
Salsa: Scalable Asynchronous Replica Exchange for
Parallel Molecular Dynamics Applications

Li Zhang and Manish Parashar
TASSL, CAIP Center

Electrical and Computer Engineering Department
Rutgers University

94 Brett Road,
Piscataway, NJ 08854

{emmalily, parashar}@caipclassic.rutgers.edu

Emilio Gallicchio and Ronald M. Levy
BIOMAPS Institute for Quantitative Biology

Department of Chemistry and Chemical Biology
Rutgers University

Wright-Rieman Laboratories, 610 Taylor Rd,
Piscataway, NJ 08854

{emilio, ronlevy}@biomaps.rutgers.edu

Abstract— This paper presents Salsa, a novel, decentralized
and asynchronous realization of the “replica exchange” algorithm
for simulating the structure, function, folding, and dynamics of
proteins. Salsa provides a scalable communication and interaction
substrate that presents a virtual shared space abstraction and
enables the dynamic and asynchronous interactions required by
the simulations to be simply and efficiently implemented. The
design, implementation and experimental evaluation of Salsa and
replica exchange-based simulations using Salsa are presented.

I. INTRODUCTION

Replica exchange is a powerful sampling algorithm that
preserves canonical distributions and allows for efficient cross-
ing of high energy barriers that separate thermodynamically
stable states. In this formulation, several copies, or replicas,
of the system of interest are simulated in parallel at different
temperatures using “walkers”. These walkers occasionally
swap temperatures to allow them to bypass enthalpic barriers
by moving to a higher temperature. The replica exchange
algorithm has several advantages over formulations based on
constant temperature, and has the potential for significantly
impacting the fields of structural biology and drug design -
specifically, the problems of structure based drug design and
the study of the molecular basis of human diseases associated
with protein misfolding, which are the applications currently
targeted by this research.

However, efficient and scalable parallel implementations
of general formulations of the replica exchange algorithm
present significant challenges. These challenges are primarily
due to the dynamic and complex coordination and commu-
nication patterns between the walkers. These communica-
tion/coordination patterns depend on state of the simulation
at the replicas and are known only at runtime, and con-
sequently, implementing these simulations using commonly
used parallel programming frameworks is non-trivial. Message
passing frameworks such as MPI [1] require matching sends
and receives to be explicitly defined for each interaction. Pro-
gramming frameworks based on shared address spaces provide
higher-level abstractions that can support more dynamic inter-
actions. However, scalable implementation of global shared

address spaces remains a challenge.
As a result, to the best of our knowledge, all the cur-

rent parallel/distributed implementations of replica exchange
simulations in use by the structural biology community are
based on a simplified formulation of the algorithm that limits
the potential power of the technique in two important ways:
(1) the only parameter exchanged between the replicas is
the temperature of each replica, and (2) the exchanges occur
in a centralized and totally synchronous manner, and only
between replicas with adjacent temperatures. The former limits
the effectiveness of the method, while the latter limits its
scalability to at most tens of homogeneous and relatively
tightly coupled processors.

Enabling larger scale implementations of the general replica
exchange formulation thus requires a communication sub-
strate that can support decentralized management of exchange
schedules, and asynchronous and decoupled communications,
eliminating synchronization overheads and allowing imple-
mentations to be scalable. The paper describes the design
and implementation of Salsa, a communication and interaction
substrate that meets these requirements, and enables a novel,
decentralized and asynchronous realization of the replica
exchange algorithm for simulating the structure, function,
folding, and dynamics of proteins. Salsa enables arbitrary
walkers to dynamically exchange target temperatures and other
information in a pair-wise manner based on an exchange
probability condition that ensures detailed balance.

The Salsa-based replica exchange realization distinguishes
itself from existing implementations in multiple aspects. As
mentioned above, existing replica exchange implementations
use a simplification of the replica exchange algorithm where
the walkers that can exchange temperatures is limited to
those with neighboring target temperatures. In these imple-
mentations, the pairs of walkers that exchange temperatures is
centrally determined at a single node by periodically gathering
temperatures from all the walkers at this node. While such a
scheme is acceptable for simulations with a small number of
walkers, as the number of walkers increases, the possibility
of successful non-nearest neighbor temperature exchange also

increases significantly, and the temperature mixing is severely
impeded when exchanges can only occur between neighboring
temperatures.

