
Edge Scheduling Algorithms in Parallel and Distributed Systems

Jian-Jun Han Duo-Qiang Wang
(School of Computer, Huazhong University of Science & Technology, China)

han_j_j@163.com

Abstract

Many research efforts have been done in the

domain of static scheduling algorithms based on DAG.
However, most of these literatures assume that all
processors are fully connected and receive
communication data concurrently, while ignoring the
contentions and delays on network links in real
applications, which leads to low efficiency. This paper
focuses on the issue of edge scheduling for dependent
task set in parallel and distributed environment.
Combined with conventionally efficient heuristics, two
contention-aware scheduling algorithms are proposed
in the paper: OIHSA (Optimal Insertion Hybrid
Scheduling Algorithm) and BBSA (Bandwidth Based
Scheduling Algorithm). Both the proposed algorithms
start from the inherent characteristic of the edge
scheduling problem, and select route paths with
relatively low network workload to transfer
communication data by modified routing algorithm.
OISHA optimizes the start time of communication data
transferred on links in form of theorems. BBSA
exploits bandwidth of network links fully to transfer
communication data as soon as possible. Therefore,
the makespan yielded by our algorithms can be
reduced efficiently. Moreover, the proposed algorithms
adapt to not only homogeneous systems but also
heterogeneous systems. The experiment results
indicate that the proposed algorithms obviously
outperform other algorithms so far in terms of
makespan.

1. Introduction

Efficient scheduling of tasks is a critical issue for
achieving high performance in parallel and distributed
systems. The goal of scheduling algorithm is to map
tasks to processors and order their executions to satisfy
task precedence relationship and make minimum
schedule length (makespan). Since the general

scheduling algorithm is NP-complete [1], many
research efforts have been made in this rich field, i.e.,
list scheduling [2,3], cluster-based algorithms [4],
genetic algorithms [5], simulated annealing algorithms
[6], duplication-based algorithms [7], fuzzy scheduling
[8], branch and bound algorithm [9], etc.. Among these
scheduling algorithms, list-scheduling algorithm has
been shown to have a good trade-off between
performance and cost, and static scheduling
outperforms dynamic scheduling in most cases when
static conditions are known a priori. Therefore, many
efforts have been done in the domain of static
scheduling algorithms using list scheduling.
Nevertheless, most of these literatures have in common
that they employ an idealized model of the target
system. In this model, each processor is a dedicated
communication subsystem, the processors are fully
connected, and all communications between tasks can
be dealt with concurrently. However, intuition suggests
that these assumptions are not met on real parallel and
distributed systems [10]. In real applications, when a
resource is occupied by one communication, any other
communication requiring the same resource has to wait
until it is released. Thus, conflicts and contentions
among communication generally result in a higher
execution time. Since contentions and delays on
network links play great impact on the scheduling
performance, contention-aware scheduling algorithms
need to be researched further in order to meet currently
complicated network computing environment. Oliver
Sinnen et al. propose a new contention-aware
scheduling model and a corresponding algorithm.
Moreover, that paper proves that the edge scheduling
problem is NP-Completeness [11].

The algorithms proposed in this paper are based on
the scheduling model presented by [11], and focus on
the efficient heuristics of edge scheduling oriented to
contentions and delays of network communication.
Since the communication transfer is involved in edge
scheduling, contention-aware scheduling algorithms
should be coupled with network communication
scheme and be dynamic. This paper proposes two

dynamically contention-aware algorithms, OIHSA
(Optimal-Insertion Hybrid Scheduling Algorithm) and
BBSA (Bandwidth-Based Scheduling Algorithm).
Both two algorithms start from the inherent
characteristics of edge scheduling problem, and select
route paths with relatively low network workload to
transfer communication data by modified routing
algorithm. OISHA optimizes the start time of
communication data transferred on links in form of
theorems. BBSA utilizes bandwidth of links on
network fully to transfer communication data as fast as
possible. Thus, the makespan can be reduced
efficiently by our algorithms.

2. Scheduling model

Before describing the scheduling model, some
notations and symbols used throughout this paper are
listed in Table 1.

