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Abstract— Due to resource scarcity, a paramount concern in
ad hoc networks is to utilize the limited resources efficiently. The
self-organized nature of ad hoc networks makes the social welfare
based approach an efficient way to allocate the limited resources.
However, the effect of instability of mobile nodes has not been
adequately addressed in the literature. To efficiently address the
routing problem in ad hoc networks, we introduce a new metric,
maximum expected social welfare, and integrate the cost and
stability of nodes in a unified model to evaluate the optimality of
routes. The expected social welfare is defined in terms of expected
benefit (of the routing source) minus the expected costs incurred
by forwarding nodes. Based on our new metric, we design an
optimal and efficient algorithm, and implement the algorithm
in both centralized (optimal) and distributed (near-optimal)
manners. We also extend our work to incorporate retransmission
and study the effect of local and global retransmission restrictions
on the selection of routing paths.

Keywords: Ad hoc networks, local implementation, retransmis-
sion, routing, social welfare, stability.

I. I NTRODUCTION

Ad hoc networks suffer the power shortage of network
devices, thus a major concern in ad hoc networks is to
save energy. Existing energy-efficient routing protocols save
energy by selecting the lowest energy cost route. However,
energy saving is not equal to energy efficiency. Consider a
large number of packets to be delivered from a source to a
destination. If the lowest cost path is very unstable, and hence
most packets transmitted through this path are lost, it is energy
waste rather than energy saving compared to a stable but
more costly path. Therefore, energy-efficient routing protocols
should take both energy consumption and link stability into
account.

A major task of sensor networks is to monitor environ-
mental change and report unexpected events to information
destination. With the improvement of sensor techniques, a
single sensor can monitor different events simultaneously.
These events may have different priorities to an information
destination because an event like fire alarm is more emergent
than the increment of temperature. It is reasonable to send the
higher priority event through a more stable route even at the
expense of more energy cost.

From the observation of the above two problems, we realize
that there is a tradeoff between stability and energy cost in the
selection of an optimal route and this tradeoff depends on the
priority of the data to be sent. To model the priority and the
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tradeoff, we borrow the concept ofbenefit(value), cost, and
social welfarefrom the economics theory.

The benefit is to model a successful data delivery from
the event observer (information source) to the information
destination. If data is delivered from the information source
to the information destination successfully, the system will
achieve some benefit, whose value depends on the priority of
the data. The cost is to model the energy cost of links and
routes. The social welfare is equal to the benefit minus the
cost. From the economic point of view, the higher the social
welfare, the better performance the system has.

Given the benefit of a successful data delivery, the tradeoff
lies in the selection of the optimal route. To increase the chance
to obtain the benefit, it is better to select the more stable route
because the more stable a route, the higher theexpected benefit
(= benefit× delivery ratio). But the increment of the expected
benefit may be at the expense of the increment of the energy
cost because it is usually the case that the more stable a route,
the higher the cost of the route.

We adopt theexpected social welfare(= expected benefit
− expected cost), which integrates link cost, link stability, and
system benefit, as the metric to evaluate the routing optimality.
Based on this metric, we design an efficient routing algorithm,
which can identify the optimal route from any source to a
given destination for a given value of benefit. Although our
algorithm can find optimal routes from all sources to a single
destination, we consider a single source-destination pair in our
model in order to avoid intractable analysis. We also prove the
optimality of our algorithm, and implement this algorithm in
both centralized and distributed manners.

Our distributed implementation only propagates the sum-
marized routing information (the expected social welfare)
from the destination to the source, instead of all the routing
information. Our scheme is easy to implement based on
existing reactive routing protocols, such as AODV [1] or DSR
[2], without introducing additional cost.

We also extend our model by incorporating a retransmission
mechanism. Retransmission can increase the link stability,
which in turn increases the stability of routes, but this incre-
ment is at the expense of the cost increment. In the extreme
case of unlimited retransmission, the packet delivery ratio is
100% and the cost can be larger than the benefit, which causes
negative social welfare.

