A Coarse Grained Parallel Algorithm
for Hausdorff Voronoi Diagrams

Frank Dehne,Anil Maheshvari and Ryan Taylor

Abstract— We presentthe first parallel algorithm for build-
ing a Hausdorff Voronoi diagram (HVD). Our algorithm is
targeted towards cluster computing architectures and com-
putesthe Hausgiorff Voronoi diagram for non-crossingobjects
in time O(Z!%6_™) for input sizen and p processors.

In addition, our parallel algorithm also implies a new
sequential HVD algorithm that constructs HVDs for non-
crossingobjectsin time O(nlog®* n). This impr oveson previous
sequential results and solves an open problem posed by
Papadopoulouand Lee [17].

|. INTRODUCTION

In this paper we presentthe first parallel algorithm for
building a Hausdorf Voronoi diagram (HVD). Our parallel
algorithmalsoimpliesa new sequentiaHVD algorithmthat
improveson previous sequentiafresultsand solvesan open
problemstatedin [17].

A. Badkgroundand Motivation

One of the most widely studiedstructuresin Computa-
tional Geometryis the Voronoi diagram(seee.g. [1]). In
its canonicalform, a Voronoi diagramis constructedfor
a planarset of points (sites). The planeis partitionedinto
regions, one for eachsite, where eachregion is the set of
points closestto the associatedite. In this paperwe study
the Hausdorf Voronoi diagram (HVD), a generalizatiorof
standardVoronoi diagrams.Each site is replacedby an
arbitrary object (point set in the plane) and the distance
of a point to an object(point set)is definedasthe distance
to thefarthestpointin theobject.SeeSectionll for aformal
HVD definition. Lik e the standardvoronoidiagram,a HVD
divides the planeinto regions. For ary point in the plane,
the covering circle centeredat that point is the smallest
circle that completelyenclosesat leastone object. Obsene
that for ary point within a Hausdorf Voronoi region the
covering circle enclosesthe sameobject. Hence,a HVD
maybe consideredisa VVoronoidiagramof coveringcircles.

Due to this covering circle property the HVD hasre-
cently gainedconsiderableattentionwithin the context of
VLSI manufacturing The use of HVDs for VLSI yield
predictionhasbeenpioneeredat IBM andis discussece.g.
in [10], [11], [13], [14], [15], [16], [17], [18], [19]. Part of
the designprocesdor new VLSI chipsis to determinehow

This work was partially supportedby the Natural Sciencesand Engi-
neeringResearchCouncil of Canada.

Frank Dehne, Anil Maheshwari and Ryan Taylor are
with the School of Computer Science, Carleton Uni-
versity Ottawa, Canada http://ww. dehne. net,

http://ww. scs. carl et on. ca/ ~maheshwa/,
rtayl or @cs. carl eton. ca.

resilientthechip’s circuit geometrywill beto defectscaused
during the manufcturingprocessThe HVD allows for the
efficient computationof the critical area of a chip which
is animportantmeasurdor a VLSI chip’s yield prediction
A chip defectis typically createdby impuritiesor particles
that settle on the chip during the manufcturing process.
The questionis whetheror not such an impurity results
in a faulty chip. One type of fault consideredis when a
componenton the chip, e.g. a contacton the via layer, is
disconnectedr-or eachcontactredundantontactpointsare
placedon the via layer to improve reliability. To destry
the connectioncreatedby a via block, all its (redundant)
contactpoints must be destryed. Hence,a defect(circle)
that covers an entire via block causesa faulty chip. The
minimum size circle that completelycovers a via block is
efficiently computedthrougha Hausdorf VVoronoi diagram.
It representshe smallestdefectthatwould destrg the chip.

B. PreviousWbork

Voronoi diagrams have been extensively studied and
generalizedn avarietyof ways(seee.g.[1] for anextensie
suney). For the Hausdorf Voronoi diagram, sequential
algorithms have beenpresentedin [13], [19], [17], [16],
[7]. A sequentialsweeplineHVD algorithm is presented
in [13] and a sequentialdivide-and-conquemethod is
presentedn [17]. A sequentiamethodbasedon coordinate
transformationand lower ervelopecalculationis presented
in [7]. Theworstcasetiime compleitiesarelistedin Tablel.
The sequentialsweeplineHVD algorithm [13] appearsto
performbestin practice.

The parallel constructionof standad Voronoi diagrams
hasbeenstudiede.qg.in [6], [9], [20]. However, thereexists
to our knowledge no parallel algorithm for the Hausdorf
Voronoi diagram.

The VLSI applicationof HVDs discussedbove requires
the computationof very large HVDs. In [17] it was posed
as an openproblemto speedup HVD constructionin the
generalcaseandin particularfor the caseof non-crossing
objects.Suchobjectsmay overlapbut not crosscompletely
andthe geometricobjectsin VLSI design(e.g.via blocks)
aretypically non-crossing17]. The algorithmsin [7], [13],
[17] arenot fasterfor the caseof non-crossingbjects.This
papercontributestowardssolvingthe problemposedn [17]
by providing a muchimprovedsequentiaalgorithmfor non-
crossingobjects.

