
RECN-DD: A Memory-Efficient Congestion Management Technique for
Advanced Switching ∗

P.J. Garcı́a, F.J. Quiles
Dept. de Sistemas Informáticos

Univ. de Castilla-La Mancha
Albacete, Spain 02071

{pgarcia,paco}@info-ab.uclm.es

J. Flich, J. Duato
DISCA

Univ. Politécnica de Valencia
Valencia, Spain 46071

{jflich,jduato}@disca.upv.es

I. Johnson, F. Naven
Xyratex Ltd.

Havant, United Kingdom
Ian Johnson@xyratex.com

Abstract

As VLSI technology advances, the interconnection net-
work represents a larger percentage of the total system cost
and power consumption. In fact, a current trend in network
design is to reduce the number of components. However,
this leads to systems working closer to saturation point, and
therefore an efficient congestion management technique is
required. In that sense, RECN has been recently proposed
for Advanced Switching (AS). RECN detects the formation
of congestion trees and dynamically allocates queues for
storing congested packets, thus, eliminating the HOL block-
ing introduced by congestion trees. These queues are deal-
located when congestion vanishes.

We have identified two shortcomings that may affect
RECN scalability and implementation. Firstly, although
RECN allocates queues in an efficient way, resource deal-
location is performed in-order, thus losing efficiency and
wasting resources. This leads to an excessive requirement
of memory at switch ports. Secondly, both allocation and
deallocation mechanisms involve the use of specific control
packets not supported by the AS standard, thus preventing
RECN implementation. In this sense we provide a detailed
description of the current RECN deallocation mechanism.

In this paper we present an enhanced RECN version
(RECN-DD) where these problems have been eliminated.
Specifically, we propose a new distributed queue deallo-
cation mechanism that reduces the number of required re-
sources and does not require the use of control packets.
Moreover, we propose a new congestion notification mech-
anism that does not require non-standard AS packets. In-
stead, flow control packets are used to notify congestion,
thus simplifying the implementation of RECN-DD in AS.

∗This work was supported by Spanish CICYT under Grant TIC2003-
08154-C06, by UPV under Grant 20040937 and by Junta de Comunidades
de Castilla-La Mancha under Grant PBC-05-005.

1. Introduction

As supercomputers and PC clusters increase in size, the
interconnection network is becoming one of the critical sys-
tem components. Most modern interconnection networks
(Myrinet 2000 [18], Quadrics [20], InfiniBand [13], Ad-
vanced Switching (AS)1 [1]) are quite expensive compared
to endnodes in current clusters. Also, network power con-
sumption is becoming increasingly important. As VLSI
technology advances and link speed increases, intercon-
nects consume an increasing fraction of the total system
power [22]. One solution to reduce network cost and power
consumption is by using fewer network components (i.e.
switches and links), but this implies a higher utilization
of such components. Unfortunately, as traffic is usually
bursty, increasing link utilization will lead to network satu-
ration and congestion during certain time intervals. In these
cases, network performance degrades dramatically (conges-
tion propagates quickly through the network due to flow
control, forming congestion trees2), thus requiring an effec-
tive congestion management technique. In fact, congestion
management is one of the most challenging problems inter-
connect designers face today.

In [8], a new congestion management mechanism, re-
ferred to as RECN (Regional Explicit Congestion Notifica-
tion) was proposed. It differs from traditional solutions in
that the congestion itself is not eliminated. Instead, RECN
focuses on eliminating the head-of-line (HOL) blocking
caused by congestion trees. This phenomenon occurs if a
packet at the head of a FIFO queue is blocked (as it requests
a busy output port), preventing other packets in that queue
from advancing, even if they request free output ports.

Basically, RECN detects the formation of congestion
trees and consequently allocates specific queues (referred

1AS is an open standard for fabric-interconnection technologies devel-
oped by the ASI SIG. It is based on PCI Express, extending it to include
other features. AS is supported by many leading enterprises.

2We consider lossless networks, where packet dropping is not allowed.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

to as Set Aside Queues, SAQs) for storing packets belong-
ing to those trees. Since non-congested packets are stored
in other queues, the HOL blocking that congested packets
could cause is avoided. SAQs are dynamically managed,
and they can be deallocated when RECN detects conges-
tion vanishment. RECN is implemented at every switch in
the network, so it is able to react effectively and immedi-
ately during the formation of congestion trees. In [11] it was
shown that the number of SAQs required for handling con-
gestion is low and does not depend on network size. There-
fore, RECN is scalable and cost-effective.

In this paper, we focus on how vanishment of conges-
tion trees is managed in RECN. Specifically, we have de-
tected that the SAQ deallocation procedure is not efficient.
RECN assumes that congestion trees always collapse from
leaves to root, and thus uses a conservative approach in or-
der to deallocate SAQs. Specifically, tokens are exchanged
between switches in order to identify the leaves of any de-
tected congestion tree, and only SAQs at leaf points can be
deallocated. Upon deallocation of a leaf SAQ, a token is
sent to the downstream SAQ on the same tree branch. In
[11], it was found that the way congestion trees evolve de-
pends on switch architecture and traffic patterns, thus pro-
ducing different congestion dynamics. In that paper we
identified cases where congestion trees did not vanish from
leaves to root. Thus, the deallocation mechanism will not
follow, in many cases, the tree collapsing. This means that
RECN may keep allocated many SAQs while the corre-
sponding congestion tree has vanished, thus consuming an
excessive number of queues.

Moreover, the exchanging of tokens implies the use of
specific control packets. This is a handicap for the im-
plementation of the whole RECN mechanism. Although
RECN was proposed as a congestion management tech-
nique that could be used in most networks, it was applied
to Advanced Switching (AS). However, as the current AS
specification does not consider the explicit control packets
required by RECN, the original RECN may not be suitable
for implementation in AS. In this paper, as a first contribu-
tion, we propose a new fully distributed SAQ deallocation
mechanism. It will deallocate SAQs independently of the
location of the resource in the tree (thus closely following
the real way congestion trees collapse). The new mecha-
nism will not exchange tokens between switches, thus facil-
itating the implementation of the mechanism in AS.