Intuitively, there exists a trade-off between stability and cost
in retransmission. But in terms of expectation, it can be proved
that the larger the upper bound of the number of transmissions,
the larger the expected social welfare. However, in reality, the
number of retransmissions is constrained by local and global
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restrictions. The intermediate nodes have motivation to set a
local quota (a local retransmission restriction) because too
many retransmissions is not beneficial to them. The source
has reason to set a global quota (a global retransmission upper
bound) over the routing path, if it intends to control the number
of transmissions and the total transmission cost. Protocols like
TCP have a constant number of hop-by-hop (local) and end-to-
end (global) retransmissions restriction. Because of the above
arguments, we extend our model to allow retransmission and
study the effect of the local quota and global quota on the
route selection.

The main contributions of this paper can be summarized
as follows: 1) We devise a new metric, expected maximum
social welfare, which integrates link cost, link stability, and
the system benefit, to assess and select the optimality of routes
in ad hoc networks. 2) We design an optimal algorithm for
the maximization of expected social welfare problem with
a centralized implementation. We also propose a distributed
approximation implementation for the optimal algorithm by
gracefully integrating reactive routing protocols. 3) We extend
the model by incorporating a retransmission mechanism and
study the effect of the local quota and global quota on the
selection of the optimal routing path. 4) We explore the effects
of the local quota and global quota through simulations.

The following assumptions are used in this paper: 1) Each
node has a priori knowledge about its associated link cost and
link stability. Numerous works [15], [19] address the issue
on how to collect this information. 2) We allow hop-to-hop
retransmission if a packet is lost on link(i, j) and assume
that each forwarding attempt consumes the same costci,j .

II. RELATED WORK

The concept of the social welfare [10] is borrowed from eco-
nomics. There exist works that use social welfare as the opti-
mization objective. Li, Xue, and Nahrstedt [8] present a price-
based scheme to effectively allocate resources among multiple
multi-hop flows. Their approach maximizes the aggregated
utility of flows (the social welfare), while maintaining basic
fairness among multiple flows. Qiu and Marbach [11] propose
a market-based approach to efficiently allocate bandwidth
in wireless ad hoc networks. Although there are numerous
existing works applying social welfare related approaches, as
far as we know, none of them combines stability and link cost
and designs an optimization model to maximize the expected
social welfare.

In a market-based model, another concern is to determine
the price of service, which is called payment in literature.
Existing works use a first-price scheme [7] or a second-price
scheme [3], [19], which can be classified as an auction-based
scheme, to determine the payment. There exist many other
payment methods like Nuglets [5] and Sprite [18]. We do not
address the implementation of payment because the expected
social welfare does not depend on the payment scheme.

Various existing routing protocols [4], [19] pursue the
minimum hop count or minimum cost. As has been discussed
elsewhere [6], [16], these metrics are not necessary ideal
because they did not take link stability into account.

Another routing algorithm [14] models the link stability as
the longevity of the link and identifies the best route as the
route with the longest lifetime. One similar scheme [17] adopts
“best worst link”, which identifies the least stable link (the
bottleneck link) over any route and selects the route with the
best “bottleneck”. Although these schemes consider the link
stability issue, they fail to differentiate between two routes
with the same bottleneck link but different link characteristic.

ETX [6] and MintRoute [16] adopt path delivery ratio
(PDR) by measuring hop-by-hop link delivery ratio (LDR)
along the path. ETX weights links with a metric called
minimum expected transmission number, which is equal to
the link cost divided by LDR. However, this metric requires
an unrealistic assumption that retransmission is unlimited.

Wang, Martonosi, and Peh [15] propose a simple way, called
link quality indicator (LQI), to evaluate the link stability.
Through LQI, the link stability can be measured over the
reception of a single packet in a realistic environment, which
makes the collection of link stability information practical.

In ad hoc networks, retransmission schemes are applied to
increase the reliability in routing and broadcasting etc. Lou and
Wu [9] discussed the trade-off between broadcast redundancy
(including retransmission) and delivery ratio. Scott and Yasin-
sac [12] proposed a routing protocol that dynamically adjusts
retransmission probability according to the local topography.
In this paper, we adopt a hop-by-hop retransmission scheme
and integrate the retransmission scheme into our maximum
social welfare based model, and design an optimal algorithm
for the introduction of the local quota and a heuristic for the
introduction of the global quota.