C. New Results

The primary contribution of this paperis to presentthe
first parallel algorithmfor Hausdorf Voronoidiagramcon-
struction. Our algorithmis coarsegrainedparallel [5] and
targetedtowardsclustercomputingarchitecturesOur coarse
grainedparallelalgorithm computeghe Hausdorf Voronoi
diagramfor non-crossingobjectsin time O(@g4—”) for
input of sizen on a coarsegrainedmultiprocessoCGM)
with p processorsWe also presenta first experimental
evaluationof our parallelalgorithm.

ComputingHausdorf Voronoi diagramsin parallelis a
hard problem, and considerablyharder than the parallel
constructionof standardVoronoi diagrams(e.g. [6], [9],
[20]). Suchmethodsaretypically basedn a paralleldivide-
and-conquestrategy. For canonicalVoronoi diagrams.the
merge curve used for “stitching together” two Voronoi
diagramsis one single monotonechain. Therefore the task
of melging two canonicaldiagramshecomeselatively easy
For Hausdorf Voronoidiagramshis is not case. Thememge
curve may be comprisedof multiple, disjoint components
that are not necessarilynonotone.ln fact, someof these
melge componentsmay even be cyclic. An example is
shavnin Figure2. The main contrikution of this paperis an
efficient coarsegrainedparallel methodthatis able to deal
with multiple mergecomponentshatarenon-monotonand
possiblycyclic.

In addition,the directsequentiahdaptatiorof our parallel
algorithmresultsin a sequentialalgorithm that constructs
HVDs for non-crossingobjectsin time O(nlog* n). This
new sequentiablgorithmcontributestowardsan openprob-
lem posedin [17].

A summaryof our main resultsis shavn in Tablel.

Previous New
Parallel —none— o("—l‘fi)*
Sequential O(n2a(n))*1 [7] O(nlog?n)*

O(n?log® n)*t [13], [17]

* non-crossingobjects
t crossingobjects

TABLE |
SUMMARY OF RESULTS

D. Paper Overviav

The remainderof this paperis organizedas follows.
Sectionll providesformal definitionsfor Hausdorf Voronoi
diagrams and crossing/non-crossingbjects. Section |l
present®ur mainresult:a coarsegrainedparallelalgorithm
for Hausdorf Voronoi diagrams.SectionlV discusseghe
improved sequentialalgorithm that results directly from
our parallelmethod.SectionV discussesomepreliminary
experimentalresults.SectionVI concludesour paper

Il. PRELIMINARIES

A Hausdorf Voronoi Diagram(HVD) is constructedor a
setsystemwith a universel of n input pointsin the plane.
A subsetof the power setof I, S = {P, P,,..., Py}, is

given as input, suchthat |J, P, = I and P;,(\P; = 0,

for all 4,5 andi # j. Eachset P, € S is saidto be
an object For HVYD computation,the Hausdorf distance
function from a point z € 2 to an object P, € S is

definedto be dy(P;,{z}) = ds(P;, 2), whered; denotes
the farthest(maximum) Euclideandistancebetweenz and
pointsin P; [16]. Obsene that sincewe are dealingwith

the farthestdistance verticesin the interior of the convex

hull of ary objectin S do not participatein the computation
of HVDs. Hence,we can assumehat eachobject P; € S

consistsof pointsthat are on its corvex hull. It is known

that the size of the HVD is linear in the numberof points
definingthe objects.

Definition 1 (Crossing): Two objects, P;,P; € S are
saidto be crossingiff thereexist two points p;, p; on P;’s
corvex hull andg;, g; on P;’s corvex hull suchthat(1) g;q;
intersectgp;p; and(2) all of p;, p;, ¢, g; areon the corvex
hull of P; U Pj.

In this paperwe only dealwith objectsthatarenon-crossing
(but may overlap) and hencefor the rest of the paperwe
assumethat no two input objects are crossing.Next we
definethe vertices,edgesand facesof HVDs.

Definition 2: A Hausdorf Voronoi edeg, e, is the locus
of pointswith exactly two closest(underHausdorf metric)
pointsin theinputobjectsin S. A Hausdorf Voronoivertex,
v, is apointwith atleastthreeclosestunderHausdorf met-
ric) pointsin the objectsin S. A Hausdorf Voronoi region
for anobjectP; € S is HReg(P;) = {z € R2|dy(z, P;) <
dy (2, P;),VP; # P;}. We canfurthersubdvide aHausdorf
region for an object P; with respecto pointson its corvex
hull as follows. A Hausdorf Voronoi region for a point
p € Piis hreg(p) = {z € R|d(z,p) = dn(2,), and
dn(z,P;) < dn(z, P;),YP; # P;}. GivenasetS of objects,
the Hausdorf Voronoi Diagram, HV D(S), is the union of
Hausdorf Voronoi edgesand vertices. It forms a planar
subdvision of %2. SeeFigure 1 for anillustration.