Salsa essentially provides a virtual shared space abstraction
that is specifically customized for replica exchange. The pairs
of walkers that exchange information are dynamically and
asynchronously determined using this virtual shared space
abstraction. Walkers periodically post temperature ranges that
are of current interest for exchange to the shared space. If this
range overlaps with the range of interest posted by another
walker, an exchange can occur. The actual exchange is then
negotiated and completed by the individual walkers in a peer-
to-peer manner. As a result, the exchanges are decoupled,
dynamically and asynchronously determined, and not limited
to neighboring temperatures. Salsa provides simple tuple-
space-like [11] abstractions for accessing the virtual space.
Walkers use the post operator to post temperature ranges of
interest, and use either the blocking get or the non-blocking
getp operator to retrieves a new temperature if the attempted
exchange is successful or the old one if the attempted ex-
change is unsuccessful. Further, since exchanges are decoupled
and asynchronous, communications and computation at the
walkers can be overlapped to improve overall simulation
performance.

The design and implementation of Salsa is based on the
following observations about the replica exchange algorithm:
(1) the overall temperature range of the simulation and the set
of temperatures that are assigned to walkers are determined
at the beginning of the simulation and are known to all the
walkers; (2) the temperature assigned to a walker only changes
when the walker performs an exchange; and (3) exchanges
occur between pairs of nodes. The first two observations allows
individual walkers to locally determine temperature ranges of
interest and exchange decisions to be made in a decentralized
and decoupled manner. The third observation allows actual
exchanges to occur between pairs of walkers in parallel.
Salsa consists of two main components: a directory layer
that is implemented as a distributed hash table (DHT) where
walkers can post temperature ranges of exchange interest
and discover potential exchange partners in a decentralized
and asynchronous manner; and a communication layer that
manages the actual exchange of data in an efficient and peer-
to-peer manner.

Salsa has been implemented within the IMPACT (Integrated
Modeling Program, Applied Chemical Theory) molecular
mechanics program [2] to enable two specific applications,
which require large scale distributed replica exchange imple-
mentations: (1) simulations of the binding of ligands to the
cytochrome P450 class of enzymes responsible for cellular
detoxification and drug metabolism, and (2) simulations of the
misfolding of naturally occurring human and mutated forms
of the protein synuclein associated with Parkinson’s disease.
It is not possible to carry out these studies using standard
molecular dynamics simulation techniques.

The rest of the paper is organized as follows. Section 2
describes the problem domain and gives an overview of the

replica exchange algorithm. The section also describes current
MPI-based implementations of the method. Section 3 describes
the design of Salsa and presents the implementation of the
Salsa-based decoupled and asynchronous replica exchange
algorithm. Section 4 describes the implementation and the
experimental evaluation of Salsa-based simulation. Section
5 reviews related work. Section 6 concludes the paper and
outlines future research directions.

II. PARALLEL REPLICA EXCHANGE FOR STRUCTURAL

BIOLOGY AND DRUG DESIGN

The sequencing of the human genome, in conjunction with
rapidly increasing efforts in structural genomics, is producing
an explosion in the number of available high resolution protein
structures. Molecular simulations of protein structural changes
and drug binding to proteins depend critically on the design
of highly efficient algorithms to search over the very rough
energy landscapes which govern protein folding and bind-
ing. Scalable parallel replica exchange implementations can
potentially address these molecular search problems and can
significantly impact structure based drug design applications.

A. The Replica Exchange Algorithm

Replica exchange is an advanced canonical conformational
sampling algorithm designed to help overcome the sampling
problem encountered in biomolecular simulations. The method
had been proposed independently on several occasions in
various disciplines [4], [5], [6], [7]. In this method, several
copies, or replicas, of the system of interest are simulated
in parallel at different temperatures using walkers. These
walkers occasionally swap temperatures based on a proposal
probability that maintains detailed balance [3]. These ex-
changes allow individual replicas to bypass enthalpic barriers
by moving to high temperatures. A parallel version of this
algorithm was proposed by Hukushima & Nemoto [7]. The
replica exchange algorithm is easy to implement and does
not require time-consuming preparatory procedures. Further,
it can decrease the sampling time by factors of 20 or more, as
compared to constant temperature molecular dynamics when
applied to peptides at room temperature [8]. Details of the
algorithm [3] as well as application examples [9], [10] are
available elsewhere.

The MD replica exchange canonical sampling method has
been implemented in IMPACT, the molecular simulation pack-
age used in this work, following the approach proposed by
Sugita & Okamoto [9]. The method consists of running a
series of simulations at fixed specified temperatures. Each
replica corresponds to a temperature. An exchange of tem-
peratures between replicas i and j at temperatures Tm and
Tn is attempted periodically and is accepted according to the
following Metropolis transition probability [9]:

W = min {1, exp [−(βm − βn)(Ej − Ei)]} (1)

where β = 1/kT and Ei and Ej are the potential energies of
replicas i and j, respectively. After a successful exchange,
the velocities of replicas i and j are rescaled at the new
temperature.