III. T HE MODEL

A. Basic definitions

We consider a source-destination pair (s,d), in which the
destinationd expects to receive data from the sources. The per
packet benefit is denoted asv. That is, the system will obtainv
for each successfully delivered packet. The network is modeled
as a unit disk graph(N , E), whereN = {1, 2, · · · , N} is the
set of nodes andE is the set of links.

For each link(i, j) ∈ E, there are two properties: link cost
and link stability. Link costci,j is the minimal energy level
to connecti and j, while link stability pi,j (also called link
delivery ratio (LDR) [16]) is the ratio of received packets to
transmitted packets between nodei and nodej.

B. Metric for a link

To illustrate the basic idea of our new metric, we first
consider a single-link route froms to d with link stability ps,d

and link costcs,d. Sinced receives a packet with probability
ps,d, The system hasps,d chance to obtain the benefitv at the
cost ofcs,d. Note that the system obtainsv if and only if the
packet is delivered tod. From the economic point of view, the
expected social welfare of this route is the expected benefit
minus the route’s cost, i.e.,

U = v · ps,d − cs,d (1)
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route ud = v u1 u2 U
< s, 1, d > 200/250 140/182.5 87/121
< s, 2, d > 200/250 137/180 83.3/122

< s, 1, 2, d > 200/250 70.9/101 137/180 31.7/55.8
< s, 2, 1, d > 200/250 140/182.5 73/102.75 25.7/57.2

Fig. 1. The effects of the link stability and the benefit on the selection of
the optimal route. The table shows the RESWs of nodes on each route. In
each cell, there are two values separated by ‘/’. The left value is the RESW
under benefit of200, while the right one is the one corresponding to benefit
250.

However, Formula (1) should be carefully investigated be-
fore it can become a useful metric. In fact, Formula (1) cannot
be directly applied to a multi-hop route. Consider the two-hop
route < s, 1, d > shown in Fig. 1, where the cost and the
stability of a link are displayed above (left) and below (right)
the link, respectively. We cannot simply setps,d = ps,1 ·p1,d =
0.8×0.85, cs,d = cs,1+c1,d = 25+30, and apply Formula (1).
Actually, cs,d = cs,1 + c1,d · ps,1 = 25 + 30× 0.8 because the
costc1,d is consumed if and only if a packet is delivered to1.

Even if the link stability is taken into account in evaluating
the link cost, it is still not easy to extend to the scenario of
multi-hop routes. For example, consider the multi-hop route
< s = 1, 2, · · · , k − 1, d = k >, the expected social welfare
should be calculated as:

U = v ·
k−1Y
j=1

pj,j+1 −
k−1X
i=1

ci,i+1

i−1Y
j=1

pj,j+1 (2)

To make Formula (2) scalable and easy to calculate in a
distributed way, we design a better way in the next subsection
to calculate a route’s expected social welfare.

C. Metric for a multi-hop route

An important observation is that the implementation of the
benefitv depends on the successful delivery of a packet to the
destination node. Thus, from the destination’s point of view,
we can view any intermediate node as the virtual source and
calculate the corresponding expected social welfare from the
virtual source to the destination. For example, in Fig. 1, we can
view intermediate node1 as the virtual source and the related
expected social welfare is:u1 = v ·p1,d−c1,d by Formula (1).
Becauseu1 is not the real expected social welfare, we callu1

the residual expected social welfare(RESW) of node1.
On the other hand, from the source’s point of view, we

can view any intermediate node as the virtual destination and
equate the benefit to the intermediate node’s RESW as if the
system would obtain that amount of benefit if a packet is
delivered to the intermediate node. For example, in Fig. 1,
source s will get benefit u1 if the packet is delivered to
1. Thus, the expected social welfare can be calculated as:
U = u1 · ps,1 − cs,1, where u1 can be calculated from
u1 = v · p1,d − c1,d.

The above method can be extended to the calculation of
multi-hop routes. We can recursively apply Formula (1) start-
ing from destinationd to obtain the expected social welfare.
For example, consider the 3-hop route< s, 1, 2, d > in Fig. 1.
For link (2, d), we haveu2 = ud · p2,d − c2,d. By recursively
applying Formula (1), we haveu1 = u2 · p1,2 − c1,2 and then
U = u1 · ps,1 − cs,1, which is the expected social welfare of
the 3-hop route.

