
A Coarse Grained Parallel Algorithm
for Hausdorff Voronoi Diagrams

FrankDehne,Anil Maheshwari andRyanTaylor

Abstract— We presentthe first parallel algorithm for build-
ing a Hausdorff Voronoi diagram (HVD). Our algorithm is
targeted towards cluster computing architectures and com-
putes the Hausdorff Voronoi diagram for non-crossingobjects
in time

������� �	��
�� � for input size � and � processors.
In addition, our parallel algorithm also implies a new

sequential HVD algorithm that constructs HVDs for non-
crossingobjectsin time

��� ����������� � . This impr oveson previous
sequential results and solves an open problem posed by
Papadopoulou and Lee [17].

I . INTRODUCTION

In this paper, we presentthe first parallel algorithm for
building a Hausdorff Voronoi diagram (HVD). Our parallel
algorithmalsoimpliesa new sequentialHVD algorithmthat
improveson previous sequentialresultsandsolvesan open
problemstatedin [17].

A. Backgroundand Motivation

One of the most widely studiedstructuresin Computa-
tional Geometryis the Voronoi diagram(seee.g. [1]). In
its canonicalform, a Voronoi diagram is constructedfor
a planarset of points (sites).The planeis partitionedinto
regions,one for eachsite, whereeachregion is the set of
pointsclosestto the associatedsite. In this paperwe study
the Hausdorff Voronoi diagram (HVD), a generalizationof
standardVoronoi diagrams.Each site is replacedby an
arbitrary object (point set in the plane) and the distance
of a point to an object(point set) is definedasthe distance
to thefarthestpoint in theobject.SeeSectionII for a formal
HVD definition.Like thestandardVoronoidiagram,a HVD
divides the planeinto regions.For any point in the plane,
the covering circle centeredat that point is the smallest
circle that completelyenclosesat leastoneobject.Observe
that for any point within a Hausdorff Voronoi region the
covering circle enclosesthe sameobject. Hence,a HVD
maybeconsideredasaVoronoidiagramof coveringcircles.

Due to this covering circle property, the HVD has re-
cently gainedconsiderableattentionwithin the context of
VLSI manufacturing. The use of HVDs for VLSI yield
predictionhasbeenpioneeredat IBM andis discussede.g.
in [10], [11], [13], [14], [15], [16], [17], [18], [19]. Part of
the designprocessfor new VLSI chipsis to determinehow

This work was partially supportedby the Natural Sciencesand Engi-
neeringResearchCouncil of Canada.

Frank Dehne, Anil Maheshwari and Ryan Taylor are
with the School of Computer Science, Carleton Uni-
versity, Ottawa, Canada http://www.dehne.net,
http://www.scs.carleton.ca/ � maheshwa/,
rtaylor@scs.carleton.ca.

resilientthechip’scircuit geometrywill beto defectscaused
during the manufacturingprocess.The HVD allows for the
efficient computationof the critical area of a chip which
is an importantmeasurefor a VLSI chip’s yield prediction.
A chip defectis typically createdby impuritiesor particles
that settle on the chip during the manufacturing process.
The questionis whether or not such an impurity results
in a faulty chip. One type of fault consideredis when a
componenton the chip, e.g. a contacton the via layer, is
disconnected.For eachcontact,redundantcontactpointsare
placedon the via layer to improve reliability. To destroy
the connectioncreatedby a via block, all its (redundant)
contactpoints must be destroyed. Hence,a defect (circle)
that covers an entire via block causesa faulty chip. The
minimum size circle that completelycovers a via block is
efficiently computedthrougha Hausdorff Voronoidiagram.
It representsthesmallestdefectthatwould destroy thechip.

B. PreviousWork

Voronoi diagrams have been extensively studied and
generalizedin avarietyof ways(seee.g.[1] for anextensive
survey). For the Hausdorff Voronoi diagram, sequential
algorithms have beenpresentedin [13], [19], [17], [16],
[7]. A sequentialsweeplineHVD algorithm is presented
in [13] and a sequentialdivide-and-conquermethod is
presentedin [17]. A sequentialmethodbasedon coordinate
transformationand lower envelopecalculationis presented
in [7]. Theworstcasetimecomplexitiesarelistedin TableI.
The sequentialsweeplineHVD algorithm [13] appearsto
performbestin practice.

The parallel constructionof standard Voronoi diagrams
hasbeenstudiede.g.in [6], [9], [20]. However, thereexists
to our knowledgeno parallel algorithm for the Hausdorff
Voronoi diagram.

TheVLSI applicationof HVDs discussedabove requires
the computationof very large HVDs. In [17] it wasposed
as an openproblemto speedup HVD constructionin the
generalcaseand in particularfor the caseof non-crossing
objects.Suchobjectsmayoverlapbut not crosscompletely,
andthe geometricobjectsin VLSI design(e.g.via blocks)
aretypically non-crossing[17]. Thealgorithmsin [7], [13],
[17] arenot fasterfor thecaseof non-crossingobjects.This
papercontributestowardssolvingtheproblemposedin [17]
by providing amuchimprovedsequentialalgorithmfor non-
crossingobjects.

C. New Results

The primary contribution of this paperis to presentthe
first parallel algorithmfor Hausdorff Voronoidiagramcon-
struction.Our algorithm is coarsegrainedparallel [5] and
targetedtowardsclustercomputingarchitectures.Ourcoarse
grainedparallelalgorithmcomputesthe Hausdorff Voronoi
diagram for non-crossingobjects in time �����! "$#
 �% & for
input of size ' on a coarsegrainedmultiprocessor(CGM)
with (processors.We also presenta first experimental
evaluationof our parallelalgorithm.

