointing interval increases. The
additional execution time caused by checkpointing matches
the theoretical value: checkpointing time × number of check-
points. Figure 8 shows the impact on calculated performance
in GFLOPS of HPL benchmarks for 8 processes.

Because these benchmarks load all data to memory at the
beginning of execution, the checkpoint file size is relatively
large. Therefore, in our experiments, the dominating part of
the overhead for checkpointing, the file writing time, is rel-
atively large. But even with this overhead, the performance
does not decrease much with a reasonable long checkpointing
interval, 4 minutes for example.

Figure 9. Performance Impact for Checkpointing
GROMACS

On the other hand, many real-world applications may
spend hours even days to process many thousands of datasets
for a run. Normally only a small portion of datasets are loaded
into memory at any point time, so the memory footprints for

these applications are relatively small. Therefore the over-
head for checkpointing is lower with respect to their running
time. To evaluate this case, we run GROMACS on DPPC
benchmark dataset [11]. As shown in Figure 9, the time for
checkpointing GROMACS is less than 0.3% of its execution
time, and even if GROMACS is checkpointed every minute,
the performance degradation is still around 4%. From these
experiments we can conclude that for long running applica-
tions, the performance impact of checkpointing is negligible,
and even for memory intensive applications, with a reasonable
checkpointing frequency, the performance impact is insignif-
icant.

6 Related Works

Algorithms for coordinated checkpointing have been pro-
posed since mid-80s [30, 9], and a detailed comparison of var-
ious rollback recovery protocols including both checkpointing
and message-logging can be found in [13].

Many efforts have been carried out to provide fault tol-
erance to message-passing based parallel programs. FT-
MPI [14] has extended the MPI specification to provide sup-
port to applications to achieve fault tolerance on application
level. An architecture has been designed and an implementa-
tion has been made based on HARNESS [5]. LAM/MPI [28]
has incorporated checkpoint/restart capabilities based on
Berkeley Lab’s Checkpoint/Restart (BLCR) [12]. A frame-
work to checkpoint MPI program running over TCP/IP net-
work is developed. Another approach to achieve fault toler-
ance using uncoordinated checkpointing and message logging
is studied in MPICH-V project [7]. They have used the Con-
dor checkpoint library [19] to checkpoint MPI processes, and
designed and evaluated a variety of message logging proto-
cols for uncoordinated checkpointing for MPI programs over
TCP/IP network. In [17], the design of a fault-tolerant MPI
over Myrinet based on MPICH-GM [23] is described. Other
researches toward fault tolerant message passing systems in-
clude: Starfish [3], CoCheck [29], LA-MPI [4], Egida [27],
CLIP [10], etc. Recently, a low-overhead, kernel-level check-
pointer called TICK [16] has been designed for parallel com-
puters with incremental checkpointing support.

Our work differs from the previous related works in the
way that we address the challenges to checkpoint MPI pro-
grams over InfiniBand. The details about these challenges are
discussed in Section 3. Although Myrinet is another high per-
formance interconnect similar to InfiniBand in some aspects,
its network API, Myrinet GM [23], follows a connection-
less model, which is quite different from the commonly used
InfiniBand transport service, Reliable Connection (RC). Ad-
ditionaly, different from InfiniBand, RDMA operations pro-
vided by Myrinet GM do not require remote keys for authen-
tication. Therefore, the solution over Myrinet GM is not read-
ily applicable to InfiniBand.



7 Conclusions and Future Work

In this paper, we have presented our design of check-
point/restart framework for MPI over InfiniBand. Our design
enables application-transparent, coordinated checkpointing to
save the state of the whole MPI program into checkpoints
stored in reliable storage for future restart. We have evalu-
ated our design using NAS benchmarks, HPL benchmark and
GROMACS. Experimental results indicate that our design in-
curs a low overhead for checkpointing, and the performance
impact of checkpointing to long running applications is in-
significant. To the best of our knowledge, this work is the first
report of checkpoint/restart support for MPI over InfiniBand
clusters in the literature.

In future, we plan to work on the issues related to SMP
channels and also incorporate the adaptive connection man-
agement [33] to reduce the checkpointing overhead. In a
longer term, we plan to investigate the issues on management
of checkpoint files and auto-recovery from failures, and then
conduct a more thorough study on the overall performance of
checkpointing and rollback recovery with different MTBF.

References

[1] MPICH2, Argonne. http://www-unix.mcs.anl.gov/mpi/mpich2/.

[2] A. Petitet and R. C. Whaley and J. Dongarra and A. Cleary.
http://www.netlib.org/benchmark/hpl/.

[3] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI
programs on clusters of workstations. In Proceedings of IEEE Sym-
posium on High Performance Distributed Computing (HPDC) 1999,
pages 167–176, August 1999.

[4] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D. Risinger,
and M. W. Sukalski M. A. Taylor, T. S. Woodall. Architecture of la-
mpi, a network-fault-tolerant mpi. In Proceedings of Int’l Parallel and
Distributed Processing Symposium, Santa Fe, NM, April 2004.

[5] M. Beck, J. J. Dongarra, G. E. Fagg, G. A. Geist, P. Gray, J.s Kohl,
M. Migliardi, K. Moore, T. Moore, P. Papadopoulous, S. L. Scott, and
V. Sunderam. HARNESS: A Next Generation Distributed Virtual Ma-
chine. Future Generation Computer Systems, 15(5–6):571–582, 1999.