I1l. CGM ALGORITHM

In this section we presenta novel parallel algorithm
for computing HVD for non-crossinginput objects. The
input consistsof the set I of n pointsin the plane and
the set .S consistingof objects.Our algorithmis designed
for a Coarse-Grained/ulticomputer (CGM)[5] consisting
of p-processorsThe processorsre connectedby an arbi-
trary interconnectiometwork. Eachprocessohassufficient
memory to hold O(n/p) input points from the set I.
Furthermorewe assumehatthe numberof pointswithin an
objectin S is atmostO(n/p) andthis ensureshatanobject
residescompletelyon a single processarThis is a natural
assumptionand is indeedvalid for our VLSI application
discussedbove aseachobject(via block) typically consists
of lessthan 20 points. The CGM hasthe ability to realize

Fig. 1. Hausdorf VoronoiDiagramof seven objects.Bold line represents
the region for an objectand dashedine representsegion for individual
points.

h-relations,wherein eachh-relation, at mosth amountof
datais routedto andfrom eachprocessarA CGM algorithm
is comprisedof rounds,where eachround consistsof a
local computationstep followed by a communicationstep
realizingan h-relation.

A. Outline of the Algorithm

Our algorithm follows the divide-and-conqueparadigm.
The set of objectsare divided into an orderedsequence
of p vertical slabs.We computeHVDs for objectsin each

slab and then memge them to obtain the HVD of S. The

algorithmis sketchedin the following.

Algorithm: HVD(S)

Input: A setS consistingof objects.Eachobjectis a subset
of pointstaken from a setI consistingof n-points.
Output: Hausdorf Voronoi diagramof S.

1) Order the objectsin S accordingto their leftmost
points. Divide theseobjects,using the order and the
numberof pointswithin anobject,in p vertical slabs
resulting in setsS;, for i = 1,---,p. Eachset S;

consistsof O(%) input points and is assignedo the
ith processar

The ith processorcomputesthe Hausdorf Voronoi
diagramof objectswithin S; usinga sequentiablgo-
rithm.

Perform [log p] memge phaseswherethe jth phase
combinesZ; subdiagramsnto Z; diagrams,such

that pairs of adjacentsubdiagramsare meiged.

2)

3)

The overall top-level divide-and-conquestructureof this
algorithm is similar to the existing CGM algorithm for
computing canonicalVoronoi diagramsof points [6]. But
it is a completelynontrivial taskto extendthe algorithmin

[6] to computeHVDs and the main reasonis outlined in

the following. Considerthe divide-and-conquealgorithm
for canonical Voronoi diagramsand assumethat the set
of points are partitionedinto two groupsaccordingto a
vertical line; all points to the left of vertical line are in

the group L and the rest of them are in the group R.

Furthermore,assumethat recursvely we have computed
Voronoi diagramsof the pointsin L and R. The memge
stepneedsto stitch the two diagrams.This is doneby first

findingthe meige curve i.e., the setof all pointsin theplane
that are equidistantfrom a closestpoint in L. and a closest
pointin R. It turnsout thatthe memge curve is y-monotone
and a simple connectedchain. Stitching is achiesed by

throwing away the portion of the Voronoi diagramof L

(respectiely, R) to theright (respectiely, left) of thememge
curve. Unfortunately in the caseof HVDs the meige curve
neednot be a simple chain or y-monotone.In generalit

is comprisedof multiple, disjoint componentghat are not
necessarilyy-monotoneandmay in factcontaincycles(see
Figure 2).

Fig. 2. Multiple Componentsin The Merge Curve For A Hausdorf
Voronoi Diagram.

B. Merging HVDs

In this section we outline our solution to the meming
problem of two HVDs. Assumethat S is split into two
subsetsS; and S,., where all objectsin S; have their
leftmost points to the left of all the pointsin objectsin
S-. Assumethat we have alreadycomputedHVDs of S;
and S, and our objective is to merge them to obtain the
HVD of S. Thetaskof the memgeis to determinethe new
edgesand verticesaddedto the merged diagram,andthen
determinewhich edgesareremoved partially or completely
from the mergeddiagram.The new merge edgesandmeige
verticesform both unboundedagyclic melge components
and cyclic merge components.Together all these edge-
disjoint componentsform the memge curve. The mege
cunve partitions the plane into two portions, that which
retainsedgesfrom the HVD of S; and that which retains
edgesfrom the HVD of S,.. The mainideais to usepoint

location to locate the endpointsof Voronoi edgesof one
subdiagramn the othersubdiagramand determinewhether
the subdiagrams edgeis a part of a merge chain or not.
The main stepsare asfollows:

1) Usepointlocationto find the subsebf VoronoiEdges
crossingthe merge chain.Let thesesubsetsde, E, C
E! of edgesrom HVD of S; andE?, C E" of edges
from HVD of S,.

2) Find verticesof the memge chainon edgesin E!,, and
ET.

3) Remove edges(or portions of edges)in S; and S,
which arenot presenin the meigedVoronoidiagram.

4) Createa setof edgeendpoints,two for eachmemge
chainvertex. Globally sort endpoints.Connectadja-
centendpointsto form edgesandregions of HVD.

For point location eachedgeis treatedindependentlyBy
performing point location of edges’endpointsin the op-
posite subdiagramwe can determine,for eachedgeend-
point, which subdiagramis closer Determiningthe closer
subdiagramis equialentto determiningon which side of
the memge curve an endpointlies. Thus, this enablesus to
determinejndependentlyfor eachedge,thoseedgeswhich
crossthe mermge curve (edgesto be cropped),thosewhich
lie onthefar sideof the meigechain(edgedo beremoved),
andthosewhich lie on the closeside (edgesto be kept).