ComputingHausdorff Voronoi diagramsin parallel is a
hard problem, and considerablyharder than the parallel
constructionof standardVoronoi diagrams(e.g. [6], [9],
[20]). Suchmethodsaretypically basedon aparalleldivide-
and-conquerstrategy. For canonicalVoronoi diagrams,the
merge curve used for “stitching together” two Voronoi
diagramsis onesinglemonotonechain.Therefore,the task
of merging two canonicaldiagramsbecomesrelatively easy.
For Hausdorff Voronoidiagramsthis is not case.Themerge
curve may be comprisedof multiple, disjoint components
that are not necessarilymonotone.In fact, someof these
merge componentsmay even be cyclic. An example is
shown in Figure2. Themaincontributionof this paperis an
efficient coarsegrainedparallelmethodthat is able to deal
with multiplemergecomponentsthatarenon-monotoneand
possiblycyclic.

In addition,thedirectsequentialadaptationof ourparallel
algorithm resultsin a sequentialalgorithm that constructs
HVDs for non-crossingobjectsin time ���)'+*-,/.102' & . This
new sequentialalgorithmcontributestowardsanopenprob-
lem posedin [17].

A summaryof our main resultsis shown in Table I.

Previous New

Parallel —none— 354 �6� �	�	
7� 8:9
Sequential 354<;>=@?64<; 8A8 9CB [7] 354<;EDGFIH � ; 8 9354-;7=�DGFIH�J>; 8 9�B [13], [17]

9 non-crossingobjectsB crossingobjects

TABLE I

SUMMARY OF RESULTS

D. Paper Overview

The remainderof this paper is organizedas follows.
SectionII providesformal definitionsfor Hausdorff Voronoi
diagrams and crossing/non-crossingobjects. Section III
presentsour mainresult:a coarsegrainedparallelalgorithm
for Hausdorff Voronoi diagrams.SectionIV discussesthe
improved sequentialalgorithm that results directly from
our parallelmethod.SectionV discussessomepreliminary
experimentalresults.SectionVI concludesour paper.

I I . PRELIMINARIES

A Hausdorff Voronoi Diagram(HVD) is constructedfor a
setsystemwith a universeK of ' input pointsin the plane.
A subsetof the power set of K , LNMPO�QERTS@QVU/S�WCW�W�S@QVXZY , is
given as input, such that [�\�Q \ M]K and Q \7^ Q2_`Mba ,
for all cdSfe and chgMie . Each set Q \kj L is said to be
an object. For HVD computation,the Hausdorff distance
function from a point l jnm U to an object Q \ j L is
definedto be o�pq�AQ \ S�OTl�Y & Mro�sq�AQ \ S@l & , where o�s denotes
the farthest(maximum)Euclideandistancebetweenl and
points in Q \ [16]. Observe that sincewe are dealingwith
the farthestdistance,verticesin the interior of the convex
hull of any objectin L do not participatein thecomputation
of HVDs. Hence,we can assumethat eachobject Q \tj L
consistsof points that are on its convex hull. It is known
that the size of the HVD is linear in the numberof points
defining the objects.

Definition 1 (Crossing): Two objects, Q \ S$Q2_ j L are
said to be crossingif f thereexist two points (\ S:(>_ on Q \ ’s
convex hull and u \ S$u _ on Q _ ’s convex hull suchthat(1) u \ u _
intersects(\ (_ and(2) all of (\ SA(_ S$u \ S$u _ areon the convex
hull of Q \ [Q _ .
In this paperweonly dealwith objectsthatarenon-crossing
(but may overlap) and hencefor the rest of the paperwe
assumethat no two input objects are crossing.Next we
definethe vertices,edgesand facesof HVDs.

Definition 2: A Hausdorff Voronoi edge, v , is the locus
of pointswith exactly two closest(underHausdorff metric)
pointsin theinputobjectsin L . A Hausdorff Voronoivertex,w , is apointwith at leastthreeclosest(underHausdorff met-
ric) points in the objectsin L . A Hausdorff Voronoi region
for an object Q \ j L is xzy+vC{��:Q \ & M|O�l jzm U1} o7p~�:l~S@Q \ &��
o7p~�:l~S@Q _ & S	��Q _ gM`Q \ Y . We canfurthersubdivideaHausdorff
region for an object Q \ with respectto pointson its convex
hull as follows. A Hausdorff Voronoi region for a point
(j Q \ is �~��vC{���(& M�O�l j�m U1} oq�:l~S:(& M�o p �:l~S@Q \ & , and
o p �:l~S@Q \ &�� o p �AlqS$Q2_ & S	��Q�_�gMhQ \ Y . Givena set L of objects,
the Hausdorff Voronoi Diagram, x������:L & , is the union of
Hausdorff Voronoi edgesand vertices. It forms a planar
subdivision of m U . SeeFigure1 for an illustration.

I I I . CGM ALGORITHM

In this section we presenta novel parallel algorithm
for computing HVD for non-crossinginput objects. The
input consistsof the set K of ' points in the plane and
the set L consistingof objects.Our algorithm is designed
for a Coarse-GrainedMulticomputer (CGM)[5] consisting
of (-processors.The processorsare connectedby an arbi-
trary interconnectionnetwork. Eachprocessorhassufficient
memory to hold ���A'V�d(& input points from the set K .
Furthermore,we assumethatthenumberof pointswithin an
objectin L is atmost ���)'V�d(& andthis ensuresthatanobject
residescompletelyon a single processor. This is a natural
assumptionand is indeedvalid for our VLSI application
discussedaboveaseachobject(via block) typically consists
of lessthan20 points.The CGM hasthe ability to realize

Fig. 1. Hausdorff VoronoiDiagramof sevenobjects.Bold line represents
the region for an object and dashedline representsregion for individual
points.