B. Existing Parallel Implementations of Replica Exchange-
based Simulations

Molecular dynamics programs are essentially loops over a
large number of integration steps, each of which advances
the time forward for one step. Replica exchange is attempted
periodically at a chosen interval of steps. As mentioned in
the introduction, existing MPI-based parallel implementations
of replica exchange are centralized and synchronous. For
example, in the existing implementation in IMPACT, a central
master node collects temperature data about all the replicas
from the walker nodes, and then broadcasts the collected data
array to the walkers. Each walker node receives this data array
and sorts the array locally. Neighboring temperatures in the
sorted array are potential partners for temperature exchange.
The master node randomly selects between two modes of
exchange. One is to exchange with upper neighboring tem-
perature and the other is to exchange with lower neighboring
temperature. The master notifies the walkers about the selected
mode, and walkers can then mutually exchange temperatures
based on this information. During the actual exchange, one
of the two walker nodes with neighboring temperatures in the
sorted array that are paired up for temperature exchange, acts
as a temporary server. This walker collects temperature and
potential energy data from the other node, determines whether
the exchange is feasible based on the transition probability
given in Eq. (1), and replies with either the new temperature,
if the exchange is successful, or with a notice of denial
otherwise.

The parallel replica exchange implementation described
above has several limitations. First, the scheme limits the
exchange to only neighboring temperatures. This limitation is
not a concern when the number of replicas is small and there is
a small chance of exchange between non-nearest temperatures.
However, as the number of processors (and correspondingly
walkers) increases, the difference between target temperatures
becomes small enough to allow exchanges between non-
nearest neighbor replicas. In such cases, more flexible schemes
which allows non-nearest neighbor temperature exchange are
desirable. Second, the implementation is based on a centralized
master that gathers and scatters data system wide. Gathering
data from all the nodes on a single node may be infeasi-
ble in large systems, and a centralized master can quickly
become a bottleneck. Further, gather and scatter operations
are synchronous and expensive. Also, since the master node
also participates in the simulation as a walker, there is a
load imbalance which can lead to additional synchronization
overheads.

To overcome the above limitations, we propose a scalable
decentralized and asynchronous realization of the replica ex-
change algorithm using the Salsa communication substrate,
which is presented in the following section.

III. SALSA: A FRAMEWORK FOR PARALLEL

ASYNCHRONOUS REPLICA EXCHANGE

Applications

Other
Paragramming

Paradigms

Operating System

Salsa Interface

Load Balancing Protocol

Directory Layer Communication Layer

Fig. 1. An schematic of the Salsa architecture.

A. The Salsa Architecture

Salsa provides abstractions and underlying mechanisms to
support efficient and scalable parallel implementations of the
general replica exchange formulation, where walkers can ex-
change non-nearest neighbor temperatures in a decoupled, de-
centralized, and asynchronous manner. It essentially provides
the abstraction of a virtual shared space that is specifically
customized for replica exchange. The shared space supports
tuple-space-like abstractions and is used by walkers to post
temperature ranges of exchange interest and discover candidate
walkers that it can potentially exchange temperature with.
The underlying mechanisms support negotiation and efficient
peer-to-peer data exchanges between appropriate walkers. A
schematic of the Salsa architecture is presented in Figure 1.
The framework consists of two main components: (1) a
distributed directory layer; and (2) a communication layer.
These components are described below.

1) Distributed Directory Layer: The distributed directory
layer provides the Salsa virtual shared space abstraction and
supports its associative access operators. It is implemented as
a distributed hash table (DHT) where the index of the hash
table is derived from the overall temperature range used by
the simulation using a simple hashing function. This index
is then dynamically partitioned and distributed across the
participating nodes. Each node is thus responsible for its
portion of the index and the corresponding temperature range,
and essentially serves as the rendezvous point for exchange
interest posting that intersects with its range. A Salsa service
daemon running at each node is responsible for handling these
exchange interest postings and storing them locally, and for
detecting matches with existing postings of exchange interest
at the node.

2) Communication Layer: The communication layer pro-
vides the mechanisms for negotiations and efficient data trans-
fers. The negotiation mechanisms enable walkers to mutually
agree to exchange data, while the data transfer mechanisms
support low latency peer-to-peer data exchanges [21] between
the walkers. Note that multiple data exchanges between dif-
ferent pairs of walkers can proceed in parallel.

B. Salsa Programming Interface

The operators provided by the Salsa application program-
ming interface (API) are listed in Table I. These operations
provide associative access to the virtual shared space and are
similar to the operators provided by the tuple space model [11].
The interface includes operators to initialize the Salsa runtime

TABLE I

SALSA APPLICATION PROGRAMMING INTERFACE.