Table 1. The symbols and notations

V Task set in graph G
in Task i in V

)(inpred Predecessor set of in
)(insucc Successor set of in

jie , Edge from in to jn in G

)(inw The computation cost of in
)(, jiec The communication cost of jie ,

iP The ith processor in processor set P
)(iPs The processing speed of iP

iL The ith link of route path R
)(iLs The communication data transfer

speed of iL
MLS The average transfer speed of

network links
),(jis Pnt The earliest start time of in on jP
),(jif Pnt The finish time of in on jP
),(jidr Pnt The data ready time of in on jP

)(if Pt The current finish time of iP

jiTS , The jth occupied time slot on iL
)(, jis TSt The start time of jiTS ,
)(, jif TSt The finish time of jiTS ,
)(, jiTSrbr The remaining bandwidth rate

on jiTS ,
),(,, jiyx TSebr The bandwidth rate used by yxe , on

time slot jiTS , .

)(, jiTSoccupy

The edge occupying jiTS ,

)(iLfs The first occupied time slot on iL
)(iLls The last occupied time slot on iL
)(, jis et The start time of jie ,

),(, mjies Let The earliest start time of jie , on mL
),(, mjis Let The virtual start time of jie , on mL
),(, mjif Let The finish time of jie , on mL
),int(, mji Le The execution time of jie , on mL ,

that is,
)(
)(,

m

ji

Ls
ec

)(inproc The processor to which in is
allocated

)(, jiesl The first link by which jie , passes
)(, jiedl The last link by which jie , passes

),(, mji LePL The previous route link before
jie , traverses by mL ()(, jim eslL ≠)

),(, mji LeNL The next route link after jie ,
traverses by mL ()(, jim edlL ≠)

|M| The element number of set M

2.1. The graph of tasks

The topology of dependent tasks is represented by
a DAG (Directed Acyclic Graph)),,,(cwEVG = ,
where the task set and edge set are denoted by V and E,
respectively. The predecessor set and successor set of
task in with computation cost)(inw in V are denoted
by)(inpred and)(insucc , respectively. There exists an
edge Enn ji ∈→ with the communication cost)(, jiec ,
if and only if)(ji npredn ∈ and)(ij nsuccn ∈ . Only all
predecessors of in finish their executions and the
processor to which task in is assigned completes
receiving all communication data from)(inpred , can

in start to execute. The data ready time),(jidr Pnt of
node in on processor jP is defined as the time when
the last data from its parent nodes arrives, that is,

)}(max{),(,ikfjidr etPnt = for ,, Ee ik ∈∀ where)(,ikf et is
the time jP completes receiving data from kn . For each

in and jP , the earliest start time of in on jP ,
)}(),(max{)(,, jfjidrjis PtPntPnt = . Assume that if two

tasks are assigned to the same processor, the
communication time between them is ignored. In this
model, no task can preempt other tasks’ executions,

that is, the following inequalities hold:
),(),()()(kjskifkji PntPntPnprocnproc ≤⇒== or

),(),(PntPnt iskjf ≤ .
The static priority of tasks is presented by bottom-

level bl, which is the length of the longest path leaving
the task. Recursively defined, it is

)}()(max{)()(, jjiii nblecnwnbl ++= for)(ij nsuccn ∈∀ .

2.2. The topology graph of network

For traditional scheduling algorithm, it is assumed
that if kji Pnprocnproc ==)()(where)(ij nsuccn ∈ , then

),()(, kifjif Pntet = , otherwise, +=))(,()(, iifjif nprocntet

))(),((
)(,

ji

ji

nprocnprocs
ec

where))(),((ji nprocnprocs is

transfer speed of direct link between)(inproc and
)(jnproc . However, we point out that this model is not

well suited to modern network in Section 1. For this
reason, the model proposed in [11] is described in a
more reasonable way.

The topology of a communication network is
modeled as a graph },,,{ HDPNTG = , where N is the
node set of network including processor and switch, P
is the processor set, D is the directed communication
link set, and H is the set of hyperedges
(multidirectional communication link). Let HDL U=
be the communication link set of network.