� -relations,wherein each � -relation,at most � amountof
datais routedto andfrom eachprocessor. A CGM algorithm
is comprisedof rounds,where each round consistsof a
local computationstep followed by a communicationstep
realizingan � -relation.

A. Outline of the Algorithm

Our algorithm follows the divide-and-conquerparadigm.
The set of objects are divided into an orderedsequence
of (vertical slabs.We computeHVDs for objectsin each
slab and then merge them to obtain the HVD of L . The
algorithmis sketchedin the following.

Algorithm: HVD(S)
Input: A set L consistingof objects.Eachobjectis a subset
of points taken from a set K consistingof ' -points.
Output:Hausdorff Voronoi diagramof L .

1) Order the objects in L accordingto their leftmost
points.Divide theseobjects,using the order and the
numberof pointswithin an object,in (vertical slabs
resulting in sets L \ , for c�M��/SC�����CSA(. Each set L \
consistsof ��� �% & input points and is assignedto the
c th processor.

2) The c th processorcomputesthe Hausdorff Voronoi
diagramof objectswithin L \ usinga sequentialalgo-
rithm.

3) Perform �)*<,1.2(�� merge phases,where the e th phase
combines

%U$� subdiagramsinto
%U��	��� diagrams,such

that pairsof adjacentsubdiagramsaremerged.

The overall top-level divide-and-conquerstructureof this
algorithm is similar to the existing CGM algorithm for
computingcanonicalVoronoi diagramsof points [6]. But
it is a completelynontrivial taskto extendthe algorithmin

[6] to computeHVDs and the main reasonis outlined in
the following. Considerthe divide-and-conqueralgorithm
for canonicalVoronoi diagramsand assumethat the set
of points are partitioned into two groups accordingto a
vertical line; all points to the left of vertical line are in
the group � and the rest of them are in the group y .
Furthermore,assumethat recursively we have computed
Voronoi diagramsof the points in � and y . The merge
stepneedsto stitch the two diagrams.This is doneby first
finding themergecurve, i.e., thesetof all pointsin theplane
that areequidistantfrom a closestpoint in � anda closest
point in y . It turnsout that the mergecurve is � -monotone
and a simple connectedchain. Stitching is achieved by
throwing away the portion of the Voronoi diagram of �
(respectively, y) to theright (respectively, left) of themerge
curve. Unfortunately, in the caseof HVDs the merge curve
neednot be a simple chain or � -monotone.In generalit
is comprisedof multiple, disjoint componentsthat are not
necessarily� -monotoneandmay in fact containcycles(see
Figure2).

Fig. 2. Multiple ComponentsIn The Merge Curve For A Hausdorff
Voronoi Diagram.

B. Merging HVDs

In this section we outline our solution to the merging
problem of two HVDs. Assumethat L is split into two
subsets L�� and L�� , where all objects in L�� have their
leftmost points to the left of all the points in objects in
L�� . Assumethat we have alreadycomputedHVDs of L��
and L�� and our objective is to merge them to obtain the
HVD of L . The taskof the merge is to determinethe new
edgesandverticesaddedto the mergeddiagram,and then
determinewhich edgesareremovedpartially or completely
from themergeddiagram.Thenew mergeedgesandmerge
verticesform both unboundedacyclic merge components
and cyclic merge components.Together, all these edge-
disjoint componentsform the merge curve. The merge
curve partitions the plane into two portions, that which
retainsedgesfrom the HVD of L�� and that which retains
edgesfrom the HVD of L�� . The main idea is to usepoint

location to locate the endpointsof Voronoi edgesof one
subdiagramin the othersubdiagramanddeterminewhether
the subdiagram’s edgeis a part of a merge chain or not.
The main stepsareas follows:

1) Usepoint locationto find thesubsetof VoronoiEdges
crossingthemergechain.Let thesesubsetsbe, � �X|
� � of edgesfrom HVD of L � and � �X � � of edges
from HVD of L�� .

2) Find verticesof the mergechainon edgesin � �X and
� �X .

3) Remove edges(or portions of edges)in L�� and L2�
which arenot presentin themergedVoronoidiagram.

4) Createa set of edgeendpoints,two for eachmerge
chain vertex. Globally sort endpoints.Connectadja-
centendpointsto form edgesandregionsof HVD.

For point location eachedgeis treatedindependently. By
performing point location of edges’endpointsin the op-
positesubdiagram,we can determine,for eachedgeend-
point, which subdiagramis closer. Determiningthe closer
subdiagramis equivalent to determiningon which side of
the merge curve an endpointlies. Thus, this enablesus to
determine,independentlyfor eachedge,thoseedgeswhich
crossthe merge curve (edgesto be cropped),thosewhich
lie on thefar sideof themergechain(edgesto beremoved),
and thosewhich lie on the closeside(edgesto be kept).

Once we have identified the set of edgesinvolved in
the merge chain, we must determine where the merge
verticesoccuron theseedges.Again, this canbeperformed
independentlyfor eachedge.Determiningthemergevertex
is equivalent to determiningthe input point from the op-
positesubdiagraminducingthe mergevertex. However, we
devise a variant of red blue line intersectionalgorithm to
determinethe oppositesubdiagram’s edgeswhich crossan
edge.Conceptually, a parallel binary searchthroughthese
edgeintersectionscanthenbe usedto determinethe region
of an input point inducingthe mergevertex (SeeFigure4).

