
Collaborative Memory Pool in Cluster System
Nan Wang1, 2, Xuhui Liu1,2, Jin He2, Jizhong Han2, Lisheng Zhang2, Zhiyong Xu3

1. Graduate University of the Chinese Academy of Sciences

2. Institute of Computing Technology, Chinese Academy of Sciences

3. Suffolk University, Boston MA, USA

{wangnan06, mafish, hejin, hjz, zhang}@ict.ac.cn,zxu@mcs.suffolk.edu

Abstract
With the developments of network technologies, many mech-
anisms have been introduced to improve system performance
in cluster systems by exploiting remote idle memory. How-
ever, none of them can satisfy the requirements from dif-
ferent applications. Most methods can only improve the
performance of a particular type of applications but not
for others. One important reason is they failed to provide
unified interfaces. In this paper, we propose Collaborative
Memory Pool (CMP) to solve this problems. CMP brings
scalability and high performance. It has five features: 1)
Providing malloc-like interfaces, block device interfaces and
kernel API for different applications, which benefit both user-
level and kernel-level applications; 2) Retaining traditional
VM mechanism, programmers and uses have the freedom
to select CMP or not; 3) Improving kernel applications per-
formance by eliminating remote swapping; 4) Avoiding loan

while in debt problem with dynamic workload; 5) Providing
optional memory servers to further improve performance.
In our testbed with CMP-based swap devices, Qsort gets
83.28% improvement comparing with the case using disk-
based swap devices.

1. INTRODUCTION
Cluster systems have been widely used in commercial

data centers. Unlike those used in high performance com-

puting environments, which take performance as their first

priority, these clusters have to balance between cost and

performance. In general, those clusters consist of ordinary

computers don’t have large memory and storage space. As a

consequence, in some cases, memory resource on one node

can’t satisfy application requirements. Therefore, some

nodes have to frequently swap in and out data. At the same

time, in those systems, memory space on some other nodes

are idle. This phenomenon results in uneven utilization of

system memory and degrade system performance[1].

Many researches have been conducted on improving the

memory utilization on cluster systems. These efforts can be

divided into two categories: the first one is trying to evenly

distribute the requests to achieve load balancing, which is be-

yond our paper. The second one is trying to build distributed

sharing memory to exploit remote idle memory. In this case,

remote idle memory can be plugged into traditional mem-

ory hierarchy as shown in Figure 1. It is admitted that the

usage of remote memory can fill the widening performance

Register

Cache

Memory

Disk swap

Register

Cache

Local memory

Remote memory

Disk swap

Figure 1. Remote memory in the memory hierarchy

gap between main memory and local hard disk through to-

day’s high-speed, low-latency network. Previous strategies

and implementation [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

provided many feasible mechanisms to increase memory

utilization, but complexities inherited in traditional network

and consistency protocols counteract their advantages. Also,

the lack of flexible interfaces limits their usage for end-

users and developers. For instance, most of these mecha-

nisms only support either computing-intensive applications

or data-intensive applications. No single system can ful-

fill the requirements of both applications. Moreover, to-

day’s kernel applications have higher and higher memory re-

quirements, but those mechanisms failed to provide enough

support. Clearly, a new memory collaboration strategy is

needed.

With widely deployment of today’s new generation net-

works, such as 10GbE and InfiniBand, it’s feasible to create

an efficient protocol to bundle memory spaces located on

different nodes together as a resources pool. In case one

node uses all of its local memory, it can utilize memory in

other machines at low cost. Many popular memory hungry

applications, such as multimedia, geographical information

processing, etc. will benefit from this.

In this paper, we propose Collaborative Memory Pool

(CMP) for this propose. Figure 2 introduces the structure of

CMP system.

CMP has the features listed as following:

Flexible interface CMP has rich interfaces for applications

either computing-intensive or data-intensive, either user-

level or kernel-level. Malloc-like calls are used to

malloc()memory from and free() them to CMP.