Cut-through routing is assumed in [11] rather than
stored-and-forward. Since BA (Basic Algorithm) [11]
called in this paper does not consider the possible
division of communication into packets, circuit
switching is assumed. In cut-through routing, a station
immediately forwards the data to the next station-the
message “cuts through” the station. With every hop
that a message or packet takes along its route through
the network, a delay might occur. This delay is
typically very small, usually it takes only a few
network cycles. For this reason, the hop delay is
neglected in edge scheduling for simplicity, but it can
be included if necessary. Assume that each
communication execution does not preempt the others,
that is,),(),(,, knmskjif LetLet ≤ or),(),(,, kjisknmf LetLet ≤
holds for knmji Lee ,, ,,∀ . For any an edge jie , and its
route path >=< lLLLR ,...,, 21 , link causality condition
should be met to approximate real packet-based
communication. Namely,),(),(,1, kjieskjies LetLet ≤− and

),(),(,1, kjifkjif LetLet ≤− hold for)(,1 jik edlL ≠∀ − .

Lemma 1. Assume that jie , traverses route link mL
and the next route link is 1+mL . If the earliest start time
of jie , on 1+mL is),(1, +mjies Let , then

)},int(),(),,(max{),(1,1,,1, +++ += mjimjiesmjifmjif LeLetLetLet
(1), where),int(1, +mji Le is the execution time of jie , on

1+mL .
Proof. It can be easily derived from link causality

condition. □
It can be found that),(1, +mjies Let is exactly the start
time of jie , on 1+mL . Nevertheless, the execution of

jie , usually can not utilize the bandwidth of 1+mL fully
in heterogeneous systems. To approximate real packet-
based communication in heterogeneous systems, we
define the start time of jie , on 1+mL by),(1, +mjis Let ,
which is)},int(),(),,(max{ 1,1,1, +++ − mjimjifmjies LeLetLet .
That is,),(1, +mjis Let is the virtual start time of jie , on

1+mL . It can be found that the execution of jie , can
fully utilize bandwidth of 1+mL from the time

),(1, +mjis Let without contradicting the link causality
condition because),(1, +mjis Let is always no smaller
than),(1, +mjies Let by their definitions.

3. Basic Algorithm (BA)

Based on the scheduling model, Sinnen et al.

propose Basic Algorithm (BA) [11].
Algorithm 1.
1: Sort tasks into list L, according to static priority
scheme and precedence constraints.
2: for each Lni ∈ do
3: Find processor PPk ∈ that allows earliest finish

time of in .
4: Schedule in on kP .

BA employs minimal routing, which means it
chooses the shortest possible path, in terms of number
of edges, through the network for every
communication. Given the graph-based representation
of the network, finding a shortest path can be
accomplished with a Breadth First Search (BFS)
algorithm. Once the route path R for an edge jie , has
been found, BA searches idle time interval on each
route link without contradicting link causality
condition.

We call this algorithm as basic insertion algorithm
in this paper.

4. OIHSA

This paper proposes two edge scheduling
algorithms. The first algorithm proposed is Optimal
Insertion Hybrid Scheduling Algorithm. The core idea
of OIHSA comprises of four aspects: the choice of
processor for ready task, the determination of the
priorities of edges, the modified routing algorithm, the
edge scheduling on links.

4.1. The choice of processor for ready task

Generally, the edge scheduling algorithm falls into
the scope of dynamic scheduling. The reason is that
static choice of a processor for a task could not reflect
the real network situations and the contentions on
network links play a critical role in scheduling
performance as described in Section 1. From
Algorithm 1, the start time of the communication data
from predecessors to the ready task is all the same, that
is, the finish time of the predecessor which finishes
latest at runtime. BA chooses the processor for ready
task by whether the processor can provide the earliest
finish time of the task or not, while ignoring the effect
of edge communication on scheduling performance.
OIHSA uses the heuristic similar to static scheduling
algorithm to assign the ready task in to the
processor kP , which satisfies the following criterion:

=++
∈∀)(

)(
)}(,

)(
))(,({max ,

)(k

i
kf

ij
jjfnpredn Ps

nw
Pt

MLS
ec

nprocnt
ij

}
)(
)(

)}(,
)(

))(,({max{min ,

)(m

i
mf

ij
jjfnprednPP Ps

nw
Pt

MLS
ec

nprocnt
ijm

++
∈∀∈∀

4.2. The choice of priority of edges

As described in Section 4.1, for any a ready task,

each edge from all of its predecessors has the same
start time. Obviously, the different scheduling
sequence of edges leads to different scheduling quality.
Intuitively, the edge with a larger cost dominates the
start time of the ready task due to the fact that the edge
with small cost still has opportunity to search an earlier
idle time interval on the same link even if the edge
with large cost occupies the idle time slot in advance,
but not vice versa. For an edge jie , , after the route path

>=< lLLLR ,...,, 21 has been determined (see Section
4.3), a probing message can be sent to traverse the
route path to determine and reserve time slot for jie , on
each route link by optimal insertion algorithm (see
Section 4.4). The edge transfer sequence is strictly in
accordance with the cost of edges. Thus, the edge with

higher priority determines its route path and reserve
time slot earlier than the edge with lower priority on
the same link, which possibly shortens the start time of
successive tasks.

4.3. Modified routing algorithm

BA adopts classical BFS to search route path
according to the criterion of smallest number of links
between source processor and target processor.
However, generally, the shortest physical distance does
not mean the most suitable route path because BFS
neglects the real workload of network. OIHSA utilizes
modified Dijkstra algorithm to find suitable route path.
The minimal criterion is the finish time of edge on
each link by basic insertion algorithm (see Section 3).

4.4. Optimal insertion algorithm

Unlike BA, OIHSA uses the optimal insertion
policy for the edges when they are allocated with idle
time slots on route links. As described in Section 4.2,
each edge reserves time slot to ensure that the edge
with higher communication cost has a higher priority
to choose earlier idle time interval. Thus, for any a
scheduled edge jie , stalled on mL , because its start time
on link),(, mji LeNL has been known and

)),(,(,, mjijies LeNLet is no sooner than),(, mjies Let , jie ,
can defer its communication transfer to produce a
longer idle time interval without contradicting link
causality condition on link mL and link),(, mji LeNL
(see Lemma 2). Thereby, the task scheduler based on
OIHSA should be assisted by some kinds of packet
delay schemes (e,g., all-optical packet switching [12]).
Note that the duration that can be deferred is also
constrained by the edges with a later start time than

jie , on the same link because of the non-preemption of
edge executions on network links.

Lemma 2. The longest deferrable time of jie , on
link mL can be),,()),(,(min{ ,,, mjiesmjijies LetLeNLet −

)},()),(,(,,, mjifmjijif LetLeNLet − .
Proof. It is feasible that

)),(,(),(,,, mjijiesmjies LeNLetLet = by the first
requirement of link causality condition. Meanwhile it
is also feasible that)),(,(),(,,, mjijifmjif LeNLetLet = by
the second requirement of link causality condition.
Thus, the conclusion of Lemma 2 is true. □

Proposition 1. Each edge scheduling algorithm
tries to allocate the earliest idle time intervals for edges.

Namely, each edge allocated with time slot can not
start its communication earlier.
 In light of Proposition 1, the start time of the edges
that have occupied time slots can only be postponed.
Thus, OIHSA searches the largest idle time interval
from tail to head on the network link queue, which
makes the edge start as early as possible. Only if the
appropriate position has been found, can relevant time
slots be adjusted.