After we have determinedthe merge vertices,it is suf-
ficient to determinealso the merge edges(on the merge
curve) connectingthese vertices. A merge vertex, w , is
associatedwith two input points from the sameside, say¡ R�S ¡ U j L�� , and the third input point is associatedwith the
opposesite, say � j L�� . We createtwo copiesof w , one
associatewith the key � ¡ R�S�� & , and the other with the key
� ¡ U�S�� & . By globally sorting the verticesusing thesekeys,
merge verticessharinga merge edgewill be adjacent,and
a simplewalk will completethe constructionof the merge
edgesto form the merge curve.

C. Algorithm for finding merge vertices

Critical to the HVD algorithm is finding merge vertices.
Beforesearchingfor merge vertices,we have alreadyused
point location to find a subsetof edgesfrom the left and
right subdiagramson which theseverticesmay occur. We
alsoknow whethertheedges’endpointsarecloserto the L �
or L�� . In otherwords,we know thesideof themergecurve
on which an edge’s endpointlie. By searchingan edge v��

from theHVD of L�� throughtheregionsin theHVD of L�� ,
we can find the region of HVD of L�� in which the merge
vertex occurs.Since the intersectionof the HVD of L�� ’s
edgeswith vC� providesthe boundariesof theseregions,we
cando binary searchamongtheseintersectionsto find the
merge vertices.

In other words the above problem transforms to the
following problem. Input to the problem is a set of non-
intersectingred segments(edgesof HVD of objectsin L �)
anda setof non-intersectingblue segments(edgesof HVD
of objectsin L �). Let thesetof redsegmentsbeour queries.
That is, for any red segment, v � , we wish to searchfor
someblue segment v�¢ which intersectsvT� directly above
(or to the left of) somepoint. We assumethat thereis some
abovenessrelation on a red query segment’s intersection
with a blue segments,which allow us to perform binary
search.We call this problemthe batchedred-bluesegment
search problem. One way to solve this searchproblem is
to computeall intersectionsbetweenredandbluesegments
and then perform the binary search.Obviously we want
to avoid this as the total numberof intersectionscould be
quadraticin the numberof segments.

Chazelleet al [4] describea sequentialalgorithm for
solving the red-blue intersectioncounting and reporting
problemthatusesa hereditarysegmenttree.We will review
this datastructureandpresentmodificationsto show how it
can usedfor solving our searchproblem.First we present
a sequentialalgorithmandthenoutline a CGM algorithm.

1) Sequentialalgorithm for the search problem: The
hereditarysegmenttreeis definedfor a setof red andblue
line segments[4]. The £ -coordinatesof the end-pointsof
red and blue segmentsare ordered,forming a partitioning
of x-intervals.Eachinterval is associated,in order, with the
leaves of a balancedbinary tree. Inner nodesare assigned
the interval which is the union of the interval associatedto
its two children.Along with the interval, eachnodestores
four catalogs,two red and two blue. A red segment is in
a node ' \ ’s long red catalog if f the segment completely
spans' \ ’s x-interval, but not the x-interval of ' \ ’s parent.
The samesegment is stored in the short red catalog of
every node '6_ that is a proper ancestorof ' \ . Long and
short blue catalogsare populatedsimilarly. We comparea
node’s two long catalogs,as well as short catalogwith a
long catalog.Note that segmentswithin a long catalogare
orderedvertically andwheneverwe make a comparison,we
ensurethatat leastoneof thecatalogsis long. This enables
us to do the binary searchwithout actually computingall
the intersectionsand the actualmechanicsis detailednext.

Let the set of red segmentsbe our queries.For a red
segment, v � , we wish to searchfor someblue segment v ¢
which intersects v � directly above some point. We must
searchv � againstthe long blue catalogat nodeswhere v �
is short.We mustalsosearchv � againstthe long andshort
blue catalogsat nodes where v � is long. Unfortunately,
we cannotjust order a node’s short blue catalog,making
it difficult to efficiently search vT� against a short blue

catalog.However, we usea secondarystructureto extend
the hereditarysegmenttree.The purposeof the secondary
structure is to arrangea node’s catalog lists into pairs
of sublistssuch that all red and blue segmentsin a pair
intersect.Specifically, we createthis secondarystructurefor
long red andshortblue segmentsat eachnode.

Taking the (vertically ordered)long red segmentsin the
node’s vertical slab, we construct another balancedtree
where the long red segments are assigned,in order, to
the secondarytree’s leaves. Each inner node receives the
union of its subtree’s long red segments.Theseintervals of
red segmentsare analogousto the x-intervals of the main
segmenttree.This secondarytree’s catalogsare populated
with shortbluesegments.For eachbluesegment,we locate
its endpointsin the long red sequence,with which we may
determinethe interval of nodesthat the shortblue segment
intersects.A short blue segment is placedin a secondary
nodeexactly when the blue segment intersectsall of long
red segmentsassociatedto that node,but not all of the red
segmentsat thatnodesparent.Note that eachblue segment
is storedin atmost ���)*-,/.�¤ & of the ¤ nodesin thesecondary
tree. Finally, once all short blue segmentsare stored,we
order the short blue catalogat eachnodeby the order in
which they crossthe long red segments.