On the other hand, RECN uses explicit notification pack-
ets between switches in order to keep track of congestion
trees. As the control packets used for exchanging tokens,
they are not supported currently in AS. In this paper, as a
second contribution, we redefine the mechanism of notify-
ing congestion between switches in order to conform to the
AS standard. Specifically, the new notification mechanism
will use flow control packets for notifying congestion.

The resulting version of RECN will be referred to as
RECN Distributed Deallocation (RECN-DD). To sum up,
the main benefits of this new version will be the following:

• It will minimize the number of resources required in
order to deal with congestion trees. This will allow
us to handle a higher number of concurrent trees with
the same set of resources. Alternatively, the number of
SAQs can be reduced while maintaining performance.

• Compatibility with AS will be facilitated, since ex-
plicit congestion notifications and token-exchanging
packets will be eliminated.

• The SAQ deallocation policy will be simplified and
thus it will be simpler to implement.

The rest of the paper is organized as follows. Section
2 shows an overview of the existing related work. Next,
in Section 3, the basic RECN mechanism is described, fo-
cusing on the deallocation stage. Then, in Section 4, the
new version of RECN (RECN-DD) is presented. In Section
5, RECN and RECN-DD are compared in terms of perfor-
mance and resource needs. Section 6 shows an estimation
of the memory area required at each port for implementing
both mechanisms. Finally, in Section 7, some conclusions
are drawn.

2. Related work

The problem of congestion on interconnection networks
has attracted the attention of researchers for many years
[19]. A large number of strategies have been proposed for
controlling the formation of congestion trees and for elim-
inating or reducing their negative effects. Many of them
consider congestion in multiprocessor systems, where con-
gestion trees appear due to concurrent requests to the same
memory module. In [6], a taxonomy of the different hot-
spot management strategies is proposed, dividing them into
three categories: avoidance, prevention and detection strate-
gies. Although different taxonomies are possible for other
environments [29], the former classification is roughly valid
also for non-multiprocessor-oriented congestion manage-
ment techniques.

Avoidance strategies [30, 28] require previous planning
in order to guarantee that congestion trees will not appear.
In general, these strategies are related to quality of service
requirements and are based on reserving network resources,
thereby introducing a significant overhead.

Prevention strategies [12, 21] control the traffic in such
a way that congestion trees should not happen. In general,
decisions are made “on the fly”, based on limiting or modi-
fying routes or memory accesses. However, it is required a
knowledge of network status that is not always available.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

Detection strategies are based on detecting congestion
trees, and in consequence activating a control mechanism
that solves the problem. For instance, congestion is detected
by measuring switch buffer occupancy [27, 17] or the num-
ber of memory access requests [21]. Then, a notification is
sent to the sources injecting traffic or to the processors re-
questing memory accesses, in order to cease or reduce their
activity. Notifications can be sent to all the sources [26],
just to those causing congestion [15] or just to the endpoints
attached to the switch where congestion is detected [4, 2].
The main drawback of these strategies is the delay between
congestion detection and reaction, which leads to slow re-
sponse and so to performance degradation.

Other strategies like fully adaptive routing [7, 23] or load
balancing techniques [10, 23] may delay congestion appear-
ance, but they become useless once saturation is reached.

On the other hand, many techniques minimize or elimi-
nate the main negative effect of congestion: the HOL block-
ing. One of them is the use of non-blocking topologies [9].
Unfortunately, it is not always possible to build such con-
figurations, so other topology-independent HOL blocking
elimination techniques exist. Some of them focus on HOL
blocking formed at the switch level [3, 25, 16] while oth-
ers at the entire network [5, 14]. In general, switch-level
techniques, like Virtual Output Queues at switch level (VO-
Qsw), are scalable but not fully effective, as HOL blocking
may be produced outside the switch, while network-level
techniques, like Virtual Output Queues at network level
(VOQnet), are usually effective but not scalable, as they re-
quire too many queues per port.

Recently, RECN was proposed as a scalable and fully ef-
fective solution for HOL blocking elimination [8]. In [11],
some enhancements to RECN were proposed, in order to
correctly detect and isolate congestion trees regardless of
the way they form. These changes were necessary due to the
varied evolution of the trees under different conditions of
traffic and switch architecture, also analyzed in [11]. Subse-
quently, that analysis also allowed us to find that the RECN
deallocation mechanism may lead to an inefficient use of
network resources. The first goal of the new RECN version
presented in this paper is to solve this problem (the second
one is to facilitate RECN compatibility with AS).

3. RECN

Although RECN could work under different network
technologies, it benefits from the routing mechanisms found
in AS. Specifically, AS uses source deterministic routing.
The AS packet header includes a turnpool made up of 31
bits that contains all the turns (offset from the incoming port
to the outgoing port) for every switch along the path. This
allows a particular network point to be addressed from any
other point in the network. Thus, a switch, by inspecting the

Timertoken bits

token bit vector
(if output)

Flow control
among SAQs

bit mask

v

valid bit

Timertoken bitsbit mask

congestion tree root definition

b lfXoffnextSAQ

CAM

v turnpool

b lf

timer for

XoffnextSAQ

deallocatingblocking bit leaf bit (if input)

turnpool

Figure 1. CAM structure for RECN.

appropriate turnpool bits of a packet, can know in advance
if the packet will pass through a particular network point.

3.1. Resources

RECN adds a set of SAQs to the standard (normal) queue
at every input and output port of a switch. While all the non-
congested packets are stored in the normal queue (RECN
assumes that this does not introduce significant HOL block-
ing), SAQs are dynamically allocated to store packets pass-
ing through a specific congested point (root of a congestion
tree). Each set of SAQs is managed by means of a CAM
(Content Addressable Memory). Figure 1 shows the CAM
structure. Each CAM line is associated to a specific SAQ,
and includes the definition of the root for the corresponding
congestion tree and other control information. The root po-
sition is defined by a network subpath encoded by means of
a complete turnpool and an associated bit mask that selects
the appropriate subset of consecutive bits from the turnpool.
The rest of the control information will be described in the
following sections.

All the buffers for a given port are implemented using a
high-speed data RAM and a separate control RAM to store
the pointers. This implementation allows the use of dynam-
ically allocated queues of variable size.