The correctness of the above recursive method can be ver-
ified by comparing the results with Formula (2). An amazing
property of our metric is that the selection of the optimal
route not only depends on the network properties, such as
link stability and link cost, but also depends on the value
of the benefit (v). Consider the example in Fig. 1, there are
four routes:< s, 1, d >, < s, 2, d >, < s, 1, 2, d >, and
< s, 2, 1, d >. If the benefitv = 200, the optimal route is
< s, 1, d >, but if v = 250, the optimal route is< s, 2, d >.

IV. T HE SOLUTIONS

A. The algorithm and its complexity

In our algorithm, the calculation of the expected social
welfare starts from the destination with the initial expected
social welfare equal to the per packet benefit. The RESW
will be reduced at each intermediate node backward from the
destination to the source according to the cost and stability
of the links, where the node is an endpoint. Algorithm 1
(MaxUtility) iteratively finds the node that will reduce the
expected social welfare the least. A few additional notations
are used in MaxUtility:

• Q, the set of nodes whose RESWs have been maximized.
• ui, which maintains nodei’s current RESW.
• Ni, the set ofi’s neighbors.

The input to MaxUtility is the node setN , source s,
destinationd, and the per packet benefitv. Each nodei ∈ N
has its neighbor setNi. The link costci,j and link stability
pi,j for each link(i, j) are also given.

Algorithm 1 MaxUtility(N , s, d, v)

1: Initialize, Q ← ∅;
2: while s 6∈ Q do
3: Find nodei with the largestui in N , deletei from N ;
4: Terminate ifui ≤ 0;
5: Q ← Q ∪ {i};
6: For each nodej ∈ Ni and j ∈ N , Relax(i, j);
7: end while

Relax(i, j)
1: uj ← ui · pi,j − ci,j if uj < ui · pi,j − ci,j ;

Initially, the RESWs of all nodes exceptd are set to−∞. d’s
RESW is set tov. In the beginning,d’s RESW is the highest,
thus, d is fetched.d will relax the RESW of its neighbors
and then be put intoQ. The relaxation consists of two steps:
first, nodei calculates the RESW of each neighbor according
to Formula (1) and its own RESW; second, nodei compares
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Fig. 2. An example to illustrate the MaxUtility algorithm.

route ud u1 u2 u3 u4 u5 U
< s, 1, 2, d > 200 63.1 133 7.7
< s, 5, d > 200 60 4

< s, 3, 4, d > 200 66 140 8.4

TABLE I

THE RESWS OF NODES OF EACH ROUTE INFIG. 2 UNDER v = 200

a neighbor’s calculated RESW with its original RESW and
saves the larger value as the neighbor’s new RESW.

MaxUtility repeatedly removes the node with the highest
RESW fromN , inserts it intoQ, and relaxes its neighbors
until nodes is inserted intoQ or no path with positive expected
social welfare can be found. In the later case, the algorithm
terminates because negative or zero expected social welfare
means that on average the system wastes its resource.

To illustrate our idea, we give an example in Fig. 2, in which
the integer number above a link and the float number below
the link are the cost and the stability of the link, respectively.
Besidess and d, there are five other nodes (nodes1, 2, 3, 4,
and 5). If the per packet benefit is 200, the optimal route is
< s, 3, 4, d > and the RESWs of nodes on each route are
enumerated in Table I. Note that in Fig. 2, the lowest cost
path is< s, 1, 2, d >.

If N is implemented with a binary heap, the total execution
time of step 3 isO(n log n), wheren is the number of nodes.
Each Relax(i, j) takes alsoO(log n)time, since fetching or
storing ui costs timeO(log n). Relax(i, j) executes at most
time of e, wheree is the number of links. So Relax(i, j, C)
has a total time ofO(e log n). Therefore, MaxUtility can be
implemented inO((e+n) log n). The optimality proof of our
algorithm can be found in the Appendix.

B. Implementation

We consider two implementations: the centralized one
which is relatively costly for collecting global link state
information and the decentralized one which can be gracefully
integrated into reactive routing protocols, such as AODV [1]
and DSR [2].