Operation Description

init(global-temperature-range) Initialize the shared space.
post(exchange-temperature-lower-bound, Post a temperature range of exchange interest to the space.

exchange-temperature-upper-bound)
get(?temperature, energy) Get the exchanged temperature from the space. This is a blocking call and the calling process blocks

until a matching temperature is available. The retrieved temperature is removed from the space.
getp(?temperature, energy) Get the exchanged temperature from the space. This is a non-blocking call and the calling process

continues if no matching temperature is available. The retrieve temperature is removed from the space.

if (seineinitflag .eq. 0) then
 call init_salsa (global_temperature_lowbound,

 global_temperature_upperbound)
 seineinitflag = 1
 timestamp = 0
else
 timestamp = timestamp + 1
endif

if (timestamp .eq. (timestamp/exchange_rate)*exchage_rate)
then
 call post(tempt(nspec+1) - GUESSRANGE,
 tempt(nspec+1) + GUESSRANGE)
endif
call getp(newtemp, epot, accepted)

Fig. 2. Pseudo-code illustrating the implementation of replica exchange using
Salsa.

(init), to allow processes to post (post) temperature range
of exchange interest and retrieve available exchanged tem-
peratures (get/getp). Note that the retrieved temperatures are
removed from the space.

The replica exchange algorithm can be simply implemented
using the Salsa API as illustrated by the psuedo-code pre-
sented in Figure 2. The MPI-based implementation tends to
be significantly longer and more complex. Note that these
Salsa operators can be easily extended to support “temperature
plus potential parameter replica exchange” formulation that
facilitates barrier crossing by “flattening” the energy barriers
in addition to kinetically activating the crossing by heating the
system.

C. Parallel Asynchronous Replica Exchange using Salsa

The overall operation of Salsa is as follows. When a
walker attempts to exchange its current target temperature, it
computes a temperature range that it is willing to exchange
with and posts this range to the shared space using the post
operator. Based on the temperature range posted, the request is
routed to all the service daemons whose index ranges overlap
with the hashed posted range. Note that a posted temperature
range may be unevenly distributed across the directory nodes
resulting in load balancing issues. Currently Salsa addresses
the issue using a simple load balancing protocol and plan to
further improve the protocol. When a remote post request is
received by a service daemon, the daemon first checks its
storage for potential exchange partners. If a candidate exists
(say walker2), the requesting walker (say walker1) is notified.

Otherwise, the incoming request is stored.
Since a post request typically maps to multiple directory

nodes and therefore is sent to multiple service daemons, it
is possible that a requesting walker is notified of multiple
candidates, if more than one daemons find a potential exchange
partner. In this case, the first notification that reaches the re-
questing walker is accepted. However, the exchanging walkers
must mutually agree to exchange data with each other. This
requires a two-way handshake. In the example above, walker1

will send out a query message to ask walker2 whether it
is available for an exchange. On receiving this query from
walker1, walker2 checks it local state. This state can be
“free”, “onhold”, or “finished”. The walker is available for
an exchange only if it is in the “free” state. The “onhold”
state indicates that the walkers has already agreed to exchange
with another walker but exchange has not yet occurred. The
“finished” state indicates the walker has already finished
an exchange with another walker and its posted interest to
exchange is no longer valid. In the example, if walker2 is
in the “free” state it will respond positively to walker1. At
this point both walkers confirm their intent to exchange data
with each other and change their state to “onhold”. If walker2

had responded negatively, walker1 would have continued to
negotiate with other walkers that it had been notified of until it
finds a willing exchange partner or it has no more walkers to
negotiate with. In the latter case, it just gives up and continues
simulation with its current data until the next exchange cycle.

Once a pair of walkers agree to exchange data, they initiate
the actual exchange by invoking the get or getp operator. The
exchange is performed using the mechanisms provided by the
communication layer. The exchange proceeds as follows. One
of the walkers sends its current data (e.g. temperature and en-
ergy) to its potential partner. The potential partner determines
whether they can exchange based on data it receives and its
own data. This step is necessary since the exchange happens
asynchronously and in parallel with the computation, and a
walkers data (i.e., energy) may have changed since it posted
its exchange interest. If the walker decides to continue with the
exchange, it will notify its partner of the decision and sends
its current local data to complete the exchange. Note that an
exchange is between a pair of walkers and multiple exchanges
between different pairs of walkers can proceed in parallel.