[6] R. A. F Bhoedjang, T. Rubl, and H. E. Bal. User-Level Network Inter-
face Protocols. IEEE Computer, 31(11):53–60, 1998.

[7] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Magniette, V. Néri,
and A. Selikhov. MPICH-V: Toward a Scalable Fault Tolerant MPI
for Volatile Nodes. In Proceedings of IEEE/ACM SC’2002, Baltimore,
MD, November 2002.

[8] R. Butler, W. Gropp, and E. Lusk. Components and Interfaces of a Pro-
cess Management System for Parallel Programs. Parallel Computing,
27(11):1417–1429, 2001.

[9] M. Chandy and L. Lamport. Distributed Snapshots: Determining
Global States of Distributed Systems. In ACM Trans. Comput. Syst.
31, 1985.

[10] Y. Chen, K. Li, and J. S. Plank. CLIP: A Checkpointing Tool for
Message-passing Parallel Programs. In Proceedings of IEEE/ACM
SC’97, NOV 1997.

[11] D. Van Der Spoel and E. Lindahl and B. Hess and G. Groenhof and
A.E. Mark and H.J.C. Berendsen. Gromacs: Fast, flexible, and free.
Journal of Computational Chemistry, 26:1701 – 1718, 2005.

[12] J. Duell, P. Hargrove, and E. Roman. The Design and Implementation
of Berkeley Lab’s Linux Checkpoint/Restart. Technical Report LBNL-
54941, Berkeley Lab, 2002.

[13] E. N. Elnozahy and L. Alvisi and Y. M. Wang and D. B. Johnson. A Sur-
vey of Rollback-recovery Protocols in Message Passing Systems. Tech-
nical Report CMU-CS-96-181, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1996.

[14] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pjesivac-
Grbovic, K. London, and J. J. Dongarra. Extending the MPI Speci-
fication for Process Fault Tolerance on High Performance Computing
Systems. In Proceeding of International Supercomputer Conference
(ICS), Heidelberg, Germany, 2003.

[15] Future Technologies Group (FTG). http://ftg.lbl.gov/
CheckpointRestart/CheckpointRestart.shtml.

[16] R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Transparent incre-
mental checkpointing at kernel level: A foundation for fault tolerance
for parallel computers. In Proceedings of ACM/IEEE SC’2005, Seattle,
WA, November 2005.

[17] H. Jung and D. Shin and H. Han and J. W. Kim and H. Y. Yeom and J.
Lee. Design and Implementation of Multiple Fault-Tolerant MPI over
Myrinet (M3). In Proceedings of ACM/IEEE SC’2005, Seattle, WA,
November 2005.

[18] InfiniBand Trade Association. http://www.infinibandta.org.

[19] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny. Checkpoint
and migration of UNIX processes in the Condor distributed processing
system. Technical Report UW-CS-TR-1346, University of Wisconsin -
Madison Computer Sciences Department, April 1997.

[20] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Perfor-
mance RDMA-Based MPI Implementation over InfiniBand. In 17th
Annual ACM International Conference on Supercomputing (ICS ’03),
June 2003.

[21] Message Passing Interface Forum. MPI: A Message-Passing Interface
standard. The International Journal of Supercomputer Applications and
High Performance Computing, 1994.

[22] Myricom. http://www.myri.com.

[23] Myricom. Myrinet Software and Customer Support. http://www.myri.
com/scs/, 2003.

[24] Network-Based Computing Laboratory. MVAPICH: MPI for Infini-
Band. http://nowlab.cse.ohio-state.edu/projects/mpi-iba/.

[25] Open Infiniband Alliance. http://www.openib.org.

[26] B. Randell. Systems structure for software fault tolerance. IEEE Trans-
actions on Software Engineering, SE-1(2):220–232, 1975.

[27] S. Rao, L. Alvisi, and H. M. Vin. Egida: An extensible toolkit for low-
overhead fault-tolerance. In Symposium on Fault-Tolerant Computing,
pages 48–55, 1999.

[28] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Har-
grove, and E. Roman. The LAM/MPI Checkpoint/Restart Framework:
System-Initiated Checkpointing. International Journal of High Perfor-
mance Computing Applications, pages 479–493, 2005.

[29] G. Stellner. CoCheck: Checkpointing and process migration for MPI.
In Proceedings of the International Parallel Processing Symposium,
pages 526–531, April 1996.

[30] Y. Tamir and C. H. Sequin. Error Recovery in Multicomputers Using
Global Checkpoints. In Proceedings of the Intl’ Conference on Parallel
Processing, pages 32–41, 1984.

[31] TOP 500 Supercomputers. http://www.top500.org/.

[32] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler. Ar-
chitectural Requirements and Scalability of the NAS Parallel Bench-
marks. In Proceedings of Supercomputing, 1999.

[33] W. Yu, Q. Gao, and D. K. Panda. Adaptive Connection Management for
Scalable MPI over InfiniBand. In Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS) 2006, Rhodes Island,
Greece, April 2006.

[34] W. Yu, J. Wu, and D. K. Panda. Fast and Scalable Startup of MPI
Programs In InfiniBand Clusters. In Proceedings of International Con-
ference on High Performance Computing 2004, Banglore, India, De-
cember 2004.