1) Centralized implementation:We adopt link-state-based
protocols in the centralized implementation. In traditional link-
state-based protocols, information is spread through flooding
techniques. Initially, every node broadcasts its local network
view (link cost and link stability associated with the node)
to every other node. At the end of this, every node has a
global view of the network (consistent, up-to-date routing

information). Here we adopt a reactive version of the link state
approach, assuming(i, j) exists if and only if(j, i) exists.

1) Destination sends out a flooding message.
2) Each intermediate node responds to the first request by

replying to the message.
3) The global directed flooding tree is formed rooted at the

destination. The first requester becomes the parent of the
corresponding node.

4) Each node sends out its link state (the cost and stability
of each link) to its parent node.

5) The destination collects all link state information
through the reversed spanning tree and then applies the
algorithms.

Our centralized implementation spreads local link state
information in a distributed manner, but computes RESW at
the destination in a centralized way. It requires each node to
maintain local link state information.

Although the above centralized implementation can find the
optimal route, it requires global link state information, which
in turn requires broadcasting and information collection. It is
too expensive and thus not a good implementation in practice.
In the following, we present a distributed implementation,
which requires much less message transmission.

2) Distributed implementation:The distributed implemen-
tation, unlike the above centralized implementation, computes
RESW in a distributed manner. RESW could be treated as
the summary of local link state information. Each node need
not propagate all available local link state information to its
upstream node. Instead, it propagates a summarized routing
information (RESW) to its upstream nodes.

The distributed implementation can be gracefully integrated
in a reactive routing protocol, such as AODV [1] and DSR [2],
where two phases are used. In the route discovery phase, the
source broadcasts a RREQ (route request) to its neighbors.
The RREQ is propagated in the network until it gets to
the destination, which then initiates a RREP (route reply)
containing relevant information following the reverse link
leading to the source.

1) The destination broadcasts its RESW to initialize a route
discovery phase that will form a global directed flooding
tree rooted at the destination.

2) Each node, including the source, sets a timerwj =
v − uj on receiving the first RESWs. Before timeout
it improves its RESW based on the received RESWs of
its neighbors, adjusts its timer and adds the nodes from
which it receives RESW into its relay candidate set.

3) After timeout, each intermediate node computes and
sends out its RESW to all neighbors.

If there is no transmission delay, the node with maximum
RESW will always broadcastRREP first, which includes
its RESW. This will enable the distributed implementation to
find the optimal route. However, due to transmission delay,
the node with larger RESW is not necessarily the node that
broadcastsRREP earlier. If the backoff time for a node is
up, but theRREP that can increase its relay set and improve
its RESW is still on the way, the RESW of the node is not
maximized.
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(s, 1) (s, 5) (s, 3) (1, 2) (5, d) (3, 4) (2, d) (4, d)
ci,j 32.4 54 42.56 33.6 77 51.52 30.24 43.2
pi,j 0.84 0.99 0.91 0.91 0.88 0.96 0.96 0.99

TABLE II

THE NEW LINK COST AND LINK STABILITY OF FIG. 2 WITH θl = 2

The distributed implementation is an approximation, using a
timeout mechanism. Thus, the RESW of a node is not always
optimal. But it has two desirable features: First, the calculation
is distributed, each node decides its own transmission cost and
relay set; Second, it greatly reduced the transmission overhead,
as only the RESW which summarize the link state information
will be propagated.

V. EXTENSIONS

In this section, we extend our model to incorporate the
hop-by-hop retransmission. The retransmission can increase
a link’s stability, but it also introduces additional cost for the
link. For each link, whether the retransmission is beneficial
(in terms of increasing the expected social welfare) or not is
an interesting problem. Moreover, if a retransmission attempt
of a packet fails over a link, should we retransmit the packet
over the link again? How many retransmission is appropriate?

To answer these questions, we adopt two transmission upper
bounds, local quota and global quota. The local quota of
an intermediate node is the maximum number of allowed
transmissions for the intermediate node, while the global quota
of a route is the number of total allowed transmissions over
the route. For simplicity, we consider homogenous local quotas
for all intermediate nodes, homogenous global quotas for all
available routes, and assume each transmission cost is the
same.