The queryfor a red segment v � proceedsasfollows. We
traverse the segment tree, looking at the ���A*<,1.¥' & nodes
where v�� is storedin red catalogs.Regardlessof whether
vT� is short or long, we locate its endpointsin the long
blue list. When v�� is long, we also traversethe secondary
structure, searchingthe secondarynodes’ blue catalogs
alongthepathwhere vT� is stored.For every orderedcatalog
of blue segmentsthat we find, we perform the required
binary search.The running time of the searchalgorithm
is dominatedby the time spentin searchingthe secondary
trees.The secondarytreesareof total size ���)'+*-,/. U ' & , so
both the sortingandqueryingof the secondarytrees’short
red catalogsrequiresa total of ���)'+*-,/.1¦2' & time.

Lemma1: Thebatchedred-bluesegmentsearchproblem
for a setof ' segmentscanbe solved in ���A'�*-,/. ¦ ' & time
using ���)'+*-,/. U ' & space.

2) CGM Algorithm for the search problem: Our data
structure is composedof a main segment tree and at
each node of this tree we have associateda secondary
segmenttree.We distribute the treesin this structureacross
processors(SeeFigure3). Themainsegmenttreeis divided
into a top portion, §�¨ , comprisingof thetop ���)*-,/.2(& levels
of the main tree. What remainsof the main segment tree
after removing §6¨ is its (subtrees,§!RTS�§�U�SCW�WCW�S�§ \ S�W�WCW�S�§ % .
Each § \ portionis smallenoughto resideat a processorand
is treatedas a sequentialsubproblem.The skeletonof the
tree § ¨ is storedat eachprocessor, asit of size ����(& , andit
facilitatesthequeries.However, thecatalogsassociatedwith
§ ¨ ’s nodesmust be distributed acrossprocessors.We sort
the entriesin the catalogsglobally acrossprocessors(first
by thenodeof §�¨ andthenby therank in thecatalog).As a
result,the catalogswhich areshared,eachprocessorstores

only contiguousportionsof catalogs.Boundariesof these
����(& catalogportionsarecopiedto all processors.

To completea descriptionof our distributedstructure,it
remainsto divide the §�¨ nodes’ secondarytrees.Let the
e th node, '6_ , in §�¨ have a secondarytree © _ . We repeatthe
previous techniqueand split the secondarytree into a top
piece, © _¨ of depthat most *-,/.V(. The remainingpiecesof
this secondarytree, © _R S�WCW�W�S$© _ª S�WCW�W�© _% are small enoughto
be treatedsequentially. Again, thecatalogsfor theupper © _¨
portion aredistributedamongprocessors.

«C¬
@®

¯�° ±�²³�´

µd¶·
¸d¹º

»d¼½
¾d¿À

Fig. 3. Illustration of main segmenttreeandsecondarysegmenttree Á�Â
associatedto the node ; Â . Main andsecondarytreesare partitionedinto
top subtreeand Ã bottomsubtrees.

Next we describehow we query this distributed data
structure.Eachqueryfollowsapathdown themainsegment
tree. For each node '6_ in this path, the query segment
alsofollows a paththroughthenode’s associatedsecondary
segmenttree.Let usfocusourdiscussionon thetop (shared)
© _¨ portions of the secondarytrees.Thesetrees’ catalogs
can be concatenatedinto a global sequence,sortedby key
�)' _ SdÄ ª S$v ¢ & , where ' _ is a segment tree node, Ä ª is a
secondarynode in ' _ ’s secondarytree, and v ¢ is a short
blue catalogentry at Ä ª . Thenwe determinefor eachlong
red segment v � , the ���)*-,/. U (& secondarycatalogs(Ä ª , in a
segmenttreeat node ' _) that needto be searched.A copy
of v � with thekey �)' _ S@Ä ª S@v � & is created,andthenthequery
for the tree © _¨ is completedby performingparallel binary
search.

Now, let us briefly discuss the lower © _ª portions of
the secondarytrees.Each processorstoresa set of these
lower secondarysubtreeportions.We canfirst loadbalance
thesesubtreesacrossprocessorsandtheshortbluesegments
destinedfor eachsubtree,andthensolve eachsearchprob-
lem sequentially. This load balancingis doneusingsimilar
techniquesas in other CGM algorithmsusing distributed
segmenttrees[8].

Queriesagainstlong blue catalogsin the main segment
treedo not requireuseof thesecondarytrees.Thesequeries
in § ¨ are treatedsimilarly to the queriesperformedin the
secondarytrees.Note,however, thatthemainsegmenttree’s
subtreesdo not require load balancing,since the nodes’

intervals are basedon red and blue segment endpoints.
Hence, ��� �% & queriesaredistributed to each § \ subtree.

Now we analyzethe complexity of our algorithm. The
mostcomplex portionof §�¨ is thesecondarycatalogquery-
ing. The upper © \¨ portions of the secondarytreesreduce
to sequentialbatchbinary searchsubproblemsof total size
���C�2 "$#IÅ %% & , which require �����! "@#~�! "@#IÅ %% & local computa-
tion time. The lower © \ª portionsof the secondarytreesand
the subtreesin § \ reduceto sequentialsubproblemsof total
size ��� �2 "@# Å �% & per processor, which require ��� �2 "@#IÆ��% &
local computationtime. Hence,

Lemma2: The batchedred-blue segment searchprob-
lem can be solved on a CGM in �����! "$# Å �% & spaceand

��� �2 "$#IÆ7�% & local computationtime, with ����� & rounds,and
the restrictionthat 'ÈÇ�(¦ .