3.2. Congestion detection and notification

RECN detects congestion at both sides of a switch (input
and output). At output ports, when a normal queue receives
a packet and spills over a given threshold (detection thresh-
old), a notification is sent to the sender input port indicating
that the output port is congested. This notification includes
the routing information (a turnpool and the corresponding
bit mask) to reach the congested output port from the noti-
fied input port (only a turn). Upon reception of a notifica-
tion, the input port allocates a new SAQ (setting the valid
bit) and fills the corresponding CAM line with the received
turnpool and bit mask. From that moment, every incoming
packet that will pass through the congested point (easily de-
tected from the packet turnpool) will be stored in the newly
allocated SAQ, thus eliminating the HOL blocking it could
cause.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

At input ports a different detection mechanism is used.
When a normal input queue spills over a threshold, it is
because packets requesting a certain output port are being
blocked, but, as these packets can head toward different out-
put ports, it is not trivial to determine which one is the con-
gested output port. In response to this requirement, RECN
replaces the normal queue at each input port by a set of
small buffers, referred to as detection queues. The detection
queues are structured at the switch level: there are as many
detection queues as output ports in the switch, and pack-
ets heading toward a particular output port are stored in the
associated detection queue. By doing this, when a detec-
tion queue spills over a given threshold, congestion is de-
tected, and the output port causing the congestion is easily
computed as the port associated with that detection queue.
Once congestion is detected at an input port, a new SAQ is
allocated at this port, and the turnpool identifying the output
port causing congestion is computed and stored in the CAM
line. The congested detection queue and the allocated SAQ
are swapped and a notification is sent upstream.

Congestion information propagates to other switches
whenever an input SAQ becomes congested. Then, a new
notification is sent upstream to some output port that will
react allocating an output SAQ. In the same way, if an out-
put SAQ reaches a given threshold, an internal notification
is sent to the corresponding input port, which will react al-
locating an input SAQ, and so on. As notifications go up-
stream, the information encoding the route to the congested
point is updated accordingly. So, congestion detection is
propagated through all the branches of the tree and SAQs
are allocated along the branches.

In order to guarantee that packets are delivered in order,
when a SAQ is allocated, a marker (link pointer) is stored
in the normal queue, pointing to the newly allocated SAQ.
This SAQ will not forward packets until the marker reaches
the head of the normal queue. The SAQ blocking is imple-
mented by means of the CAM blocking bit (Figure 1).

3.3. Flow control

RECN implements a special Xon/Xoff flow control for
SAQs. This mechanism is different from the credit-based
flow control used for normal queues, which considers all
the unused space of the port data memory available for each
individual queue. If this “global-credits” scheme were used
for SAQs, a congested flow could fill the whole port mem-
ory. Instead, the Xon/Xoff scheme guarantees that the num-
ber of packets in a SAQ will be always below a certain
threshold. The CAM line associated to each SAQ contains
the identifier (field nextSAQ) of the immediate downstream
SAQ storing packets for the same congestion tree. When-
ever the occupancy of a SAQ reaches the Xoff threshold, a
Xoff flow control packet containing the SAQ identifier will

be sent upstream. Upon reception of a Xoff packet, the SAQ
whose nextSAQ field matches the received SAQ identifier
must be set at Xoff state, and consequently the Xoff bit of
the associated CAM line will be activated. Of course, a
SAQ at Xoff state will not forward packets. The Xoff bit
will be deactivated if an analogous Xon control packet is
received.

It should be noted that detection thresholds and flow
control thresholds (Xon and Xoff) may differ in RECN,
and most importantly, they generate different control pack-
ets between switches. As we will see later, in RECN-DD,
the detection thresholds and the Xoff threshold will be the
same, and Xoff flow control packets will be used also to
notify the detection of congestion.

3.4. SAQ deallocation mechanism

The RECN SAQ deallocation mechanism is based on
controlling which SAQs are placed at the leaves of a con-
gestion tree. For an input SAQ, this is indicated by a leaf
bit on the associated CAM line. When an input SAQ is allo-
cated, the associated leaf bit is activated (so, the SAQ “owns
a leaf token”), and it is deactivated when the SAQ sends a
congestion notification (so, the SAQ “sends its leaf token”).
On the other hand, for an output SAQ, there is a list of token
bits in the associated CAM line, one for each input port of
the switch. When an output SAQ is allocated, all the token
bits in the associated CAM line are activated. Whenever an
output SAQ sends an internal congestion notification to any
input port, the corresponding token bit is deactivated. Thus,
an output SAQ is considered a leaf only if all its token bits
are activated (so, the output SAQ “owns all its tokens”).

In order to filter transient states, each SAQ has a timer
(started when the SAQ is allocated). A SAQ is deallo-
cated only when the following three conditions are met at
the same time: the SAQ is empty, it is at a leaf, and its as-
sociated timer has expired. Upon deallocation of a SAQ, a
notification containing a token and the nextSAQ value (from
the associated CAM line) is sent downstream. If the deal-
located SAQ is at an output port, then the notification is
sent downstream to the next switch. In this case, the token
will be accepted by an input SAQ (the one whose identifier
matches the received nextSAQ value), and its corresponding
leaf bit will be activated. In the case of deallocating an input
SAQ, an internal notification is sent to the associated output
port. In this case, an output SAQ will accept the token, and
the corresponding token bit in the CAM line will be acti-
vated. The deallocation process is repeated in this way until
the root of the congestion tree is reached, so it is always
performed in order, from leaves to root.

Figure 2 shows an example of the RECN deallocation
mechanism. Figure 2.a depicts a tree that is formed by three
sources (nodes 0, 1 and 2) injecting packets at 50%, 25%,

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

SAQ
next

...46... .0XX0. 1

Turnpool leaf bitBit mask

0 B

CAM Line SAQ A

timer SAQ
next

011111110

token list timer

C...6...

Turnpool Bit mask

CAM Line SAQ B

.00X0.

Po
rt

 6

Po
rt

 0

SAQ C

SAQ GPo
rt

 3

SAQ B

Po
rt

 4

Po
rt

 0

token
SAQ A

100%

root

node 0

node 2

node 1

SAQ D

SAQ E

token

token

SAQ F

congested

50%
50%

25%

25%

SAQ
SAQ (leaf)
SAQ (deallocated)

normal queue

50%

(a)

SAQ
next

...6...