Once we have identified the set of edgesinvolved in
the meme chain, we must determine where the meige
verticesoccuron theseedgesAgain, this canbe performed
independenthfor eachedge.Determiningthe merge vertex
is equialentto determiningthe input point from the op-
positesubdiagraninducingthe merge vertex. However, we
devise a variant of red blue line intersectionalgorithm to
determinethe oppositesubdiagrans edgeswhich crossan
edge.Conceptually a parallel binary searchthroughthese
edgeintersectioncanthenbe usedto determinethe region
of aninput pointinducingthe memge vertex (SeeFigure4).

After we have determinedthe memge vertices,it is suf-
ficient to determinealso the memge edges(on the mege
curve) connectingthese vertices. A memge verte, v, is
associatedvith two input points from the sameside, say
l1,15 € S;, andthe third input point is associatedvith the
opposesite, say r € S,.. We createtwo copiesof v, one
associatewith the key (l1,r), and the other with the key
(I3,7). By globally sorting the verticesusing thesekeys,
meirge verticessharinga memge edgewill be adjacent,and
a simplewalk will completethe constructionof the meige
edgesto form the meige curve.

C. Algorithm for finding meige vertices

Critical to the HVD algorithm is finding memge vertices.
Before searchingfor meige vertices,we have alreadyused
point location to find a subsetof edgesfrom the left and
right subdiagramsn which theseverticesmay occur We
alsoknow whetherthe edges’endpointsarecloserto the S;

or S,. In otherwords,we know the side of the memge curve
on which an edges endpointlie. By searchingan edgee;

from the HVD of S; throughthe regionsin the HVD of S,
we canfind the region of HVD of S,. in which the memge
vertex occurs.Since the intersectionof the HVD of S,’s
edgeswith e; providesthe boundariesof theseregions,we
cando binary searchamongtheseintersectiongo find the
melge vertices.

In other words the above problem transformsto the
following problem. Input to the problemis a set of non-
intersectingred sggments(edgesof HVD of objectsin S;)
anda setof non-intersectindlue segments(edgesof HVD
of objectsin S..). Let the setof red sggmentsbe our queries.
That is, for ary red sggment, e, we wish to searchfor
someblue segmente;, which intersectse,. directly above
(or to the left of) somepoint. We assumehatthereis some
abovenessrelation on a red query segments intersection
with a blue segments,which allow us to perform binary
search.We call this problemthe batched red-blueseggment
search problem One way to solve this searchproblemis
to computeall intersectiondetweerred andblue sggments
and then perform the binary search.Obviously we want
to avoid this asthe total numberof intersectionscould be
guadraticin the numberof segments.

Chazelleet al [4] describea sequentialalgorithm for
solving the red-blue intersection counting and reporting
problemthatusesa hereditarysegmenttree.We will review
this datastructureand presenimodificationsto shav how it
can usedfor solving our searchproblem.First we present
a sequentiablgorithm and then outline a CGM algorithm.

1) Sequentialalgorithm for the seach problem: The
hereditarysegmenttreeis definedfor a setof red andblue
line segments[4]. The z-coordinatesof the end-pointsof
red and blue sgmentsare ordered,forming a partitioning
of x-intervals. Eachinterval is associatedn order, with the
leaves of a balancedbinary tree. Inner nodesare assigned
the interval which is the union of the interval associatedo
its two children. Along with the interval, eachnodestores
four catalogs,two red and two blue. A red segmentis in
a node n;’s long red catalogiff the segment completely
spansn;’s x-interval, but not the x-interval of n;’s parent.
The samese@mentis storedin the short red catalog of
every noden; thatis a proper ancestorof n;. Long and
short blue catalogsare populatedsimilarly. We comparea
nodes two long catalogs,as well as short catalogwith a
long catalog.Note that segmentswithin a long catalogare
orderedvertically andwheneer we make a comparisonye
ensurethatat leastoneof the catalogsis long. This enables
us to do the binary searchwithout actually computingall
the intersectionsand the actualmechanicss detailednext.

Let the set of red seggmentsbe our queries.For a red
segment,e,., we wish to searchfor someblue sggmente;
which intersectse, directly abose some point. We must
searche, againstthe long blue catalogat nodeswheree,.
is short.We mustalsosearche, againstthe long andshort
blue catalogsat nodeswhere e, is long. Unfortunately
we cannotjust order a nodes short blue catalog,making
it difficult to efficiently searche, againsta short blue

catalog.However, we use a secondarystructureto extend
the hereditarysegmenttree. The purposeof the secondary
structureis to arrangea nodes catalog lists into pairs
of sublistssuchthat all red and blue segmentsin a pair
intersect.Specifically we createthis secondanstructurefor
long red and shortblue segmentsat eachnode.

Taking the (vertically ordered)long red segmentsin the
nodes vertical slab, we constructanother balancedtree
where the long red segments are assigned,in order, to
the secondarytree’s leaves. Eachinner node receves the
union of its subtrees long red sggments.Theseintervals of
red sggmentsare analogoudo the x-intervals of the main
segmenttree. This secondarytree’s catalogsare populated
with shortblue segments.For eachblue segment,we locate
its endpointsin the long red sequencewith which we may
determinethe interval of nodesthat the shortblue sggment
intersects.A short blue sggmentis placedin a secondary
node exactly when the blue sgmentintersectsall of long
red sggmentsassociatedo that node,but not all of the red
segmentsat that nodesparent.Note that eachblue segment
is storedin atmostO(log k) of the k nodesin thesecondary
tree. Finally, once all short blue sggmentsare stored,we
order the short blue catalogat eachnode by the orderin
which they crossthe long red segments.