3) Finding merge vertices: We now return to the CGM
algorithmfor Hausdorff Voronoidiagrams.To completethis
algorithm’s description,what remainsis to describehow to
find the merge verticesusingthe batchedred-bluesegment
searchproblem. Recall that we have already computed
HVDs of objectsin L�� and L�� andour problemis to merge
themto obtainHVD of objectsin L . First, for simplicity, we
restrictourattentionto findingmergeverticesonedgesfrom
theHVD of L�� sincetheoperationis symmetricfor theedge
in HVD of L�� . Recall that we have determineda set, � �X ,
of edgesto searchfor suchmergevertices.Furthermore,we
canassumethat the set � �X is partitionedinto two classes,
the set � �R of edgesintersectingthe merge chainonce,and
� �U , the set of edgespossibly intersectingthe merge twice
(or not at all). Hereare the main steps:

1) Constructthe extendedhereditarysegment tree data
structurefor the edgesin the HVD of objectsin L � .

2) Querytheedgesin thesets� �R and � �U in thesegment
tree to find merge verticeson theseedges.

3) For edgesin � �U , remove thosefor which no merge
vertices were found. For all other queried edges,
remove the appropriateportion of the edges.

4) Repeatthe above stepsfor the finding mergevertices
on edgesin HVD of L�� .

Eachmerge chaincrossingpoint is a vertex in the merged
diagram.Hence,it hasexactly threeinput pointsassociated
with it. Two of thesepoints are from the sameside (they
inducethe Voronoi edge,v j � �X , which wascrossed),say
(\ SA(�_ from objectsin L�� . The third input point is from the
otherside,say � from L�� . We needto determine� .

To determine� , we only needto find the Voronoi region
of � . Let us supposethat we could determinethe intersec-
tions of edgesin HVD of L2� with v . If theseintersecting
edgesare orderedalong v , thenadjacentedgeswill define
theboundaryof Voronoi regionsin theHVD of L � . We can
computethe Hausdorff distancefrom eachintersectionto
objectsin L � andto objectsin L � (we only needthedistance
from the intersectionto the input points associatedwith
eachedge).The boundaryof ����vC{��A� & will have one edge
intersectingv closerto L�� and the other edgeintersecting

it closerto L�� .

É�Ê

Ë@Ì Í
Î1Ï ÐÒÑ<Ó)ÔÕ ÐqÖ�×

Ø1Ù ÚÒÛ<Ü)ÝÞ ÚqßTà

á$â

ã�ä

å
æ

ç

Fig. 4. Searchinganedgeè in é¥êë for themergevertex ì . It is equidistant
from ídî-Ã�ï	î and Ã Â . Pointson the segment ì ê ì are closerto an object inð ê , whereaspointson segment ì�ìdñ arecloserto an object in

ð ñ .

For a singly-intersectededge uòMP� w � w � & j � �R , we have
determinedanendpointcloserto L � , say w � , andanendpoint
closerto L � , say w � , andwe arelooking for a mergevertex,
say w on u (seeFigure4 for anillustration).We notethatthe
redblueline intersectionsearch,will searchtheintersection
of edgesbetweenred lines (edgesin � �R) and blue lines
(edgesin � �) using an abovenessrelation. For a singly-
intersectededge,u , andablueedgev , wedefinethis relation
asfollows. Given an intersectionpoint, say w/ó$ô , betweenu
and v , wedeterminetheHausdorff distancebetweenw/ó�ô and
points defining the edgesu (i.e., (\) and v . If the distance
to (\ is smallerthenwe performthe searchon the segmentw/ó�ôIw � , otherwisewe searchon the segment w � w/ó$ô . Notice
that at the merge vertex w the distanceto (\ is sameasthe
distanceto � .

For an edge u j � �U theremay or may not be two merge
verticeson u . We know that u ’s two endpoints,say w R andw U , are both fartherfrom L�� than L�� . Hence,if thereexist
two merge vertices, they partition u into three parts, the
middle part is closerto L�� , andthe two endpartsclosestto
L�� . For this case,we make useof a lemmafrom [13], [17].

Lemma3 ([13], [17]): Let õö�AQ \ & be the treeformedby
the edgesof the farthestpoint Voronoi diagramof points
in an object Q \ j L . Let therebe a point ÷ j õö�:Q \ & . The
point ÷ splits õø�AQ \ & into two subtrees.If an object Q _ j L
is closerto ÷ than Q \ is to ÷ , thenall the points in oneof
the two subtreesarecloserto Q2_ than to Q \ .
We mustperformtwo redblue line intersectionsearcheson
u , one for eachpotentialmerge vertex. Let us describethe
searchfor themergevertex which is closerto w R , andlet us
call this merge vertex as w . The searchfor the othermerge
vertex is analogous.Here, we define a slightly different
abovenessrelationon the edge u . For the intersectionpointw ó�ô betweenthe edgesu and v , if w ó�ô is closerto L � than
L � then we are in the middle region and needto search
towards w R . Otherwise,we are closer to L � and we need
to determinewhetherwe are above or below w . By using
Lemma3 and the knowledgeaboutwhich object in L�� is

closestto w/ó�ô , we candeterminewhetherto searchtowardsw R or w U .
D. Analysis

We now analyzetheefficiency of our CGM algorithmfor
computingthe HVD of L . The merge stepitself includesa
constantnumberof ��� �! "@#~�% & global sorts[6], CGM point

locationfor ���)' & endpoints,which requires�����2 "@#��% & time
[2], andthebatchedred-bluesegmentsearchalgorithmthat
requires���C�! "@#IÆ1�% & time (Lemma2).