We first consider the local quota. The local quota can
be finite or infinite. The original problem (the case without
retransmission) is a special case (the local quota= 1). Let
θl denote the local quota. The new stability of link(i, j) is
1 − (1 − pi,j)θl , because the packet will lose if and only
if all θl transmission attempts fail. The probability fori
transmitting the packet exactlyl times is (1 − pi,j)l−1pi,j .
The expected number of transmission from nodei to nodej
is

∑θl

l=1 l(1−pi,j)l−1pi,j . Thus, the expected cost of link(i, j)
is ci,j

∑θl

l=1 l(1 − pi,j)l−1pi,j . By replacing the link stability
and link cost in Formula (1) with the new link stability and
link cost, we can directly apply MaxUtility algorithm to solve
the problem. Note that if the local quotaθl is unlimited, i.e.,
θl → ∞, the problem is reduced to the lowest cost path
problem [6], [19].

We use the same example in Fig. 2 to illustrate the change
of link stability, link cost, and the optimal route. The new link
stability and link cost in case ofθl = 2 are given in Table II.
The new optimal route is< s, 1, 2, d >.

The transmission upper bound can also be controlled by the
global quota. The recurrence described by Formula (1) does
not hold with the existence of the global quota, because an
intermediate node’s expected cost will depend on the number
of transmissions of previous nodes on the route.

We design a heuristic algorithm that addresses the case
with the existence of both local quota and global quota. Our
heuristic usesθl rounds to select the objective route. In each
round, the heuristic sets the local quota toi and uses a modified
MaxUtility algorithm to find the optimal route with the local
quotai. The route with the maximum expected social welfare
and the sum of local quotas (path length multiplied by the
local quota) less than or equal to the global quota will be
selected as the routing path. Our heuristic algorithm is shown
in Algorithm 2.

Algorithm 2 ExtMaxUtility

1: U(R∗) ← −∞; R∗ ← ∅;
2: for i = 1 to θl do
3: Ri ← MaxUtility(G, s, d, v, i);
4: R∗ ← Ri if |Ri| · i ≤ θg andU(Ri) > U(R∗);
5: end for
6: returnR∗;

We use the same example shown in Fig. 2 to illustrate that
the restriction of global quota does affect the selection of the
routing path. In Fig. 2, if the global quotaθg = 4 and the
local quotaθl = 2, the optimal routing path is< s, 5, d >
instead of< s, 1, 2, d > because the sum of the local quota
on path< s, 5, d > is equal to the global quota, while the
sum of the local quota on path< s, 1, 2, d > is larger than the
global quota.

VI. SIMULATION

In this section, we give an evaluation of our metric and
algorithm. Without loss of generality, the link cost is modeled
as the energy consumption. We compare different metrics for
determining the priority of the nodes in the relay set under the
framework of opportunistic routing. The metrics include: (1)
minimum hop count, (2) maximum path stability (path delivery
ratio), (3) OpESW (ESW), and (4) minimum cost.

A. Simulation environment

All approaches are simulated on NS-2.29. We set up the
simulation in a900m× 900m area, which is the target field.
We assume nodes are homogeneous and can be deployed in
this area arbitrarily. We fix the position of the sources and
the destinationd at locations(50m, 450m) and(850m, 450m)
respectively and randomly deploy the intermediate nodes. In
our experiments, the energy cost between any two nodes is
proportional to their distance. More specifically, for any two
nodesi andj with distancedistij , the energy cost ofi sending
a message toj is defined as the functionci,j = distγij + cons,
whereγ = 2 and cons is the energy constant. The stability
of each link is randomly generated (uniform distribution) in
the range[α, β], where0 ≤ α ≤ β ≤ 1. In the simulation,
the movement of nodes is characterized by the link stability
of nodes.

For each set of specified parameters, we run each algorithm
100 times and use the average value of the results to evaluate
the performance. In the simulation, we considern, the number
of nodes (in our experiments we varyn between30 and100)
as the tunable parameter.
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Fig. 3. Performance comparison of four optimal routing paths under four different metrics.

B. Simulation results

To illustrate that expected social welfare (ESW) can be
used to efficiently allocate energy cost over networks, we
compare it with other three metrics (minimum hop count,
lowest cost, and highest stability). For each metric, we com-
pute the corresponding optimal path. The four optimal paths
are compared using different metrics. In Fig. 3, the optimal
routes under maximum ESW, minimum hop count, lowest cost,
and highest stability are abbreviated as maxESW, minHop,
lowCost, highSTA, respectively. Fig. 3 (a), (b), (c), and (d)
compare the four optimal paths under ESW metric, cost metric,
path stability metric, and hop count metric, respectively.