The queryfor a red segmente,. proceedsasfollows. We
traversethe sggmenttree, looking at the O(logn) nodes
wheree, is storedin red catalogs.Regardlessof whether
e is short or long, we locate its endpointsin the long
blue list. Whene, is long, we also traversethe secondary
structure, searchingthe secondarynodes’ blue catalogs
alongthe pathwheree,. is stored.For every orderedcatalog
of blue sggmentsthat we find, we perform the required
binary search.The running time of the searchalgorithm
is dominatedby the time spentin searchingthe secondary
trees. The secondangreesare of total size O(n log® n), so
both the sortingand queryingof the secondantrees’ short
red catalogsrequiresa total of O(nlog®n) time.

Lemmal: Thebatcheded-bluesggmentsearchproblem
for a setof n sggmentscan be solved in O(nlog® n) time
using O(n log”® n) space.

2) CGM Algorithm for the seach problem: Our data
structure is composedof a main segment tree and at
each node of this tree we have associateda secondary
segmenttree.We distribute the treesin this structureacross
processor¢gSeeFigure3). The mainsegmenttreeis divided
into atop portion, Ty, comprisingof thetop O(log p) levels
of the main tree. What remainsof the main segmenttree
afterremoving Ty is its p subtreesTy, Ts, ..., T;,. .., T)p.
EachT; portionis smallenoughto resideat a processoand
is treatedas a sequentialsubproblem.The skeletonof the
treeT, is storedat eachprocessarasit of sizeO(p), andit
facilitatesthe queries However, the catalogsassociateavith
T,’'s nodesmust be distributed acrossprocessorsWe sort
the entriesin the catalogsglobally acrossprocessorgfirst
by the nodeof T, andthenby therankin the catalog).As a
result, the catalogswhich are shared gachprocessostores

only contiguousportions of catalogs.Boundariesof these
O(p) catalogportionsare copiedto all processors.

To completea descriptionof our distributed structure,it
remainsto divide the Ty nodes’ secondarytrees.Let the
jth node,n;, in Ty have a secondaryreer’. We repeatthe
previous techniqueand split the secondanytree into a top
piece, 7] of depthat mostlog p. The remainingpiecesof
this secondarytree, 77, ..., 7y,... 7} are small enoughto
be treatedsequentiallyAgain, the cataloggor the upperfg
portion are distributed amongprocessors.

Fig. 3. lllustration of main segmenttree and secondaryseggmenttree 74
associatedo the noden;. Main and secondarytreesare partitionedinto
top subtreeandp bottom subtrees.

Next we describehow we query this distributed data
structure Eachqueryfollows a pathdown the mainsegment
tree. For eachnode n; in this path, the query segment
alsofollows a paththroughthe nodes associatedecondary
segmenttree.Let usfocusourdiscussioronthetop (shared)
79 portions of the secondarytrees. Thesetrees’ catalogs
can be concatenateéhto a global sequencesortedby key
(nj, sk, ep), Wheren; is a segment tree node, s;, is a
secondarynodein n;'s secondarytree, and e; is a short
blue catalogentry at s;. Thenwe determinefor eachlong
red segmente,, the O(log” p) secondancatalogs(sy, in a
sgmenttree at noden;) that needto be searchedA copy
of e, with thekey (n;, si, e,) is createdandthenthe query
for the tree 7§ is completedby performingparallel binary
search.

Now, let us briefly discussthe lower TZ portions of
the secondarytrees. Each processorstoresa set of these
lower secondarysubtreeportions.We canfirst load balance
thesesubtreescrosgprocessorandtheshortblue sggments
destinedfor eachsubtree andthensolve eachsearchprob-
lem sequentially This load balancingis doneusing similar
techniquesas in other CGM algorithms using distributed
segmenttrees|[8].

Queriesagainstlong blue catalogsin the main segment
treedo notrequireuseof the secondaryrees.Thesequeries
in Ty aretreatedsimilarly to the queriesperformedin the
secondaryrees.Note,however, thatthe mainsegmenttree’s
subtreesdo not require load balancing, since the nodes’

intervals are basedon red and blue segment endpoints.
Hence,O(%) queriesaredistributedto eachT; subtree.

Now we analyzethe compleity of our algorithm. The
mostcomplex portion of Tj is the secondarycatalogquery-
ing. The upper 7§ portions of the secondarytreesreduce
to sequentiabatchbinary searchsubproblemsf total size
O(”—l"pgﬁ), which require O(ﬂg%"gﬁ) local computa-
tion time. The lower 7{ portionsof the secondarytreesand
the subtreesn T; reduceto sequentiabubproblem®f total
size O(ﬂ’fi) per processarwhich require O(ﬂfﬁ)
local computationtime. Hence,

Lemma2: The batchedred-blue sgment searchprob-
lem can be solved on a CGM in O(ﬂfﬁ) spaceand

O("IOT;") local computationtime, with O(1) rounds,and
the restrictionthatn > p3.