An implementation of a parallel asynchronous replica ex-
change using Salsa is illustrated in Figure 3. As described
above and shown in the figure, the scheme consists of two

<confirm by handshaking>

<confirm by handshaking>

time time time time time time

DN 1
[100, 200)

 DN 2
[200, 300)

DN 3
[300, 400)

DN 4
[400, 500)

DN 5
[500, 600)

DN 6
[600, 700)

post <220,300>
post <300,320>

270

150 post <100,200>

630 post <580,600>

470
post <500,530>

post <430,500>

post <600,680>

610
post <600,660>

post <560,600>

350
post <300,400>

630 <=> 610 ? accept

notify notify

270 <=> 350 ? reject

getp (?t, e)

getp (?t, e)

P1 P2 P3 P4 P5 P6

Primitives:
post (exchange-interest-range)
[description] post the interest range of temperature exchange to the shared temperature space.
getp (?temperature, energy)
[description] asynchronous retrieval of an exchange temperature. After posting a temperature interest range, the local
processor continues computation using old temperature, meanwhile periodically checks the shared temperature space for
available potential exchange partners. If a candidate appears, an exchange will be attempted in the getp operation.

Pi: host i; x temperature (x) at local host at certain timestamp; DN: directory service node

610

630

y retart temperature (y);

getp (?t, e)

getp (?t, e)

getp (?t, e)

getp (?t, e)

Fig. 3. An example parallel asynchronous replica exchange implementation using Salsa.

phases. In the post phase, candidate exchange partners are
identified and notified. These walkers negotiate with each other
to create potential exchange partnerships. In the get or getp
phase, these potential partners then attempt to exchange data.

In the Salsa-based replica exchange algorithm, a walker
specifies the temperature range that it is interested in exchang-
ing with as a parameter of the Salsa post operator. Usually,
the larger the range, the higher is the probability of finding
an exchange partner and will result in better solution quality.
However, a larger range will also map to a large number of
directory nodes and the post request will be forwarded to
a large number of service daemons. This in turn increases
communication overheads. The service daemons are also more
loaded in this case, reducing their performance. Consequently,
the temperature range posted must reflect the best tradeoff
between solution quality and simulation performance.

IV. SALSA IMPLEMENTATION AND EXPERIMENTAL

EVALUATION

A prototype of Salsa has been implemented using multi-
threading and TCP sockets. When Salsa is initialized by the
application, a Salsa thread is spawned at each node in the
system, which co-exists in the application address space. This
thread acts as a Salsa service daemon and handles post request.
Salsa service daemons discover and coordinate with each
other to construct the directory layer DHT structure using a
bootstrap server.

The effectiveness and scalability of the Salsa-based replica
exchange algorithm is evaluated using the alanine tripeptide
molecule. The tests are conducted on up to 68 processors (due
to availability) using two Beowulf cluster, with 64 processors
and 8 processors respectively, which consists of Linux-based
computers connected by 100 Mbps full-duplex switches. Each
processor has an Intel(R) Pentium-4 1.70GHz CPU with
512MB RAM and runs Linux 2.4.20-8 (kernel version). All the
tests are configured to run for 10 ns total simulation time using
the Hybrid Monte Carlo (HMC) [22] molecular dynamics
sampling algorithm. Each run is composed of 250,000 HMC
cycles, each including 10 molecular dynamics integration steps
with a 4 fs time-step. Replica exchange is attempted every 25
HMC cycles. Replica exchange temperatures are distributed
exponentially within the 200-700 K range. The experiments
compare the efficiency and performance of the Salsa-based
implementation with the original MPI-based implementation
in Impact. These experiments are described below.

A. Salsa-based vs. MPI-based Replica Exchange

An important feature of the Salsa-based replica exchange
implementation is its ability to support non-nearest neighbor
temperature exchanges. This feature is essential for ensuring
proper mixing of temperatures across the walkers, especially
when the simulation includes a large number of walkers. At

1When the system size is large, post requests are only sent to a subset of
the service daemons that correspond to the requests to reduce communication
overheads.

TABLE II

NUMBER OF TEMPERATURE CROSS-WALK EVENTS.

Number of walkers 8 16 32 60 120 136
Temperature range (in Kelvin) for 250=> 250=> 250=> 250=> 250=> 250=>
measuring the number of cross-walks 650=> 650=> 650=> 650=> 650=> 650=>
(write rate: per 250 steps) 250 250 250 250 250 250

Posted temperature range for replica exchange Salsa-based simulation
[-80K, 80K] 106 120 249 347 798 1 941 1

MPI-based simulation
100 101 94 44 6 3

equilibrium each walker visits each temperature with equal
probability. The rate of temperature equilibration is measured
by the number of “cross-walks”, whereby a walker originally
within the low temperature range (200 K ≤ T ≤ 250 K)
reaches the upper temperature range (650 K ≤ T ≤ 700 K)
and then returns to the lower temperature range. As shown
in Table II, the Salsa-based replica exchange implementation
achieves a larger number of cross-walks as compared to
the synchronous MPI-based replica exchange implementation.
This is because the synchronous MPI implementation only
supports nearest neighbor temperature exchanges, and the
walkers have to travel through every temperature in order to
complete a cross-walk in the temperature space. This diffu-
sion process is particularly slow when the replica exchange
simulation includes many temperatures. Since Salsa supports
non-nearest neighbor temperature exchanges, a walker can
“jump” through temperature space, resulting in a faster rate
of temperature equilibration.