Turnpool Bit mask

CAM Line SAQ B

.00X0. 0

token list timer

C11111111
SAQ
next

0

timerTurnpool leaf bitBit mask

.00X0....6... 0 N/A

CAM Line SAQ C

SAQ
normal queue

SAQ (leaf)
SAQ (deallocated)

congested

Po
rt

 6

Po
rt

 0

SAQ C

SAQ GPo
rt

 3

SAQ B

Po
rt

 4

Po
rt

 0

SAQ A
0% token

100%

node 0

node 1

node 2
SAQ D

SAQ E

token

token

SAQ F

50%

25%

25%

50%

root

(b)

SAQ
next

0

timerTurnpool leaf bitBit mask

.00X0....6... N/A

CAM Line SAQ C

1

SAQ
normal queue

SAQ (leaf)
SAQ (deallocated)

congested

Po
rt

 6

Po
rt

 0

node 0

SAQ C

SAQ GPo
rt

 3

SAQ B

Po
rt

 4

Po
rt

 0

SAQ A
0%

100%

token

node 1

node 2
SAQ D

SAQ E

token

token

SAQ F
25%

25%

0%

50%

root

(c)

Figure 2. SAQ deallocation in RECN (vanishment of a tree branch). N/A means Not Applicable.

normal queue
SAQ
SAQ (leaf)
SAQ (deallocated)

Po
rt

 6

Po
rt

 0

node 0

SAQ C

SAQ GPo
rt

 3

SAQ B

Po
rt

 4

Po
rt

 0

SAQ A
0%

100%
node 1

node 2
SAQ D

SAQ E

token

token

SAQ F
50%

50%

100%

(deallocation order)
tokens route

congested root

Po
rt

 4

Colf flow packets

Figure 3. Collapsing of the rest of the tree.

and 25% of the link injection rate to the same network point
(the root of the tree). As can be seen, SAQs have been allo-
cated along the tree branches for storing packets belonging
to the congestion tree. Note that leaf tokens are owned by
SAQs allocated at the input ports connected to the sources.
Suppose now that the upper branch collapses, as node 0
stops injecting packets toward the congested point. Sooner
or later, SAQ A will become empty, and (if its timer has ex-
pired), it will be deallocated as it owns the token. Once this
happens (Figure 2.b), the token is sent to SAQ B. The re-
ceiving SAQ can be deallocated (if it is empty and its timer
has expired) as the token list on its CAM line indicates now
that it owns all the tokens. Once SAQ B is deallocated (Fig-
ure 2.c), the token is sent to the corresponding input SAQ at
the downstream switch (SAQ C). Upon token reception, the
CAM line of SAQ C will activate the leaf token, allowing
the deallocation of that SAQ.

However, the token-based mechanism explained above
presents important drawbacks. In the former example, the
SAQs of the upper branch become empty from the leaf to-
ward the root, and they are deallocated in the same order.
But note that, once the upper branch disappears, the rest of
the tree may collapse in a different way (even if sources
keep the injection rate). For instance, as is depicted in
Figure 3, if congestion tree packets share the link between
switches with a cold flow, they will be consumed at the root
of the tree faster than they are injected to SAQ G (assuming
some crossbar speedup). Therefore, SAQ G will become
empty before SAQ F, so the tree colapses from the root. As
tokens are always passed downstream (in Figure 3, from
SAQs D and E to SAQ F, later to SAQ G), empty SAQs

congestion tree root definition

bit maskturnpoolv b Xoff

bit maskturnpoolv

valid bit

b

blocking bit

Xoff

CAM

among SAQs
Flow control

Figure 4. CAM structure for RECN-DD.

near the root will remain allocated until the leaf SAQs be-
come empty and start sending tokens. Note that those empty
SAQs could have been used meanwhile to store packets
from another congestion tree. Therefore, during congestion
trees collapse, RECN may use more SAQs than required.

Another drawback of this deallocation mechanism is the
use of specific control packets for sending tokens. Note that
other RECN features (for instance, congestion notification)
also require specific packets. This makes the implemen-
tation of RECN difficult because, in general, interconnect
standards restrict the number and format of special packets.

With the aim of solving the drawbacks explained above,
we propose a new RECN version in the following section.

4. RECN-DD

RECN-DD improves the previous RECN version in sev-
eral ways. Firstly, SAQs can be deallocated independently
of other SAQs allocated for the same congestion tree. Sec-
ondly, explicit congestion notification packets are no longer
needed as congestion notifications are now attached to flow
control packets. Both changes lead to lower requirements of
queues and control information. Figure 4 shows the CAM
structure required by RECN-DD. As can be seen, the timer,
leaf bit, token list, and nextSAQ fields are no longer needed,
thus producing a great saving of control memory.

4.1. Congestion detection and notification

With RECN-DD, congestion detection is made in the
same way as in the original RECN. However, the propa-

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

gation of congestion detection differs significantly, as con-
gestion notifications are now associated with the Xon/Xoff
flow control. Moreover, SAQs for the same congestion tree
are not linked (there is no nextSAQ field in the CAM).

For the case of Xon/Xoff flow control between two
switches, whenever the occupancy of the input SAQ reaches
the Xoff threshold, an Xoff control packet will be sent up-
stream. This packet includes the turnpool and the bit mask
associated to the SAQ. The upstream output port will com-
pare the received turnpool and bit mask to those associated
to all the allocated SAQs at the output port. When match-
ing, the corresponding SAQ will be set at Xoff state (an
Xoff control packet has been received), activating the cor-
responding Xoff bit. However, when failing to match, the
switch will consider the Xoff control packet as a conges-
tion notification. Thus, a new SAQ will be allocated for
the received turnpool and bit mask. Furthermore, the new
allocated SAQ will be set at Xoff state.

For the case of Xon/Xoff flow control within a switch,
whenever the occupancy of a SAQ at the output side reaches
or is beyond the Xoff threshold, an internal Xoff notification
is sent to all the input ports of the switch. This notification
contains the turnpool and the bit mask from the associated
CAM line. The Xoff notification also includes the ID of
the input port that sent the last packet to the SAQ. On every
input port, upon reception of the internal Xoff notification,
the turnpool and bit mask are compared to those associated
to all the allocated SAQs. When matching, the correspond-
ing SAQ is set at Xoff state (an internal Xoff notification
has been received). When failing to match, the input port
checks if its ID port corresponds with the ID included in
the internal notification. If so, the input port must allocate
a new SAQ for the congestion tree. Additionally, the newly
allocated SAQ will be set at Xoff state.