3) Finding memge vertices: We now returnto the CGM
algorithmfor Hausdorf Voronoidiagrams.To completethis
algorithm’s description,what remainsis to describehow to
find the mege verticesusingthe batchedred-bluesegment
search problem. Recall that we have already computed
HVDs of objectsin S; and S, andour problemis to memge
themto obtainHVD of objectsin S. First, for simplicity, we
restrictour attentionto finding mermgeverticeson edgedrom
theHVD of S; sincethe operationis symmetricfor theedge
in HVD of S,.. Recallthat we have determineda set, EY,,
of edgedo searchfor suchmemevertices.Furthermoreywe
canassumehatthe set E!, is partitionedinto two classes,
the set E! of edgesintersectingthe mege chainonce,and
EL, the setof edgespossiblyintersectingthe memge twice
(or not at all). Here are the main steps:

1) Constructthe extendedhereditarysegmenttree data
structurefor the edgesin the HVD of objectsin S,.

2) Querytheedgesin thesetsE! andE} in the sggment
treeto find memge verticeson theseedges.

3) For edgesin E, remove thosefor which no memge
vertices were found. For all other queried edges,
remove the appropriateportion of the edges.

4) Repeathe above stepsfor the finding memge vertices
on edgesin HVD of S,.

Eachmeige chain crossingpoint is a vertex in the merged
diagram.Hence,it hasexactly threeinput pointsassociated
with it. Two of thesepoints are from the sameside (they
inducethe Voronoi edge,e € E!, , which wascrossed)say
pi,pj from objectsin S;. The third input point is from the
otherside,sayr from S,.. We needto determiner.

To determiner, we only needto find the Voronoiregion
of r. Let us supposehat we could determinethe intersec-
tions of edgesin HVD of S, with e. If theseintersecting
edgesare orderedalong e, then adjacentedgeswill define
the boundaryof Voronoiregionsin the HVD of S,.. We can
computethe Hausdorf distancefrom eachintersectionto
objectsin S; andto objectsin S,. (we only needthe distance
from the intersectionto the input points associatedwith
eachedge).The boundaryof hreg(r) will have one edge
intersectinge closerto S, and the other edgeintersecting

it closerto S;.

Fig.4. Searchinganedgeg in E{ for themeigevertex v. It is equidistant
from r, p;, and p;. Pointson the segmentwv;v are closerto an objectin
Si, whereagpointson segmentvw, arecloserto an objectin S;.

For a singly-intersectecedgeq = (vjv,) € E!, we have
determinedanendpointcloserto S;, saywv;, andanendpoint
closerto S, sayv,, andwe arelooking for a memge vertex,
sayv onq (seeFigure4 for anillustration). We notethatthe
redblueline intersectiorsearchwill searchtheintersection
of edgesbetweenred lines (edgesin E!) and blue lines
(edgesin E™) using an abovenessrelation. For a singly-
intersecteedge g, andablueedgee, we definethisrelation
asfollows. Given an intersectionpoint, say v, betweernyg
ande, we determinethe Hausdorf distancebetweerny,, and
points defining the edgesq (i.e., p;) ande. If the distance
to p; is smallerthenwe performthe searchon the segment
vger, Otherwisewe searchon the sggmentwv;v,.. Notice
that at the meme vertex v the distanceto p; is sameasthe
distanceto r.

For anedgeq € EL theremay or may not be two merge
verticeson ¢. We know that ¢’s two endpointssayv; and
vq, are both fartherfrom S; than S,.. Hence,if thereexist
two meige vertices,they partition ¢ into three parts, the
middle partis closerto S;, andthe two end partsclosestto
S,-. For this case we make useof alemmafrom [13], [17].

Lemma3 ([13], [17]): Let T (FP;) bethetreeformedby
the edgesof the farthestpoint Voronoi diagramof points
in an object P; € S. Let therebe a pointa € 7(P;). The
point a splits 7 (P;) into two subtreeslf anobjectP; € S
is closerto a than P; is to a, thenall the pointsin one of
the two subtreesare closerto P; thanto P;.

We mustperformtwo redblue line intersectionsearchesn
q, onefor eachpotentialmeige vertex. Let us describethe
searchfor the memgevertex which is closerto v, andlet us
call this meige vertex aswv. The searchfor the othermege
vertex is analogous.Here, we define a slightly different
abosenesgelationon the edgeq. For the intersectionpoint
vge Detweenthe edgesg ande, if v, is closerto S; than
S, then we are in the middle region and needto search
towardsv;. Otherwise,we are closerto S, and we need
to determinewhetherwe are above or belov v. By using
Lemma3 and the knowledge aboutwhich objectin S, is

closestto v4., we candeterminewhetherto searchtowards
v1 Or va.

D. Analysis

We now analyzethe efficiency of our CGM algorithmfor
computingthe HVD of S. The meme stepitself includesa
constantnumberof O(”—l‘;g—”) global sorts[6], CGM point
locationfor O(n) endpoints,which requires()("“;#) time
[2], andthe batchedred-bluesegmentsearchalgorithmthat
requiresO(”“’Tﬁs”) time (Lemmaz2).

The initial partitioning of the setsis done using global
sort taking O(%g—”) time. The computationHVD’s in
eachprocessomt the startof the algorithm dependson the
sequentiaklgorithm; asdescribedn Theorem2 it requires
O(nlog*n) time to constructa HVD of sizen. Merging is
performedrecursiely andrequireslog p rounds.Therefore
the entirealgorithmrequiresO("l"gsp" logp "1°§4) local
computationtime.