Suppose that the edge yxe , is to be scheduled on
link mL . The variable, dt, is denoted as the longest
deferrable time of edge jie , scheduled on mL only
taking link causality condition into consideration.
Namely,)),(,(min{ ,, mjijies LeNLetdt =

)),(,(),,(,,, mjijifmjies LeNLetLet−)},(, mjif Let− .
It is easy to obtain that dt=0 when mji Ledl =)(, or

)),(,(),(,,, mjijiesmjies LeNLetLet = or)),(,(),(,,, mjijifmjif LeNLetLet = .
The variable, symbol, records the time slot nmTS ,

provided that there is enough time to execute yxe ,
between nmTS , and 1, −nmTS . The initial value of symbol
is null. We define accum as the largest accumulated
deferrable time so far. We can obtain

)}()(,min{ ,1, nmfnms TStTStaccumdtaccum −+= + (2) when
testing occupied time slot nmTS , . The term

)()(,1, nmfnms TStTStaccum −+ + in (2) means the longest
accumulated deferrable time if the edges occupying

)(,...,1, mnm LlsTS + delay their executions. The edge

yxe , can find idle time interval to insert before nmTS , ,
only and only if

))},(,(),(max{)),,(,(max{ ,,1,,, myxyxesnmfmyxyxf LePLetTStLePLet −

)},int(, myx Le+)(,nms TStaccum+≤ (3), where
)()),(,(,,, yxsmyxyxes etLePLet = if myx Lesl =)(, ,

0)(1, =−nmf TSt if)(, mnm LfsTS = , and +∞=+)(1,nms TSt
if)(, mnm LlsTS = .

An array, symbol1, records the time slots that the
current variable accum is zero when they are being
tested. If all occupied time slots on link mL have been
tested and nullsymbol = , yxe , is append to the tail of
queue of mL .

According to our algorithm, maybe there are more
than one idle time interval suitable for edge yxe , .
OIHSA provides idle time interval for yxe , before the
time slot recorded by symbol since the variable symbol
keeps track of the newest appropriate idle time interval,
which ensures that yxe , can be scheduled on mL as
soon as possible.

Property 1. The idle time interval available to the
edge yxe , must be between two adjacent occupied time
slots.

Proof. It can be derived directly from the non-
preemption of edge execution on route link assumed in
scheduling model. □

Theorem 1. The OIHSA proposed is the optimal
insertion algorithm under the assumptions in this paper.

Proof. It is easy to derive that the optimal insertion
algorithm should meet two requirements: finding the
largest idle time slot and the earliest start time for
edge’s execution. The proof of first requirement
proceeds by induction. By Property 1, the available
idle time slot should be within two adjacent occupied
time slots. Of course, the largest idle time slot is
unexceptional. By Proposition 1, the longest idle time
interval between nmTS , and 1, −nmTS is determined by
deferrable time produced by nmTS , , that is the value of
accum. It is easy to derive that the value of accum is
optimal for)(mLls . Assume that the value of accum is
optimal when searching))(1(, mkm LlskTS << . Thus the
largest idle time interval between kmTS , and 1, −kmTS is
also maximal between the deferrable time of kmTS ,
constrained by link causality condition and the spare
time after kmTS , is postponed, which is the formula (2).
Since the value of accum for kmTS , is optimal, the value
of accum for 1, −kmTS is obviously optimal.

The variable symbol keeps track of the newest
appropriate idle slot, so that the appropriate idle time
slot has the earliest start time if there exists such an
idle time interval. □

From another point of view, we can obtain that the
Proposition 1 is reasonable by Theorem 1 because each
edge is allocated with the earliest time slot.

Once the optimal insertion algorithm has found the
idle time interval before nmTS , for edge yxe , on link mL ,
the corresponding occupied time slots should adjust
their start time and finish time.

We define the time slot)1,(, symbolTSnear nm , whose
start time is later than that of nmTS , , as the time slot
nearest to nmTS , that makes accum be 0. Since variable
symbol1 records the time slot that can not be deferred,
the time slot kmTS , called affected time slot, where k is
smaller than the label of)1,(, symbolTSnear nm and is
larger than or equal to the label of nmTS , , will be
adjusted accordingly. And the labels of remaining time
slots keep unchanged. Therefore, the scheduling cost
can also be reduced.

The adjustment of affected time slots is described
as bellows. First, the labels of these effected time slots
are modified accordingly. Next, the start time and the
finish time of the effected time slots should be adjusted.
Assume the edge yxe , is being scheduled and the
variable symbol is equal to nmTS , , we can obtain

))},(,(),(max{),(,,1,, myxyxesnmfmyxes LePLetTStLet −= ,
))},int(),()),,(,(max{),(,,,,, myxmyxesmyxyxfmyxf LeLetLePLetLet += ,

),int(),(),(,,, mjimyxfmyxs LeLetLet −= ,
),,()(,, mjisnms LetTSt = and),()(,, mjifnmf LetTSt = .