Table II shows the number of temperature cross-walks
measured for Salsa-based replica exchange simulations with
8, 16, 32, 60, 120 and 136 walkers, compared with the
corresponding number of cross-walks obtained using the MPI-
based synchronous implementation. In these experiments, the
temperature range posted by walkers in the Salsa-base replica
exchange implementation was set to a window of 160 K
around its target temperature, i.e., as [temp - 80 K, temp + 80
K]. In this configuration, a walker can exchange temperature
with any other walker whose target temperature is less than
160K away, i.e., the ranges that the two walkers post intersect.
The temperature ranges that defined a cross-walk in the exper-
iments are listed in Table II. As seen from the results listed in
the table, the number of observed temperature cross-walks is
larger for the Salsa-based simulation, and it increases as the
number of walkers increases. In contrast, the number of cross-
walks observed for the MPI-based implementation decreases
as the number of walkers increases. With 136 walkers there
are only 3 temperature cross-walks observed in the case of the
MPI-based implementation. In comparison 941 cross-walks
are observed for the Salsa-based implementation. These results
demonstrate that using non-nearest neighbors replica exchange
algorithm enabled by Salsa provides significant benefits, es-
pecially when the density of the temperature distribution is
large.

B. Scalability of Salsa

The decentralized design of Salsa enables it to scale well
with increasing number of processors. This experiment mea-
sures the wall-clock execution time for the Salsa-based and
MPI-based implementations of the replica exchange simulation
with 8, 16, 32, 60, 120, and 136 walkers. The results are
plotted in Figure 4. Note that for the simulation with the
cases of 120 and 136 walkers, 2 walkers were mapped to
each processor since the combined system used had only 68
processors available. The execution time for both implemen-
tations are appropriately scaled for this case. Also note that,
since Salsa-based replica exchange executes in a decentralized
asynchronous manner, different walkers or processes may pro-
ceed at different speeds and therefore have different execution
times.

The measurements plotted in Figure 4 correspond to the
average execution time across all the walkers/processes. A
large portion of the execution time is due to local potential
energy evaluations necessary to propagate each walker in
time. This component of the execution time is the same for
both implementations. The remaining portion of the execution
time is due to exchange communications and includes both
communication times and the synchronization overheads. This
component of the execution time is proportional to the number
of exchanges and is different for the two implementations.

Figure 4(a) plots the average run-times for the two im-
plementations for different numbers of processors and corre-
spondingly, walkers. This plot reflects a combination of fac-
tors. First, since in the MPI-based implementation, exchanges
are centralized and synchronous, they have high probability to
be successful. However, in the case of Salsa, exchanges are
decentralized and asynchronous, and many initiated exchanges
may not succeed. As a result, there is some “wasted” commu-
nication in Salsa. However since this communication occurs
in parallel and is overlapped with computations its impact
is not as significant. Second, the Salsa-based simulations
result in a larger number of cross-walks and thus perform
a significantly larger number of exchange communications.
The combined result of these two factors results in higher
execution times for the Salsa-based implementations for up to
60 walkers. For a larger number of walkers, the bottleneck
caused by centralization and synchronization in the MPI-
based implementation becomes significant as apparent for the
120 and 136 walker cases in the plot. We believe that the

Wall-clock Simulation Time

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140

Number of Processes (Walkers)
(a)

M
in

s

Execution Time of MPI-based Simulation

Average Execution Time and Standard Deviation (shown as error bar) of Salsa-based
Simulation: post range [-80, 80]

Normalized Simulation Time

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

Number of Processes (Walkers)
(b)

M
in

s

Normalized Execution Time of MPI-based Simulation

Normalized Execution Time of Salsa-based Simulation: post range [-80, 80]

Fig. 4. (a) Average wall-clock execution time and standard deviation with
increasing number of processes (walkers); (b) Normalized execution time with
increasing number of processes (walkers).

impact of this bottleneck will be even more pronounced for
larger systems and for distributed systems where gather/scatter
operations are expensive.

It is also useful to consider the relative effective perfor-
mance of the two implementations. As shown in Table II, the
Salsa-based implementation produces more temperature cross-
walks that in turn are reflected in a smaller convergence time,
i.e., the time required to obtain a particular thermodynamic
quantity of the molecular system within a given statistical
uncertainty. To evaluate the effective gain in performance
achieved using Salsa, Figure 4(b) plots the normalized exe-
cution time for both implementations, obtained by dividing
the wall clock execution time by the number of cross-walks.
This gives the average time required to achieve one tempera-
ture cross-walk. As this figure shows, for small number of
processes the Salsa and MPI implementations have similar
effective performance. However as the number of processes
and correspondingly, the number of walkers increases, the per-
formance of the Salsa-based simulation increases noticeably.