The initial partitioning of the setsis doneusing global
sort taking ��� �V "$#��% & time. The computationHVD’s in
eachprocessorat the startof the algorithmdependson the
sequentialalgorithm;asdescribedin Theorem2 it requires
���A'�*-,/.102' & time to constructa HVD of size ' . Merging is
performedrecursively andrequires*-,/.!(rounds.Therefore
theentirealgorithmrequires��� �V "@#dÆ��V "$# %% ù �! "@#
 �% & local
computationtime.

Thespacerequiredfor theentirealgorithmis ���)'V�I(& per
processorexceptin themergestep,wherethesequentialline
intersectionsubproblemrequires �����! "$# Å �% & space.

Eachmerge stepis comprisedof sorting,point location
and red blue line intersectionthat requirea constantnum-
ber of rounds.Therefore,togetherall merge stepsrequire
���A*<,1.2(& rounds.Hence,we concludethat:

Theorem1: On a (-processor CGM, the Hausdorff
Voronoi diagram of non-crossingobjects defined by ' -
points in the planecan be constructedin �����V "$#
 �% & local

computationtime, in ���A*<,1.2(& roundswith �����V "$# Å �% & space
per processor, where '�ÇÈ(¦ .

IV. IMPROVED SEQUENTIAL ALGORITHM

The existing divide and conquer (Papadopoulou[17])
and sweepline (Papadopoulouand Lee [13]) algorithms
have worst-caserunning times of ���)' U *-,/.ú' & for the non-
crossingcaseandarenotoptimal.In fact,Papadopoulouand
Lee posesthis as an openproblem.For our parallel algo-
rithm, we have restrictedinput to non-crossingshapes,and
our parallel algorithm immediately presentsan improved
sequentialalgorithm comparedto theserecent sweepline
anddivide-and-conqueralgorithms.

Our sequentialalgorithmis derivedasfollows.We repeat
the samedivide and conquer techniqueas in the exist-
ing Hausdorff Voronoi divide-andconqueralgorithm [17],
except we improve the merge step by doing a sequential
version of the CGM algorithm’s merge. For this, a se-
quential ���)'+*-,/.E' & batchpoint location algorithm and the
���A'�*-,/.�¦�' & batchedred blue line searchalgorithm from
above is used.By performing ���)*-,/.ú' & merge steps,we
obtain the following result.

Theorem2: A Hausdorff Voronoi diagram for non-
crossingobjectsdefinedon ' -points in the plane can be
constructedin ���A'�*-,/.102' & time.

V. PRELIMINARY EXPERIMENTAL RESULTS

In this section we discussessome preliminary experi-
mental results from a “first draft” implementationof our
parallelalgorithmin SectionIII. We stressthat our parallel
implementationis still a work in progressand requires
considerablymore fine tuning beforea speedupconsistent
with the theoreticalanalysiscanbe measured.We arestill
working on an improved versionof our codebut decided
to include thesepreliminary results in order to meet the
conferencedeadline.

Our code includesa sequentialsweeplinealgorithm for
HVDs, segment treesfor parallel point location, segment
treesfor red blue line intersectionsearch,anda distributed
HVD datastructure.We makeuseof two libraries:CGMLib
[3] and LEDA [12]. CGMLib builds on MPI to provide
efficient algorithmsand memory managementmethodsin
C++ that are particularly well suited for coarsegrained
parallelalgorithms.All communicationbetweenprocessors
occurs using CGMLib, and we make use of CGMLib’s
parallel sorting algorithms.The Library of Efficient Data
Structuresand Algorithms (LEDA) implementsmany fun-
damentalalgorithms,includingsomecomputationalgeome-
try methods.Our coderelieson LEDA geometricprimitives
(orientation,incircle/distancetests)andgeometricdatatypes
(points, segments,rays, circles, etc.). We useLEDA’s far-
thestVoronoidiagramconstructionalgorithm.Wealsomake
use of LEDA’s data structuresfor graphs,priority queues
and hash tables.The current implementationof our new
methodsand data structuresin Section III is still rather
straightforward and still needsa lot of optimizationwork.
In particular, our current implementationof the segment
treewith secondarysegmenttreesstill incursa lot of over-
head.We alsodiscoveredconsiderableredundanciesin our
currentimplementationof the datamovementsrequiredfor
load balancing.During the merge phase,the parallel point
location and red blue line intersectionmodulesconstruct
large treesandperformmany querieson thesetrees.These
computations,along with the initial sequentialphaseare
the main contributors to running time in this preliminary
implementation.They need a better implementationwith
moreattentionto detail.We areworking on a new “version
2” of our code.

Figures5 and 6 show speedupsand wall clock running
times, respectively, for our currentpreliminary implemen-
tation. Thesetests were performedon a Beowulf cluster
in the High PerformanceVirtual Computing Laboratory
(www.HPCVL.org). The clusterconsistsof dual-processor
Xeon nodes (2.0GHz and 1.5GB RAM per node) with
LINUX Redhatand LAM MPI 7.1.1. For our tests, we
used only one processorper node to avoid artifacts in
our measurementsfrom intra-nodecommunication.For our
input data,we wrotea datageneratorwhich createspseudo
randompatternsthat mimic via blocks placedon a VLSI
chip. Preliminary relative speedupresults are shown in
Figure5. The speedupsthemselvesarestill far too low due

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2 4 6 8 10 12 14 16

S
pe

ed
upû

Number of Processors

Relative Speedup

N=35280
N=70560

N=114120

Fig. 5. PreliminaryImplementation:Relative Speedupfor ThreeProblem
Sizes

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 2 4 6 8 10 12 14 16

W
al

l C
lo

ck
 T

im
e

(s
)

Number Of Processors

Running Time (problem size N=141120)

total
computation

communication

Fig. 6. PreliminaryImplementation:ParallelWall Clock Time (maximum
wall clock time over all processors),showing computationtime, commu-
nication time, and total time

to ournonoptimizedimplementation.However, theshapeof
thespeedupcurvesis encouragingsincethecurvesareclose
to linear shapefor up to 16 processors.That is, they not
“drop off ” at somepoint within this rangewhich indicates
good scalability. This is consistentwith the preliminary
wall clock times shown in Figure 6. We observe that the
communicationtime decreaseswith increasingnumberof
processorswhich indicatesgoodscalability.