Note that Xon control packets (and Xon internal notifica-
tions) also contain a turnpool and a bit mask. This is needed
in order to identify which SAQ must be set at Xon state.

4.2. SAQ deallocation mechanism

With RECN-DD, SAQs can be deallocated in a dis-
tributed way. Thus, the basic deallocation requirement is
that the SAQ is empty. However, a new safety condition
must be met in order to deallocate SAQs properly: the SAQ
is neither blocked due to the blocking bit nor at Xoff state.
Note that, since a SAQ is at Xoff state at the moment it is
allocated, this condition avoids an empty SAQ being deal-
located just after its allocation (premature deallocation).
Thus, the timer is no longer needed. Moreover, as the SAQ
must be at Xon state to be deallocated, SAQs are not deal-
located while congestion is near (a SAQ at Xoff state means
that the downstream SAQ is full of packets). Note that all
of these conditions can be evaluated completely from local

information, and all of them are independent of the state of
other SAQs, with the only exception of flow control.

Notice also that the external data required for evaluating
the new conditions are just those contained in the Xon/Xoff
flow control packets. Thus, RECN-DD does not require
specific RECN messages (detection notifications, tokens,
etc.). As the Xon/Xoff flow control is considered in the
AS specification, RECN-DD does not require any special
control message that is not compatible with AS.

Figure 5 shows an example of queue deallocation with
RECN-DD. It shows the CAM lines of SAQs assigned along
a branch of a congestion tree, before and after a SAQ deal-
location. In this case, it can be observed that CAM lines
are independent from each other. Note also that, as SAQs
near the root (for instance, SAQ E) do not have to wait for a
token, they can be deallocated earlier. Thus, RECN-DD has
more free SAQs for handling other congestion trees and, as
we will show in the next section, this will allow RECN-DD
to achieve maximum performance with far fewer SAQs.

Bit maskTurnpool

CAM Line SAQ C

...37... .0XX0.
Bit maskTurnpool

CAM Line SAQ D

.0X0....7...
Bit maskTurnpool

CAM Line SAQ E

.0X0....7...

Bit maskTurnpool

CAM Line SAQ C

...37... .0XX0.
Bit maskTurnpool

CAM Line SAQ D

.0X0....7...
after SAQ E
deallocation

CAM Lines

before SAQ E
deallocation

CAM Lines

Port 7Port 0Port 2 Port 5

SAQ C SAQ D SAQ E
(to be deallocated)

Bit maskTurnpool

CAM Line SAQ E

idle idle

congested root

Figure 5. SAQ deallocation in RECN-DD.

5. Performance evaluation

In this Section we will compare RECN and RECN-DD
performance. The main goal of this Section is to evaluate
if the RECN-DD mechanism is able to keep the same level
of performance as RECN while using fewer SAQs. There-
fore, we are interested, firstly, in evaluating the performance
achieved by both methods with a different number of SAQ
queues. Furthermore, we will analyze for each evaluated
case the real number of SAQs required by each method.

We will use different scenarios of traffic load and net-
work size. For this purpose we have used a detailed event-
driven simulator that models the network at the register
transfer level. Firstly, we will describe the modeling as-
sumptions and the main parameters used in the simulations.
Secondly, we will analyze the obtained results.

5.1. Simulation model

The simulator models a Bidirectional Multistage Inter-
connection Network (BMIN) with switches, endnodes, and
links. We will evaluate RECN and RECN-DD using BMINs
of two sizes, specifically a 64 × 64 BMIN (48 switches)

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

random traffic congestion tree (dest 32)
75% sources 25% sources period

case network injection rate injection rate time (μs)

#1 64 × 64 100% 100% 800 - 1100
#2 64 × 64 incremental incremental 0 - end
#3 512 × 512 100% 100% 800 - 1100

Table 1. Traffic configurations evaluated.

and a 512 ×512 BMIN (640 switches). Both BMINs are
built following the perfect shuffle interconnection pattern,
with 8-port switches. At switches, packets are forwarded
from input queues to output queues through a multiplexed
crossbar, modeled with a speedup of 1.5 (link bandwidth is
8Gbps, crossbar bandwidth is 12Gbps).

In all the experiments deterministic routing has been
used. Memories of 32KB have been modeled for both input
and output switch ports. Each port memory is shared by the
queues (normal or detection queues and SAQs) defined at
this port at a given time, in such a way that memory cells are
dynamically allocated (or deallocated) for any queue when
necessary. A set of SAQs has been defined at input and out-
put ports. The number of SAQs per set has been varied in
the different experiments. At output ports, only one normal
queue has been defined, whereas at input ports, the normal
queue has been divided into 8 detection queues.

Endnodes are connected to switches using Input
Adapters (IAs). Every IA is modeled with a fixed num-
ber of N admittance queues (where N is the total number
of endnodes), and a variable number of injection queues,
which follow a scheme similar to that of the output ports of
a switch. When a message is generated, it is stored in the
admittance queue assigned to its destination, and is pack-
etized before being transferred to an injection queue. We
have used 64-byte packets.

We have modeled in detail the different versions of
RECN with their corresponding deallocation strategies: the
original “leaves-to-root” deallocation strategy (RECN) and
the new, distributed deallocation strategy (RECN-DD). Ad-
ditionally, in order to compare the results of both versions
against those of former proposed techniques, the simulator
also allows experiments to be performed using Virtual Out-
put Queues at switch or network level, or Virtual Channels.