The spacerequiredfor theentirealgorithmis O(n/p) per
processoexceptin thememestep,wherethesequentialine
intersectionsubproblerrrequiresO("1°sz") space.

Eachmerge stepis comprisedof sorting, point location
andred blue line intersectionthat requirea constantnum-
ber of rounds.Therefore,togetherall meme stepsrequire
O(log p) rounds.Hence,we concludethat:

Theoeml1: On a p-processor CGM, the Hausdorf
Voronoi diagram of non-crossingobjects defined by n-
pointsin the planecan be constructedn O(%) local

computatiortime,in O(log p) roundswith O(ﬂ’j@) space
per processarwheren > p°.

IV. IMPROVED SEQUENTIAL ALGORITHM

The existing divide and conquer (Papadopoulou[17])
and sweepline (Papadopoulouand Lee [13]) algorithms
have worst-caserunning times of O(n?logn) for the non-
crossingcaseandarenotoptimal.In fact,Papadopoulo@and
Lee posesthis as an openproblem.For our parallel algo-
rithm, we have restrictedinput to non-crossingshapesand
our parallel algorithm immediately presentsan improved
sequentialalgorithm comparedto theserecent sweepline
and divide-and-conquealgorithms.

Our sequentiablgorithmis derivedasfollows. We repeat
the samedivide and conquertechniqueas in the exist-
ing Hausdorf Voronoi divide-andconqueralgorithm [17],
except we improve the meige step by doing a sequential
version of the CGM algorithm's mege. For this, a se-
quentialO(nlogn) batchpoint location algorithm and the
O(nlog®n) batchedred blue line searchalgorithm from
above is used.By performing O(logn) meme steps,we
obtain the following result.

Theoem?2: A Hausdorf Voronoi diagram for non-
crossingobjectsdefined on n-points in the plane can be
constructedn O(nlog* n) time.

V. PRELIMINARY EXPERIMENTAL RESULTS

In this sectionwe discussessome preliminary experi-
mental resultsfrom a “first draft” implementationof our
parallelalgorithmin Sectionlll. We stressthat our parallel
implementationis still a work in progressand requires
considerablymore fine tuning beforea speedupconsistent
with the theoreticalanalysiscan be measuredWe are still
working on an improved version of our code but decided
to include thesepreliminary resultsin order to meetthe
conferencaleadline.

Our codeincludesa sequentialsweeplinealgorithm for
HVDs, segmenttreesfor parallel point location, sggment
treesfor red blue line intersectionsearchanda distributed
HVD datastructure We make useof two libraries:CGMLib
[3] and LEDA [12]. CGMLib builds on MPI to provide
efficient algorithmsand memory managementnethodsin
C++ that are particularly well suited for coarsegrained
parallelalgorithms.All communicatiorbetweenprocessors
occurs using CGMLib, and we make use of CGMLib’s
parallel sorting algorithms. The Library of Efficient Data
Structuresand Algorithms (LEDA) implementsmary fun-
damentahlgorithms,includingsomecomputationaeome-
try methodsOur coderelieson LEDA geometricprimitives
(orientation,incircle/distancaests)andgeometricdatatypes
(points, segments,rays, circles, etc.). We use LEDA's far
thestVoronoidiagramconstructioralgorithm.We alsomake
use of LEDA’s data structuresfor graphs,priority queues
and hashtables. The currentimplementationof our new
methodsand data structuresin Section Il is still rather
straightforvard and still needsa lot of optimizationwork.
In particular our currentimplementationof the segment
treewith secondarnsegmenttreesstill incursa lot of over
head.We alsodiscoreredconsiderableedundanciesn our
currentimplementatiorof the datamovementsrequiredfor
load balancing.During the memge phase the parallel point
location and red blue line intersectionmodulesconstruct
large treesand perform mary querieson thesetrees.These
computations,along with the initial sequentialphaseare
the main contributors to running time in this preliminary
implementation.They need a better implementationwith
moreattentionto detail. We areworking on a new “version
2" of our code.

Figures5 and 6 shav speedupsand wall clock running
times, respectiely, for our currentpreliminary implemen-
tation. Thesetestswere performedon a Beowulf cluster
in the High PerformanceVirtual Computing Laboratory
(Wwww.HPCVL.om). The clusterconsistsof dual-processor
Xeon nodes (2.0GHz and 1.5GB RAM per node) with
LINUX Redhatand LAM MPI 7.1.1. For our tests,we
used only one processorper node to avoid artifacts in
our measurementom intra-nodecommunicationFor our
input data,we wrote a datageneratowhich creategpseudo
random patternsthat mimic via blocks placedon a VLSI
chip. Preliminary relative speedupresults are shavn in
Figure5. The speedupshemselesarestill fartoo low due

Relative Speedup
28 T T T

N=70560 ---x---
2.6 FN=114120 ---%---

24 F L |
22 o .

2 / 4

Speedup

2 4 6 8 10 12 14 16
Number of Processors

Fig. 5.
Sizes

PreliminarylmplementationRelatve Speedugor ThreeProblem

Running Time (problem size N=141120)
600 T T T T

T
total —+—

computation ---x---

550 communication ---%---

Wall Clock Time (s)