Fig. 3 (a) shows that the maxESW path computed by our
MaxESW algorithm has the best performance in terms of
expected social welfare. From Fig. 3 (b) and (c), we can see
that the maxESW path’s performance is second to best in terms
of cost, and path stability, respectively. The results show that
our ESW metric is a good metric to evaluate routing perfor-
mance in wireless ad hoc network. Our MaxESW algorithm
can achieve a good trade-off between cost and stability.

In Fig. 3 (a)-(d), the minimal hop count path has similar
performance to the most reliable path. The stability of a path
is equal to the product of the stability of links on the path.

Because the link stability is uniformly distributed, the less the
hop count, the higher the path stability. Fig. 3 (c) and (d) verify
the relation between the hop count and the path stability.

In Fig. 3 (a), in terms of ESW, the highSTA path has better
performance than the lowest cost path. The reason is that the
stability has more effect on ESW than the cost. In Formula 1,
if the benefitv is large enough, the ESW will decrease by half
with the stabilityps,d decreasing by half, but the ESW will
not decrease too much with the costcs,d doubled. Fig. 3 (a)
also shows that the ESWs of the max ESW path, the most
reliable path, and the minimal hop count path increase with the
increment of the number of nodes, but the ESW of the lowest
cost path decreases instead. With more nodes, more paths are
available. With the increment of node number, although the
lowest cost path algorithm has more choices, the selected path
will have more hop counts and hence have lower stability.
The effect of cost decrement cannot make up the effect of the
stability decrement.

In Fig. 3 (b), both the max ESW path and the lowest cost
path decrease with the increment of the number of nodes, but
the most reliable path and the minimal hop count path do
not. As we have argued in Fig. 3 (a), with the increment of
node number, the available paths increase and hence lower
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cost paths will be available. However, the cost of the most
reliable path and the minimal hop count path do not necessarily
decrease. Our maximum ESW balances the trade-off between
stability and cost well. It has the advantages of both stability
metric and cost metric.

In Fig. 3 (c), except for the lowest cost path, the path
stability of the paths increases with the increment of the
number of nodes. We have discuss the reason in the argument
for Fig. 3 (a). The desirable result is that the max ESW
path shows a good path stability. The lowest cost path is the
worst of the four algorithms in terms of ESW. The result
are not surprising because the path stability is equal to the
multiplication of the link stability and hence the link stability
has a great influence on ESW. The above experiment illustrates
that ESW is an efficient metric to assess the utilization of
network resource.

We also evaluate the effect of the value of benefit (v) on
the computation of the optimal route. Roughly speaking, a
source with higher benefit is more likely to avoid taking risks
by selecting a less stable (lower path delivery ratio) but low
cost path. If the value ofv reflects the priority of a routing
task, a higher priority routing task should select more stable
but probably the most costly routing path. Fig. 4 (a) and (b)
verify our analysis. Fig. 4 (a) compares the cost of the selected
routes under three different values ofv (the bottom line is the
lowest cost path), while Fig. 4 (b) compares the path delivery
ratio of the selected routes (the bottom line is the most reliable
path).

The simulation results can be summarized as: 1) The
expected social welfare is sensitive to the range of stability, the
number of nodes, the transmission range, the local quota, and
the global quota. 2) Stability should be take into account when
evaluating the performance metric of a route. 3) MaxUtility
achieves a better performance than other methods. 4) In a
network with too many low stability nodes, the expected social
welfares of the routes computed by different methods are
very low. 5) The value ofγ has no essential effect on the
expected social welfare of the MEP path. 6) The transmission
range has an explicit effect on the expected social welfare of
the MEP path only when the number of nodes is small. 7)
The increments of the local quota and the global quota have
positive effects on the expected social welfare.