5.2. Traffic load

In order to evaluate the different RECN versions, we
have used two different traffic scenarios. First, synthetic
traffic patterns modeling simple but significant traffic situa-
tions have been used. Table 1 shows the traffic parameters
of each traffic case. For all the traffic cases, there are 75%
of sources injecting traffic to random destinations through-
out the entire simulation period. These nodes inject traffic
at different link rates depending on the traffic case. This

rate is constant (100%) for traffic cases #1 and #3, but for
case #2 it has been varied in an incremental way in order to
obtain a metric of the network performance under different
loads of normal and congested traffic. In all the cases, the
remaining sources (25%) inject traffic to a hot-spot destina-
tion, thus forming congestion trees. The injection rate of the
hot-spot sources is the same as that of the “random” sources
for the same traffic case, so it is 100% for traffic cases #1
and #3 and incremental for traffic case #2. If incremental
injection rates are used, congestion sources inject packets
throughout the entire simulation time. If constant injection
rates are used, congestion sources start to inject 800 μs after
the simulation begins, finishing 300 μs later.

As a second scenario we have used traces. Specifically,
the I/O traces used in our evaluations were provided by
Hewlett-Packard Labs [24]. They include all the I/O activity
generated from 1/14/1999 to 2/28/1999 at the disk interface
of the cello system. As these traces are seven years old, we
have applied a time compression factor to the traces.

5.3. Evaluation results

In this section we present results that allow us to com-
pare the behavior of the network when the different RECN
versions are used. For each traffic case and RECN version,
we show the network throughput achieved, the total num-
ber of SAQs used in the network and the maximum num-
ber of SAQs used at an input port (SAQ utilization at out-
put ports is always lower than at input side). Also, shown
is the maximum bandwidth (as a percentage of total link
bandwidth) required for control packets in the network. It
has been computed as the bandwidth consumed by control
packets in the link with the highest demand for sending such
packets. Flow control packets for both RECN and RECN-
DD are regarded as control packets as well as explicit con-
gestion notifications for RECN. Congestion notifications on
flow control packets have been considered for RECN-DD.
This allows us to evaluate the overhead of both methods
on link bandwidth. For traffic cases with constant injection
rate, results are shown as a function of time. If incremen-
tal injection rates are used, results are shown as a function
of generated traffic. We also show throughput results for
switch-level Virtual Output Queues (VOQsw) and for 4 Vir-
tual Channels (4Q) with a lowest-occupancy storage policy.

Figure 6.a shows throughput results for traffic case #1
(64 × 64 BMIN) when a maximum of 8 SAQs are allowed
at each input or output switch port. As can be seen, both
RECN and RECN-DD are able to handle the congestion
tree in a very efficient way, as network throughput is kept
almost constant, regardless of the presence of the conges-
tion tree. By contrast, VOQsw and 4Q results show that
these strategies do not handle congestion trees properly. So,
both versions of RECN virtually eliminate the HOL block-

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

RECN RECN-DD

VOQsw

4Q

(a) 64 × 64 BMIN
traffic 1, 8 SAQs

 10

 15

 20

 25

 30

 35

 40

 45

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

RECN

RECN-DD

VOQsw

4Q

(b) 64 × 64 BMIN
traffic 1, 2 SAQs

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Generated traffic (bytes per nanosecond)

RECN
RECN-DD

VOQsw
4Q

(c) 64 × 64 BMIN
traffic 2, 2 SAQs

 50

 100

 150

 200

 250

 300

 350

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

RECN

RECN-DD

VOQsw

4Q

(d) 512 × 512 BMIN
traffic 3, 4 SAQs

Figure 6. Throughput results.

 0

 50

 100

 150

 200

 250

 300

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

T
ot

al
 #

 o
f

ac
tiv

e
SA

Q
s

Nanoseconds

RECN

RECN-DD

(a) 64 × 64 BMIN
traffic 1, 8 SAQs

 0

 50

 100

 150

 200

 250

 300

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

T
ot

al
 #

 o
f

ac
tiv

e
SA

Q
s

Nanoseconds

RECN

RECN-DD

(b) 64 × 64 BMIN
traffic 1, 2 SAQs

 0

 50

 100

 150

 200

 250

 300

 350

 10 20 30 40 50 60

T
ot

al
 #

 o
f

ac
tiv

e
SA

Q
s

Generated traffic (bytes per nanosecond)

RECN
RECN-DD

(c) 64 × 64 BMIN
traffic 2, 2 SAQs

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

T
ot

al
 #

 o
f

ac
tiv

e
SA

Q
s

Nanoseconds

RECN

RECN-DD

(d) 512 × 512 BMIN
traffic 3, 4 SAQs

Figure 7. SAQ utilization results.

ing in the network. However, Figure 7.a (total SAQ utiliza-
tion for that configuration) shows that RECN-DD achieves
maximum performance by consuming far fewer SAQs than
RECN. Although initially both methods seem to use a sim-
ilar number of SAQs, RECN-DD deallocates many more
SAQs than RECN after congestion appearance and, finally,
RECN-DD uses fewer SAQs. Therefore, the transient state
in the formation of congestion trees is better handled by
RECN-DD, as RECN uses more SAQs than required for
eliminating HOL blocking.

Moreover, Figure 8.a shows the maximum number of
SAQs required in that case at an input port. As can be
observed, the SAQs requirements for RECN-DD are much
lower than for RECN. Specifically, most of the time RECN-
DD requires only 2 SAQs at the most whereas RECN re-
quires up to 5. This result suggests that RECN-DD could
keep network throughput in a more restrictive environment
(fewer SAQs implemented at each switch port).

In this sense, Figure 6.b shows throughput results for
the same traffic case as Figure 6.a, but this time the max-
imum number of SAQs allowed per input or output port is
2. It can be seen in Figure 6.b that although both RECN
and RECN-DD performances suffer slightly due to the
lack of SAQs, throughput degradation is bigger for RECN
(throughput drops almost 10%, and it exhibits greater oscil-
lations). However, performance degradation with RECN-
DD is smaller, and throughput presents greater stability.
Furthermore, Figure 7.b (SAQ utilization for that case)
shows that RECN-DD still uses fewer SAQs than RECN (up
to a 70% of SAQs, approx.). This result means that many
SAQs in RECN remain unnecessarily allocated or allocated

for the wrong congested point, while they could be deallo-
cated or re-allocated for a more suitable congested point.

On the other hand, Figure 8.b shows the maximum link
utilization for this case. It can be seen that control mes-
sages on RECN-DD consume more bandwidth than in the
RECN case. This is because RECN-DD use more flow con-
trol packets and these are larger than those used by RECN.
Anyway, this increment in control messages is limited, and
it does not seem to affect RECN-DD performance.