VI . CONCLUSIONS

We havepresentedthefirst parallelalgorithmfor building
a HVD as well as a novel sequentialHVD algorithm
for the non-crossingcase.Futurework concerningparallel
Hausdorff Voronoidiagramsis plannedfor bothalgorithmic
and experimentalaspects.We are presentlydeveloping a
parallelHausdorff Voronoi diagramalgorithmfor the more
general case that includes crossing objects. Also, more
detail orientedprogrammingwork is necessaryto improve
the runningtime of our preliminarytests.This will provide
a morepreciseevaluationof theefficiency of our algorithm
in practice.With an improved implementationin place,we

also plan to test the performanceof our parallel algorithm
on real geometriclayoutsusedin VLSI design.

REFERENCES

[1] F. Aurenhammerand R. Klein. Handbookof ComputationalGe-
ometry, chapterVoronoi Diagrams,pages201–290.North-Holland,
2000.

[2] A. Chan, F. Dehne,and A. Rau-Chaplin. Coarse-grainedparallel
geometricsearch. Journal of Parallel and Distributed Computing,
57(2):224–235,1999.

[3] Albert Chan, Frank Dehne, and Ryan Taylor. CGM-
GRAPH/CGMLIB: ImplementingandtestingCGM graphalgorithms
on pc clustersandsharedmemorymachines.International Journal
of High PerformanceComputingApplications, 19(1):81–97,2005.

[4] B. Chazelle,H. Edelsbrunner, L.J. Guibas,andM. Sharir. Algorithms
for bichromaticline-segment problemsand polyhedralterrains. Al-
gorithmica, 11(2):116–132,1994.

[5] F. Dehne,A. Fabri, andA. Rau-Chaplin.Scalableparallelcomputa-
tional geometryfor coarsegrainedmulticomputers.Int. Journal of
ComputationalGeometryand Applications, 6(3):379–400,1996.

[6] M. Diallo, A. Ferreira, and A. Rau-Chaplin. A note on
communication-efficient deterministicparallel algorithmsfor planar
point locationand2D Voronoi diagram.Parallel ProcessingLetters,
11(2/3):327–340,2001.

[7] H. Edelsbrunner, L. Guibas,and M. Sharir. The upperenvelopeof
piecewise linear functions: Algorithms and applications. Discrete
and ComputationalGeometry, 4:311–336,1989.

[8] A. Fabri andO. Devillers. Scalablealgorithmsfor bichromaticline
segment intersectionproblemson coarsegrained multicomputers.
International Journal of ComputationGeometryand Applications,
6(3):379–400,1996.

[9] C. Jeong. An improved parallel algorithm for constructingvoronoi
diagrams on a mesh-connectedcomputer. Parallel Computing,
17:505–514,1991.

[10] D.T. Lee and E. Papadopoulou.Critical areacomputation- a new
approach. IEEE TransactionsComputer-Aided Design, 18(4):463–
474, 1999.

[11] B. R. Mandava. Critical areafor yield models. TechnicalReport
TR22.2436,IBM, Jan1982.

[12] K. MehlhornandS. Naher. LEDA: a platform for combinatorialand
geometriccomputing. Communicationsof the ACM, 38(1):96–102,
1995.

[13] E. Papadopoulou.The Hausdorff Voronoi diagramof point clusters
in the plane. Algorithmica, 40(2):63–82,2004.

[14] E. PapadopoulouandD.T. Lee. ü�ý Voronoi diagramsandapplica-
tions to VLSI layout andmanufacturing. In ISAAC, volume1533of
LNCS, pages9–18,1998.

[15] E. PapadopoulouandD.T. Lee.Critical areacomputationvia Voronoi
diagrams.IEEETransactionsonComputer-AidedDesign, 18(4):463–
474, 1999.

[16] E. Papadopoulouand D.T. Lee. The min-max Voronoi diagramof
polygonsand applicationsin VLSI manufacturing. In P. Boseand
P. Morin, editors, ISAAC, volume 2518 of LNCS, pages511–522.
Springer-Verlag Heidelberg, January2002.

[17] E. Papadopoulouand D.T. Lee. The Hausdorff Voronoi diagram
of polygonalobjects:A divide andconquerapproach.International
Journal of ComputationalGeometryand Applications, 14(6):421–
452, 2004.

[18] EvanthiaPapadopoulou.Critical areacomputationfor missingma-
terial defectsin VLSI circuits. In Transactionson CICS, volume20,
pages569–570.IEEE, May 2001.

[19] EvanthiaPapadopoulou.On theHausdorff Voronoi diagramof point
clustersin the plane. In WADS, volume2748of LCNS, 2003.

[20] R.Cole,M. Goodrich,andC.Dunlaing.Merging free treein parallel
for efficient voronoi diagramconstruction. In Proc. 17th ICALP,
1990.