C. Effect of Posted Temperature Ranges on Cross-Walks

The temperature range posted by a walker ([-80 K, 80 K]
in the experiment presented above) is an adjustable parameter
that can be optimized for a specific system and number of
walkers, to achieve the fastest convergence. To illustrate the
effect of the posted temperature range on the number of
temperature cross-walks, Figure 5 plots the number of cross-

Influence of Difference Temperature Ranges Posted

0

200

400

600

800

1000

1200

8 16 32 60 120 136
Number of Processes (Walkers)

T
o

ta
l N

u
m

b
er

 o
f

C
ro

ss
w

al
ks

[-80K, 80K]

[-150K, 150K]

Fig. 5. Influence of different posted temperature ranges on the number of
cross-walk events.

walks obtained using the ranges [-150 K, 150 K] and [-80 K,
80 K]. These results show that the [-80 K, 80 K] temperature
range gives better results than the [-150 K, 150 K] range in
the cases of 8, 16, 32, and 60 walkers while [-150 K, 150 K]
gives better result in the case of 120 and 136 walkers.

V. RELATED WORK

A. Parallel Replica Exchange

Existing parallel implementations of replica exchange are
based on a simplified formulation of the replica exchange
algorithm as described previously, and use a centralized master
to periodically schedule and manage exchanges. These im-
plementations are either directly build on sockets, as in [3],
or use message passing libraries such as MPI or PVM, as
in [13]. In [13], H. J. C. Berendsen et al present a parallel
replica exchange implementation developed specially for a
ring topology. The implementation is suitable for systems
where the processors can be configured as a (logical) ring
and which support blocking send and receive calls. In this
implementation, each processor only communicates with its
two nearest neighbors on the ring. Like the MPI-based im-
plementations, this implementation also supports only nearest
neighbor temperature exchanges.

The Folding@home [12] project at Stanford University has
proposed a multiplexed replica exchange algorithm. The algo-
rithm uses multiplexed-replicas with a number of independent
molecular dynamics runs at each temperature, and attempts ex-
changes of configurations between these multiplexed-replicas.
In this formulation, the efficiency of the simulation is enhanced
as a number of independent molecular dynamics simulation
replicas are run at each temperature and there are a larger
number of potential exchange partners available. Further, the
multiplexing between replicas is arranged in such a way that
the discrepancy between exchange partners is reduced. In
contrast, Salsa improves simulation efficiency by eliminating
the limitation of nearest neighbor exchanges, instead of in-
troducing redundant computations. Both algorithms, however,
use parallelism to improve the efficiency of the simulation.

To the best of our knowledge, the work presented in this
paper is the first to address the decentralized and asynchronous
parallel implementation of replica exchange. This not only
improves scalability but also improves efficiency by enabling

non-nearest neighbor temperature exchanges, which is desir-
able for simulations with a large number of replicas.

B. Shared Space Abstractions

One of the earlier research efforts on virtual shared space
abstractions was the tuple space model proposed by N. Carrier
and D. Gelernter in [11]. Subsequently several research
projects have addressed the model and its implementation.
These include commercial products and research prototypes
with varied foci, such as JavaSpaces [14], TSpaces [15],
XMLSpaces [16], Lime [17], PeerWare [18], PeerSpace [19],
and Comet [20]. The virtual shared space abstraction provided
by Salsa is customized towards the application domain, which
also allows it to avoid some of the overheads and consistency
issues of a general shared space.

VI. CONCLUSION AND FUTURE WORK

The paper presents a novel implementation of replica ex-
change algorithm using Salsa, a framework that presents a
shared space abstraction at runtime to user applications. The
Salsa-based replica exchange supports exchange between non-
nearest neighboring temperatures, asynchronous communica-
tion to enable overlapping communication with computation,
decentralized communication paradigm to avoid the central
bottleneck in a client/server version of the implementation.
The approach helps improving the overall efficiency and
scalability of the simulation.

The overall goal of the project is to enable large-scale Grid-
based parallel and distributed molecular simulations of protein
structural changes and drug binding to proteins. Specific tasks
include (1) implementing a prototype interaction and coordi-
nation framework, based on Salsa, for wide-area distributed
replica exchange simulations, (2) developing, deploying and
evaluating the Grid-based Impact implementation, and (3) us-
ing the grid-based Impact implementation to provide scientific
insights .

While Salsa, as presented in this paper, has be specially
customized for the replica exchange algorithm, the underlying
approach, i.e., developing domain specific and semantically
specialized associative interaction/coordination spaces, can
potentially support a more general class of applications that
exhibit extremely dynamic and complex coordination and
communication behaviors. We will investigate other applica-
tions that can benefit from this approach and generalize Salsa
to support these applications.