Similar conclusions can be drawn from the results pre-
sented in Figures 6.c, 7.c and 8.c. In this case, 2 SAQs per
set are used, and the same metrics for the 64×64 BMIN are
shown now as a function of a variable injection rate instead
of time. As can be seen in Figure 6.c, network through-
put for RECN drops when the injection rate is around 60
bytes/ns (maximum is 64 bytes/ns), while RECN-DD keeps
throughput at the maximum. VOQsw and 4Q results are
worse than those obtained with RECN versions. Figure
7.c shows that RECN-DD uses a slightly greater number
of SAQs for low injection rates, but this number is much
greater (almost two times) in the RECN case for high in-
jection rates. This result reinforces the idea that RECN-DD
uses network resources more efficiently.

Figures 6.d, 7.d and 8.d present results for traffic case #3
(512 × 512 BMIN). In this case, the maximum number of
SAQs has been reduced to four3. Again, the results show
that RECN-DD achieves better performance than RECN
while using a smaller number of SAQs. As can be seen,
network throughput drops significantly (almost 15%) when

3Previous experiments reported that RECN performed correctly for a
maximum of 8 SAQs per set.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

 0

 1

 2

 3

 4

 5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
ax

im
um

 #
 S

A
Q

s
at

 in
gr

es
s

si
de

Nanoseconds

RECN

RECN-DD

(a) 64 × 64 BMIN
traffic 1, 8 SAQs

 0

 1

 2

 3

 4

 5

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
ax

im
um

 c
on

tr
ol

 p
ac

ke
ts

 li
nk

 u
til

iz
at

io
n

(%
)

Nanoseconds

RECN

RECN-DD

(b) 64 × 64 BMIN
traffic 1, 2 SAQs

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

M
ax

im
um

 c
on

tr
ol

 p
ac

ke
ts

 li
nk

 u
til

iz
at

io
n

(%
)

Generated traffic (bytes per nanosecond)

RECN
RECN-DD

(c) 64 × 64 BMIN
traffic 2, 2 SAQs

 0

 2

 4

 6

 8

 10

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

M
ax

im
um

 c
on

tr
ol

 p
ac

ke
ts

 li
nk

 u
til

iz
at

io
n

(%
)

Nanoseconds

RECN

RECN-DD

(d) 512 × 512 BMIN
traffic 3, 4 SAQs

Figure 8. Maximum number of SAQs at input ports and Maximum link utilization by control messages.

 2

 4

 6

 8

 10

 12

 14

 16

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06N
et

w
or

k
th

ro
ug

hp
ut

 (
by

te
s

pe
r

na
no

se
co

nd
)

Nanoseconds

VOQnet RECN-DD

VOQsw

Figure 9. Trace analysis. 64×64 BMIN, 4SAQs.

RECN is used (Figure 6.d). It can be observed than VO-
Qsw and 4Q suffer strong degradation. On the other hand,
RECN-DD keeps performance almost at a maximum, and
again by using fewer SAQs than RECN (up to a 40% of
the SAQs required by RECN,Figure 7.d). Therefore, the ef-
ficient use of network resources afforded by RECN-DD is
the key to handling congestion trees correctly, allowing as
it does the required resources to be reduced. Regarding the
use of links by control packets, RECN-DD exhibits (Figure
8.d) a more intense use, but it is always lower than 10% and
it is necessary for keeping good network performance.

Finally, Figure 9 shows throughput results for VOQsw,
VOQnet (VOQs at network level) and RECN-DD with a
maximum of 4 SAQs when traces are used as the traffic
load in a 64 × 64 BMIN. It can be observed that, also for
real traffic, RECN-DD eliminates HOL blocking with few
resources. Notice that it achieves almost the same results as
VOQnet by using far fewer queues at each port (in this case,
VOQnet requires 64 queues at each port), and again better
results than VOQsw.

6. Memory area requirements

From the previous results, it is possible to obtain an esti-
mation of the minimum data memory area required for im-
plementing different congestion control strategies at each
switch port. Table 2 shows this estimation for the imple-
mentation of VOQnet, RECN and RECN-DD in networks

Data memory area (per switch input port)
Queue Scheme 64-endnode network 512-endnode network

VOQnet 16mm2 128mm2

RECN 4mm2 4mm2

RECN-DD 2.5mm2 3mm2

Table 2. Data memory area consumption.

of two sizes (64 and 512 endnodes, respectively). Note that
only those strategies that completely eliminate HOL block-
ing have been considered. Note also that the area values in
the table correspond to input ports, and that both RECN and
RECN-DD would require less area at output ports.

For each case, the minimum data memory per input
port has been calculated as the minimum storage require-
ments for Virtual Cut-Through switching (one packet for
each queue in the input port). In all the cases, we have as-
sumed an Advanced Switching network (allowing a maxi-
mum packet size of 2 KB) with 8-port switches. For RECN
and RECN-DD, the number of queues per input port has
been fixed to the minimum that guarantees maximum per-
formance (taking into account the previous results). There-
fore, 8 SAQs + 8 detection queues per input port have been
considered for RECN (both networks). For RECN-DD, 2
SAQs + 8 detection queues per input port have been con-
sidered for the 64-endnode network case, and 4 SAQs + 8
detection queues per input port for the 512-endnode net-
work. For VOQnet, the number of queues per port is the
number of network endnodes. The area required in each
case has been estimated from the calculated minimum data
memory and from memory datasheets of typical ASIC tech-
nologies available to European Universities, assuming the
use of two-port SRAM memories (0.18 μm CMOS tech-
nology) with a 32-bit organization.

From the values presented, we can conclude that both
RECN and RECN-DD not only require much less memory
area at each port than VOQnet, but they also exhibit an ex-
cellent scalability. Note that VOQnet is not scalable at all.
Furthermore, RECN-DD reduces significantly (a third and
a quarter, respectively) the memory area required by RECN
at each port, thus reducing the overall switch cost.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

7. Conclusions

In current networks for MPPs and clusters, an efficient
congestion management technique is needed to keep sys-
tem performance beyond saturation. Recently, RECN was
proposed for handling congestion trees in an efficient way.
RECN dynamically separates congested packets from non-
congested ones, thus eliminating the HOL blocking. This is
achieved by dynamically allocating and deallocating SAQs
(Set Aside Queues) for congested packets at switches.