For nk >∀ and))1,(()(,, symbolTSneartTSt nmskms ≤ ,
)()(,, kmskmf TStTStx −= ,

))}(),(max()(,1,, kmskmfkms TStTStTSt −= ,
xTStTSt kmfkmf +=)()(,, .

Finally, the earliest start time, the start time, and
the finish time of edges occupying these effected time
slots should be adjusted accordingly by their
definitions.

5. BBSA

BBSA starts from another point of network
communication, that is, bandwidth. In this paper, we
assume that the link bandwidth is linearly related to the
data transfer speed of the link. BBSA proposed tries to
transfer edge communication as early as possible by
fully exploiting the bandwidth of network links
without contradicting the link causality condition. We
define the remaining bandwidth rate provided by jiTS ,
as)(, jiTSrbr , the bandwidth rate used by yxe , on time
slot jiTS , as),(,, jiyx TSebr . Since any edge
communication is generally distributed to diverse time
slots with various bandwidth utilization rates, the idle
time interval can be treated as the same as the occupied
time slot with the exception that the remaining
bandwidth rate of the idle time interval is 100 percent.

Lemma 2. Assume that edge yxe , traverses link mL
and 1+mL , and one time slot occupied by yxe , on mL is

nmTS , with the bandwidth utilization rate),(,, nmyx TSebr .
For any time slot

kmTS ,1+ where))()((,,1,1 nmskmfkm TStTStTS >++ , the

),(,1, kmyx TSebr + is }
)(/)(
),(

),(min{
1

,,
,1

mm

nmyx
km LsLs

TSebr
TSrbr

+
+ (4).

Proof. First, we do not consider)(,1 kmTSrbr + . If
)()(1 mm LsLs ≤+ ,),(,1, kmyx TSebr + is

}
)(/)(
),(

,1max{
1

,,

mm

nmyx

LsLs
TSebr

+

 . Otherwise,),(,1, kmyx TSebr + is

)(/)(
),(

1

,,

mm

nmyx

LsLs
TSebr

+

. Taking)(,1 kmTSrbr + into account

and 1)(,1 ≤+ kmTSrbr , formula (4) obviously holds true. □
Theorem 3. The presumption is the same as

Lemma 2. The bandwidth utilization rate
),(,1, kmyx TSebr + computed by (4) does not contradict

link causality condition.
Proof. For the communication of yxe , on nmTS ,

with x time unites, the communication volume is
),()(,, nmyxm TSebrLsx ⋅⋅ . Thus, in order to finish the

same communication volume on kmTS ,1+ , the time

spent is
)(),(
),()(

1,1,

,,

++ ⋅

⋅⋅
=

mkmyx

nmyxm

LsTSebr
TSebrLsx

y . By using (4), we

can obtain
)(

)(/)(
),(

),()(

1
1

,,

,,

+
+

⋅

⋅⋅
≥

m
mm

nmyx

nmyxm

Ls
LsLs

TSebr
TSebrLsx

y

xy ≥⇒ . □
Theorem 4. The presumption is the same as

Lemma 2, the execution time of yxe , on kmTS ,1+ is

),()(
)((),,()(),min{int(

,1,1

,1,,,,

kmyxm

kmfnmyxmnmyx

TSebrLs
TStTSebrLsTSe

++

+

⋅

⋅⋅
-

),()(
)},()()})(),(max{

,1,1

,1,1,1,

kmyxm

kmyxmkmsnms

TSebrLs
TSebrLsTStTSt

++

+++

⋅

⋅⋅
(5).