ACKNOWLEDGEMENTS

The research presented in this paper is supported in part
by the National Science Foundation via grants numbers ACI
9984357, EIA 0103674, EIA 0120934, ANI 0335244, CNS
0305495, CNS 0426354 and IIS 0430826, NIH GM-30580
and by the DOE SciDAC CPES FSP.

REFERENCES

[1] The Message Passing Interface (MPI) Standard. http://www-
unix.mcs.anl.gov/mpi/

[2] J.L. Banks, H.S. Beard, Y. Cao, A.E. Cho, W. Damm, R. Farid, A.K.
Felts, T.A. Halgren, D.T. Mainz, J.R. Maple, R. Murphy, D.M. Philipp,
M.P. Repasky, L.Y. Zhang, B.J. Berne, R.A. Friesner, E. Gallicchio,
and R.M. Levy. Integrated Modeling Program, Applied Chemical Theory
(IMPACT), J. Comp. Chem., 26, 1752-1780 (2005).

[3] H. Nymeyer, S. Gnanakaran, and A. E. Garcia. Atomic SImulations of
Protein Folding, Using the Replica Exchange Algorithm. Methods in
Enzymology. Vol. 383. page 119-149. (2004)

[4] R. Swendsen and J. Wang. Phys. Rev. Lett. 57, 2607 (1986)
[5] C. Geyer and E. Thompson. J. Am. Stat. Assoc. 90, 909 (1995)
[6] E. Marinari and G. Parisi. Europhys. Lett. 19, 451 (1992)
[7] K. Hukushima and K. Nemoto. J. Phys. Soc. Jpn. 65, 1604 (1996)
[8] K. Y. Sanbonmatsu and A. E. Garcia. Proteins 46, 225 (2002)
[9] Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method

for protein folding. Chemical Physics Letters 314 (1999) page141-151.
[10] A. K. Felts, Y. Harano, E. Gallicchio, and R. M. Levy. Free energy

surfaces of β -Hairpin and α -Helical peptides generated by replica ex-
change molecuar dynamics with AGBNP implicit solvent model. Proteins:
Stucture, Function, and Bioinformatics 56: 310-321 (2004).

[11] N. Carriero, D. Gelernter. Linda in context. Communications of the
ACM, Volume 32, Issue 4, pp.444-458, April 1989, ISSN:0001-0782.

[12] Y. M. Rhee and V. S. Pande. Multiplexed-replica exchanged molecular
dynamics method for protein folding simulation. Biophysical Journal.
Volume 84. February 2003. Page 775-786.

[13] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen. GROMACS: a
message-passing parallel molecular dynamics implementation. Computer
Physics Communications 91 (1995) 43-56.

[14] J. et al. JavaSpace Specification 1.0. Technical report, Sun Microsystems,
1998.

[15] T. J. Lehman, S. W. McLaughry, and P. Wycko. TSpaces: The Next
Wave. In Proceedings of Hawaii International Conference on System
Sciences, 1999.

[16] R. Tolksdorf and D. Glaubitz. CoordinatingWeb-based Systems with
Documents in XMLSpaces. In Proceedings of the Sixth IFCIS Interna-
tional Conference on Cooperative Information Systems, 2001.

[17] A. Murphy, G. Picco, and G.-C. Roman. Lime: A Middleware for
Physical and Logical Mobility. In Proceedings of the 21st International
Conference on Distributed Computing Systems, pages 524C536, 2001.

[18] G. Cugola and G. Picco. PeerWare: Core Middleware Support for Peer-
To-Peer and Mobile Systems. Technical report, Politecnico di Milano,
2001.

[19] N. Busi, C. Manfredini, A. Montresor, and G. Zavattaro. PeerSpaces:
Data-driven Coordination in Peer-to-Peer Networks. In Proceedings of
the 2003 ACM symposium on Applied computing, pages 380C386. ACM
Press, 2003.

[20] Z. Li and M. Parashar. Comet: A Scalable Coordination Space in Decen-
tralized Distributed Environments. In Proceedings of the 2nd International
Workshop on Hot Topics in Peer-to-Peer Systems (HOT-P2P 2005), San
Diego, CA, USA, IEEE Computer Society Press, July 2005.

[21] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar.
High Performance Threaded Data Streaming for Large Scale Simulations.
5th IEEE/ACM International Workshop on Grid Computing, Pittsburgh,
PA, USA, November, 2004.

[22] R. Zhou and B. J. Berne, Smart walking: A new method for Boltzmann
sampling of protein conformations. J. Chem. Phys. 107 (1997) 9185-9196.