VII. C ONCLUSION

In this paper, we study the routing problem in ad hoc
networks. Considering resource scarcity and the unstable na-
ture of mobile nodes in ad hoc networks, we use a model
different from existing resource efficient routing and adopt
a new metric called maximum expected social welfare to
assess the optimality of a potential route from a source to
a destination. By studying the relationship between energy
cost and stability, we successfully combine these two different
metrics and design an optimal algorithm to find the optimal
route. We also extend our model to incorporate retransmission
and study the effect of the local quota and the global quota on
the selection of the routing path. In the future, we will explore
the effect of signal strength on stability, study the effects of

Qd

z

i

j

Fig. 5. The proof of Theorem 1.

the global quota theoretically, analyze the effect of the node
stability on the selection of the routing path, and perform more
in-depth simulation on the global quota.

APPENDIX

Proof of optimality
Before we give the proof of the correctness of the above

algorithm, we need a few lemmas. In the proofs, we useδi

to denote the maximum RESW for nodei to destinationd.
Obviously, for each nodeui ≤ δi.

Lemma 1:For any i 6= d, let Ri be a maximum RESW
path from vertexi to d with residual expected social welfare

ui = δi. Without loss of generality, letRi be i
Rij−→ j

Rj−→ d.
ThenRj is a maximum RESW path fromj to vertexd with
RESWuj = δj .

Proof: AssumeRj is not a maximum RESW path. Then

there exists another pathj
R′j−→ d such that the RESW ofRj

is less than that ofR′j . Let the RESW of pathRj andR′j be
uj andu′j respectively. Thenuj < u′j . ThenR′i, whereR′i =

i
Rij−→ j

R′j−→ d, is a path with larger RESW than that ofRi,
which contradicts the premise thatRi is a maximum RESW
path. Thus,Rj is a maximum RESW path. More specifically,
if Rij is a link, i.e (i, j), then

δi = δj · pi,j − ci,j (3)

Lemma 2:Let < i, j, · · · , d > be a maximum RESW path.
If before the call Relax(i, j, C), we haveuj = δj , then after
the execution of Relax(i, j, C), ui = δi holds.

Proof: After the execution of Relax(i, j, C), if ui <
uj · pi,j − ci,j , thenui = uj · pi,j − ci,j ; otherwise,ui will not
change andui ≥ uj · pi,j − ci,j . Hence,ui ≥ uj · pi,j − ci,j

always holds. Because the assumption thatuj = δj , ui ≥
δj ·pi,j−ci,j . According to the assumption< i, j, · · · , d > be
a maximum RESW path and Equation (3), we haveui ≥ δi.
But we always haveuj ≤ δj , thus,ui = δi.

Theorem 1:(Correctness of the MaxUtility algorithm) If
the MaxUtility algorithm successfully returns a positive
RESW, thenui = δi for any nodei ∈ Q.

Proof: We shall show that for each nodei ∈ Q, we have
ui = δi at the time wheni is added intoQ and that equality
holds thereafter. For the purpose of contradiction, we assume
z is the first node such thatuz 6= δz when it is added intoQ,
as shown in Figure 5. Note thatd 6= z since after initialization
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Fig. 4. The effect of benefit on computing optimal route.

ud = Vs = δd. Therefore,Q 6= ∅ beforez is added intoQ.
There exists a path fromz to d; otherwise,uz = δz = −∞,
which violates our assumption thatuz 6= δz. Because there
exists at least one path, there must be a maximum RESW path
R from z to d. R connects a vertex inN , namelyz, to a node
in Q, namelyd. Let us consider the first nodei ∈ N \Q along
R from z to d, and leti ∈ Q be j’s successor. Thus as shown
in Figure 5, pathR can be decomposed as< z, · · · , j >,
(j, i), and< i, · · · , d >.

We claim uj = δj when z is inserted intoQ. To prove
this claim, observe thati ∈ Q. Then, becausez is chosen as
the first vertex for whichuz 6= δz when it is inserted intoQ,
we haveui = δi when i is inserted intoQ. Note that path
< j, i, · · · , d > is a maximum RESW path becauseR is a
maximum RESW path and Lemma 1. Edge(j, i) was relaxed
at that time, so the claim follows from Lemma 2. Becausej is
closer tod thanz is on a maximum RESW path fromz to d,
we haveδj ≥ δz. Thusuj = δj ≥ δz ≥ uz. But because both
z and j were inN when z was chosen, we haveuz ≥ uj .
Thus uj = δj = δz = uz. Consequently,uz = δz, which
contradicts our assumption. Therefore we haveuz = δz when
z is inserted into setQ.
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