Proof. It can be easily found that the
communication volume of yxe , on time slot nmTS ,
is),()(),int(,,,, nmyxmnmyx TSebrLsTSe ⋅⋅ . By link causality
condition, the start time of yxe , on

kmTS ,1+ is)}(),(max{ ,1, kmsnms TStTSt + , so the capacity
provided by kmTS ,1+ for yxe , is

),()()}(),(max{)((,1,1,1,,1 kmyxmkmsnmskmf TSebrLsTStTStTSt ++++ ⋅⋅− .
Therefore, (5) obviously holds true. □
 When scheduling yxe , on kmTS ,1+ , the remaining
bandwidth rate of kmTS ,1+ should be adjusted
accordingly. Provided that kmTS ,1+ can not afford
enough communication capability for the
communication volume of yxe , on nmTS , , the
remaining communication volume should be
transferred by successive time slots on 1+mL . Otherwise,

nmTS , should be divided into several time slots, each of
which has diverse remaining bandwidth rate. The edge
scheduling of yxe , stops until all communication
volume distributed in the time slots of source link
completes on the last link of route path.

6. Experiment results

Simulation experiments are used in the paper to
compare our algorithms with relevant algorithms. Let
U(i,j) be an uniformly distributed integer in the range
of [i, j]. Let the number of processors be 2, 4, 8, 16, 32,
64, 128, the number of tasks in task set U(40, 1000).
The speed of processors and link speed in network are
U(1, 10), and the computation cost of tasks and
communication cost between tasks are U(1, 1000).
CCR (Communication– Computation–Ratio) is defined
as 0.1-10.0. The construction of task graph is subject
to literature [3]. We assume that each switch connects
with U[4, 16] processors and there exists a path
between any a pair of switches. The switches are
connected randomly to simulate real wide area network.
The performance metric in the experiments is
makespan. The simulation program is written in GNU
C, running on Linux 2.4.18-3, 1G RAM, 2.0GHz CPU.

6.1 Simulation experiment in homogeneous

systems

In homogeneous systems, we assume that the
processing speed of processors and communication
transfer speed on links are all 1. Fig.2 gives the
performance comparison between OIHSA, BBSA to
BA.

0

5

10

15

20

25

30

35

40

45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

% Improved makespan ratio compared OIHSA to BA

Improved makespan ratio compared BBSA to BA

Figure 1. Performance comparison between

OIHSA, BBSA and BA.

0

5

10

15

20

25

30

35

2 4 8 16 32 64 128

%
improved makespan ratio compared OIHSA to BA

improved makespan ratio compared BBSA to BA

Figure 2. The influence of the number of

processors on makespan.

The results in Figure 1 are average value under
different number of processors when CCR is 0.1-10.
The x-axis represents CCR and the y-axis represents
percentage improvement in reduced makespan
compared OIHSA and BBAS to BA.

As can be seen from the figure, with the increase of
CCR, the reduced makespan ratio increases gradually.
One reason is that our algorithm chooses the modified
route to balance the workload of network. Another
reason is that our algorithms utilizes efficient heuristics
to schedule edges on links as soon as possible, which
leads to earlier start time of successive tasks, thus the
makespan is reduced efficiently. However, when the
CCR is very large (e.g., CCR>6), the improved
performance is not as good as the case when CCR is
relatively small. It owes to the fact that overdue
communication data makes network workload very
heavy, thus, all algorithms face with the critical
problem of communication contention and delay on
links. It can be found that BBSA is generally better
than OIHSA since spare bandwidth can be fully used
by BBSA to improve scheduling performance.

Figure 2 shows the influence of the number of
processors on makespan. With the increase of the
number of the processors, the number of available
communication links increases accordingly in the
simulation experiment. Thus the modified routing
algorithm will choose better route path for edge
communication. Meanwhile the optimal insertion and
full use of bandwidth reduce makespan more
efficiently because of more even network workload.
But when the number of processors exceeds 64, the
improved scheduling performance degrades. The
reason is that improved scheduling performance is
constrained by the number of tasks and degree of
parallelism in the simulation experiment.