2 4 6 8 10 12 14 16
Number Of Processors

Fig.6. PreliminarylmplementationParallelWall Clock Time (maximum
wall clock time over all processors)shaving computationtime, commu-
nicationtime, andtotal time

to our nonoptimizedimplementationHowever, the shapeof
the speedupurvesis encouragingincethe curvesareclose
to linear shapefor up to 16 processorsThat is, they not
“drop off” at somepoint within this rangewhich indicates
good scalability This is consistentwith the preliminary
wall clock times shavn in Figure 6. We obsere that the
communicationtime decreasesvith increasingnumber of
processorsvhich indicatesgood scalability

VI. CONCLUSIONS

We have presentedhefirst parallelalgorithmfor building
a HVD as well as a novel sequentialHVD algorithm
for the non-crossingcase.Futurework concerningparallel
Hausdorf Voronoidiagramss plannedfor bothalgorithmic
and experimentalaspectsWe are presentlydeveloping a
parallel Hausdorf Voronoi diagramalgorithmfor the more
general case that includes crossing objects. Also, more
detail orientedprogrammingwork is necessaryo improve
the runningtime of our preliminarytests.This will provide
a morepreciseevaluationof the efficiency of our algorithm
in practice.With animprovedimplementationin place,we

alsoplan to testthe performanceof our parallel algorithm
on real geometriclayoutsusedin VLSI design.

REFERENCES

[1] F Aurenhammerand R. Klein. Handbookof ComputationalGe-
ometry chapterVoronoi Diagrams,pages201-290.North-Holland,
2000.

[2] A. Chan,F. Dehne,and A. Rau-Chaplin. Coarse-grainegarallel
geometricsearch. Journal of Parallel and Distributed Computing
57(2):224-2351999.

[3] Albert Chan, Frank Dehne, and Ryan Taylor CGM-
GRAPH/CGMLIB: ImplementingandtestingCGM graphalgorithms
on pc clustersand sharedmemory machines.International Journal
of High PerformanceComputingApplications 19(1):81-97 2005.

[4] B. ChazelleH. Edelsbrunner..J. Guibas,andM. Sharir Algorithms
for bichromaticline-sgment problemsand polyhedralterrains. Al-
gorithmicg 11(2):116-132,1994.

[5] F Dehne,A. Fabri,andA. Rau-Chaplin.Scalableparallelcomputa-
tional geometryfor coarsegrainedmulticomputers.Int. Journal of
ComputationalGeometryand Applications 6(3):379-400,1996.

[6] M. Diallo, A. Ferreira, and A. Rau-Chaplin. A note on
communication-dicient deterministicparallel algorithmsfor planar
point locationand2D Voronoi diagram.Parallel Processing_etters,
11(2/3):327-3402001.

[7] H. EdelsbrunnerL. Guibas,and M. Sharir The upperervelope of
piecavise linear functions: Algorithms and applications. Discrete
and ComputationalGeometry 4:311-336,1989.

[8] A. FabriandO. Devillers. Scalablealgorithmsfor bichromaticline
segment intersectionproblemson coarsegrained multicomputers.
International Journal of ComputationGeometryand Applications
6(3):379-400,1996.

[9] C. Jeong.An improved parallel algorithm for constructingvoronoi

diagrams on a mesh-connecteccomputer Parallel Computing

17:505-514,1991.

D.T. Lee and E. Papadopoulou.Critical areacomputation- a nev

approach. IEEE TransactionsComputerAided Design 18(4):463—

474,1999.

B. R. Mandasa. Critical areafor yield models. Technical Report

TR22.2436,BM, Jan1982.

K. MehlhornandS. Naher LEDA: a platformfor combinatorialand

geometriccomputing. Communication®f the ACM, 38(1):96-102,

1995.

E. PapadopoulouThe Hausdorf Voronoi diagramof point clusters

in the plane. Algorithmica 40(2):63-82,2004.

E. PapadopoulowandD.T. Lee. Lo, Voronoi diagramsandapplica-

tionsto VLSI layoutand manufcturing. In ISAAC, volume 1533 of

LNCS pages9-18,1998.

E. PapadopouloandD.T. Lee. Critical areacomputatiorvia \Voronoi

diagramsI|EEE Transaction®n ComputerAidedDesign 18(4):463—

474,1999.

E. Papadopoulowand D.T. Lee. The min-max Voronoi diagramof

polygonsand applicationsin VLS| manufcturing. In P. Bose and

P. Morin, editors, ISAAC, volume 2518 of LNCS pages511-522.

Springe#Verlag Heidelbeg, January2002.

E. Papadopoulouand D.T. Lee. The Hausdorf Voronoi diagram

of polygonalobjects:A divide and conquerapproach.International

Journal of ComputationalGeometryand Applications 14(6):421—

452,2004.

Evanthia Papadopoulou.Critical areacomputationfor missing ma-

terial defectsin VLSI circuits. In Transactionson CICS volume 20,

pages569-570.IEEE, May 2001.

EvanthiaPapadopoulouOn the Hausdorf VVoronoi diagramof point

clustersin the plane. In WADS volume 2748 of LCNS 2003.

R.Cole,M. Goodrich,and C.Dunlaing. Merging free treein parallel

for efficient voronoi diagram construction. In Proc. 17th ICALP,

1990.

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