In this paper, we have presented a new RECN version,
referred to as RECN-DD. This version introduces a new,
completely distributed deallocation SAQ mechanism that
does not impose any constraint on the order in which queues
are deallocated. By doing this, RECN-DD reduces the
RECN queue requirements while exhibiting the same per-
formance. This leads to a significant reduction of the data
memory area required at each port.

Additionally, RECN-DD avoids the use of explicit con-
gestion notifications and token-exchanging packets. In-
stead, only flow control packets are required. This facili-
tates RECN-DD compatibility with Advanced Switching.

References

[1] ASI-SIG. Advanced Switching for the PCI Express Ar-
chitecture. http://www.intel.com/technology/pciexpress/ de-
vnet/AdvancedSwitching.pdf.

[2] E. Baydal and P. López. A robust mechanism for conges-
tion control. In Proc. 9th Int. Euro-Par Conference, August
2003.

[3] W. J. Dally. Virtual-channel flow control. IEEE Trans. on
Parallel and Distributed Systems, 3(2), March 1992.

[4] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in
multicomputer networks using virtual channels. IEEE Trans.
on Parallel and Distributed Systems, 4(4), April 1993.

[5] W. J. Dally, P. Carvey, and L. Dennison. The avici terabit
switch/router. In Proc. 6th Hot Interconnects, August 1998.

[6] S. P. Dandamudi. Reducing hot-spot contention in shared-
memory multiprocessor systems. IEEE Concurrency, 7(1),
January 1999.

[7] J. Duato. A new theory of deadlock-free adaptive routing
in wormhole networks. IEEE Trans. on Parallel and Dis-
tributed Systems, 4(12), December 1993.

[8] J. Duato, I. Johnson, J. Flich, F. Naven, P. J. Garcı́a, and
T. Nachiondo. A new scalable and cost-effective congestion
management strategy for lossless multistage interconnection
networks. In Proc. 11th Int. Symp. High-Performance Com-
puter Architecture, February 2005.

[9] J. Duato, S. Yalamanchili, and L. Ni. Interconnection net-
works. An engineering approach. Morgan Kaufmann Pub-
lishers, 2002.

[10] D. Franco, I. Garces, and E. Luque. A new method to make
communication latency uniform: Distributed routing bal-
ancing. In ACM Int. Conf. on Supercomputing, May 1999.

[11] P. J. Garcı́a, J. Flich, J. Duato, I. Johnson, F. J. Quiles, and
F. Naven. Dynamic evolution of congestion trees: Analysis
and impact on switch architecture. Lecture Notes in Com-
puter Science (HiPEAC 2005), 3793, November 2005.

[12] W. Ho, D. Eager. A novel strategy for controlling hot spot
contention. In Proc. Int. Conf. Parallel Processing, 1989.

[13] IBA homepage. http://www.infinibandta.org/specs.
[14] M. Katevenis, D. Serpanos, and E. Spyridakis. Credit-flow-

controlled atm for mp interconnection: the atlas i single-
chip atm switch. In Proc. of the 4th Int. Symp. on High-
Performance Computer Architecture, February 1998.

[15] J. H. Kim, Z. Liu, A. A. Chien. Compressionless routing:
A framework for adaptive and fault-tolerant routing. IEEE
Trans. on Parallel and Distributed Systems, 8(3), 1997.

[16] V. Krishnan and D. Mayhew. A Localized Congestion Con-
trol Mechanism for PCI Express Advanced Switching Fab-
rics. In Proc. 12th IEEE Symp. on Hot Interconnects, August
2004.

[17] J. Liu, K. G. Shin, and C. C. Chang. Prevention of con-
gestion in packet-switched multistage interconnection net-
works. IEEE Trans. on Parallel and Distributed Systems,
6(5), May 1995.

[18] Myrinet2000. http://www.cspi.com/multicomputer/products/
2000 series networking/2000 networking.htm.

[19] G. Pfister and A. Norton. Hot spot contention and combin-
ing in multistage interconnect networks. IEEE Trans. on
Computers, C-34, October 1985.

[20] Q. QsNet. http://doc.quadrics.com.
[21] S. L. Scott and G. S. Sohi. The use of feedback in multipro-

cessors and its application to tree saturation control. IEEE
Trans. on Parallel and Distributed Systems, 1(4), October
1990.

[22] L. Shang, L. S. Peh, and N. K. Jha. Dynamic voltage scal-
ing with links for power optimization of interconnection net-
works. In Proc. of 9th. Int. Symp. on High Performance
Computer Architecture, February 2003.

[23] A. Singh, W. J. Dally, B. Towles, and A. K. Gupta. Globally
adaptive load-balanced routing on tori. Computer Architec-
ture Letters, 3(1), July 2004.

[24] SSP homepage. http://ginger.hpl.hp.com/research/itc/csl/ssp/.
[25] Y. Tamir and G. Frazier. Dynamically-allocated multi-queue

buffers for vlsi communication switches. IEEE Trans. on
Computers, 41(6), June 1992.

[26] M. Thottetodi, A. Lebeck, and S. Mukherjee. Self-tuned
congestion control for multiprocessor networks. In Proc. of
7th. Int. Symp. on High Performance Computer Architecture,
February 2001.

[27] W. Vogels and et al. Tree-saturation control in the ac3 ve-
locity cluster interconnect. In Proc. 8th Conference on Hot
Interconnects, August 2000.

[28] M. Wang, H. J. Siegel, M. A. Nichols, and S. Abraham.
Using a multipath network for reducing the effects of hot
spots. IEEE Trans. on Parallel and Distributed Systems,
6(3), March 1995.

[29] C. Q. Yang and A. V. S. Reddy. A taxonomy for conges-
tion control algorithms in packet switching networks. IEEE
Network, 9(5), July/August 1995.

[30] P. Yew, N. Tzeng, and D. H. Lawrie. Distributing hot-spot
addressing in large-scale multiprocessors. IEEE Trans. on
Computers, 36(4), April 1987.

 Proceedings of the 2006 International Conference on Parallel Processing (ICPP'06)
0-7695-2636-5/06 $20.00 © 2006

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on November 4, 2009 at 11:16 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