6.2 Simulation experiment in heterogeneous
systems

Figure 3 and Figure 4 give the performance

comparison between our algorithms and BA in
heterogeneous systems. The benchmark is the same as
the experiment in homogeneous system except the
various speeds of processors and network links. Our
algorithms still outperform BA in heterogeneous
systems except that our algorithms show more
superiority in heterogeneous systems. The reason is
that the modified routing algorithm reflects the
network situation much better than classical routing
algorithm in heterogeneous systems. Meanwhile,
BBSA can utilize more spare bandwidth on high speed
network links to reduce makespan. The influence of

the number of processors on makespan in
heterogeneous systems is quite similar to the case in
homogeneous systems, thus we do not give details
further.

0

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

%
Improved makespan ratio compared OIHSA to BA

Improved makespan ratio compared BBSA to BA

Figure 3. Performance comparison between

OIHSA, BBSA and BA.

0

10

20

30

40

50

2 4 8 16 32 64 128

%
improved makespan ratio compared OIHSA to BA

improved makespan ratio compared BBSA to BA

Figure 4. The influence of the number of

processors on makespan.

7. Conclusion

This paper focuses on the issue of edge scheduling
for dependent tasks in parallel and distributed
environment, while most of recently relative works
ignore the contentions and delays of communication
data transferred on network links. Combined with
classically efficient heuristics, the paper proposes two
contention-aware algorithms. Both of two algorithms
start from the basic characteristic of the scheduling
problem, and select route paths with relatively low
network workload to transfer communication data by
modified routing algorithm. OISHA optimizes the start
time of communication data transferred on links in
form of theorems. BBSA utilizes bandwidth of links
on network fully to transfer communication data as fast
as possible. Thus, the schedule length is reduced by
our algorithms efficiently.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China under Grant No.
60503048.

Reference

[1] M. R. Garey and D. S. Johnson, “Computers and
Intractability: A guide to the Theory of NP-Completeness”,
W. H. Freeman and Co., 1979

[2] Jian-Jun Han and Qing-Hua Li, “A Novel Static Task
Scheduling Algorithm in Distributed Computing
Environment”, 18th International Parallel and Distributed
Processing Symposium, 2004

[3] Rashmi Bajaj and Dharma P. Agrawal, “Improving
Scheduling of Tasks in a Heterogeneous Environment”,
IEEE trans. on Parallel and Distributed Systems, 2004, 15(2):
107-118

[4] Andrei Radulescu and Arjan J. C. van Gemund, “Low-
Cost Task Scheduling for Distributed Memory Machines”,
IEEE Trans. Parallel and Distributed Systems, 2002, 13(6):
648-658

[5] Kwan Woo Kim, Mitsuo Gen, and Genji Yamazaki,
“Hybrid genetic algorithm with fuzzy logic for resource-
constrained projecting scheduling”, Applied Soft Computing,
2003, 3: 174-188

[6] K. Bouleimen and H. Lecocq, “A new efficient
simulated annealing algorithm for the resource-constrained
project scheduling problem and its multiple mode version”,
European Journal of Operational Research, 2003, 149: 268-
281

[7] Chan-Ik Park and Tae-Young Choe, “An Optimal
Scheduling Algorithm Based on Task Duplication”, IEEE
Trans. Computers, 2002, 51(4): 44-448

[8] Hong Jin et al., “Dynamic fuzzy preemptive scheduling
algorithm”, China Journal of Computer, 2004, 27(6): 812-
818

[9] G. Viswanathkumar and G. Srinivasan, “A branch and
bound algorithm to minimize completion time variance on a
single processor”, Computer&Operations Research, 2003, 30:
1135-1150

[10] B.S. Macey and A.Y. Zomaya, “A Performance
Evaluation of CP List Scheduling Heuristics for
Communication Intensive Task Graphs”, Proc. Int’l Parallel
and Distributed Processing, 1998, 538-541

[11] Oliver Sinnen and Leonel A.Sousa, “Communication
Contention in Task Scheduling”, IEEE Transaction on
Parallel and Distributed System, June 2005, 16(6):503-515

[12] Soung Y. Liew, Gang Hu, and H. Jonathan Chao,
“Scheduling Algorithms for Shared Fiber-Delay-Line Optical
Packet Switches — Part I: The Single-Stage Case”, Journal
Of Lightwave Technology, 2005, 23(4):1586-160

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX3:2002
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