Meanwhile, virtual disks can be built over CMP mem-

ory. Those disks can host file systems, or be used for

swapping. Kernel APIs are provided so that kernel-

level applications can use remote memory to improve

performance as well;

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Application

malloc

Node1

Application

Swap space

CMP Block Device

Node2

Application

File System

CMP Block Device

Node3

Kernel Application

Kernel API

Node4

CMP

manager
Node 2 memory

Node 1 memory

Node 3 memory

Node 4 memory

Memserver File System
(Optional)

Node 1 memory

Node 2 memory

Node 3 memory

Node 4 memory

Node 1 occupied

Node 2 occupied

Node 3 occupied

Node 4 occupied

Node 1 occupied

Node 2 occupied

Node 3 occupied

Node 4 occupied

Figure 2. CMP Model

Complementing VM mechanism CMP is not a substitute

of traditional memory allocation mechanism. Pro-

grammers and users can choose to use CMP memory

or not. Though CMP provides huge memory space,

critical applications may get worse performance by us-

ing CMP instead of using local memory only. To avoid

this, they can bypass CMP to guarantee their behavior

and performance. Meanwhile, new applications can

choose which data can be saved to remote memory

and which data should stay local;

Eliminating swapping for kernel applications CMP allows

user-level applications access remote memory trans-

parently by Remote paging. However, the usage of

swapping in remote paging makes it a high-cost mech-

anism. For small, random accesses, reading or writing

1 byte may cause 8Kbytes (2 pages) or more data

transfers. CMP provides memcpy-like kernel APIs

to access those data segments directly, and eliminates

that cost. When kernel applications require small data

segments from CMP memory, they can select those

APIs. Only those small segments are transferred;

Avoiding loan while in debt problem In case of workload

thrashing, it is possible that some nodes loan their

local memory to others while themselves are using re-

mote memory, vice versa (nodes may borrow remote

memory while themselves have idle memory). Such a

nasty topology wastes network bandwidth and reduces

performance. We call it loan while in debt problem.

CMP’s migration algorithm guarantees that each node

tries to use its local memory to satisfy local applica-

tions at large.

Optional memory servers The structure of CMP can be

serveless, but adding memory servers is allowed. Mem-

ory servers provide large memory space by using their

file systems and disks, but have lower performance.

CMP tries to satisfy processes requirements with their

local memory first, then remote idle memory. The ac-

tivation of memory servers usually means there is no

idle CMP memory left within cluster.

The rest of this paper is organized as follows. Section

2 discusses related works. Section 3 describes the imple-

mentation of CMP in detail. Section 4 presents several

experiments to evaluate the performance of CMP. Finally,

section 5 gives out our conclusions and future work.

2. RELATED WORKS
There are many researches on pooling idle memory within

cluster systems for different purposes. They provide many

feasible mechanisms and implementations. These researches

can be classified into two categories. One is to provide large,

sharing virtual memory space for computing-intensive ap-

plications, the other is to build a storage device, that can host

file-systems or be used as swap space, over remote memory.

GMM[2] is an early attempt of exploiting remote memory

in client-server database system. In GMM, clients interact

with each other via a central server. When a client read

a page, it tries to get the page from server’s memory first.

If that page is not there, the server checks weather another

client caches it. If so, the server asks that client to forward

its copy to the reader workstation. GMM brought up a

four-level memory hierarchy: local client memory, server
memory, remote client memory, server disk. In other words,

it uses remote memory as caches of server disk. The remote

memory is shared by all clients. Due to the special data

consistency requirement in database applications, delicate

care must be taken. GMM has to sacrifice performance by

not coordinating the contents of client caches; [4] solves

this problem with algorithms requiring global knowledge of

client cache contents, however, it increases complexity.

Distributed Shared Memory (DSM)[3, 14, 15] is another

way of using remote memory. It provides a piece of virtual

address space shared among processes on loosely coupled

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

processors. DSM maps remote memory into process address

space, it seems that programmers can build their memory

intensive programs on it. But like multiprocessor caches,

DSM has to use consistency protocols as well. It also has

same problems such as complexity and low performance.

Network Block Device (NBD) [16] and its derivatives

have a totally different view on remote resource utilization.

NBD is a Linux device driver (and has been marked dep-

recated by kernel developers) that allow machines to use

remote block devices through TCP network. If remote de-

vices are ram-disks, NBD can be viewed as a mechanism

to use remote memory. NBD was proposed to substitute

NFS, but it failed because it couldn’t provide a data-sharing

model like its competitor. However, NBD can be used for

swapping purpose that original NFS cannot (there are also

some researches on swapping over NFS, like [8]), it imple-

ments Figure 1’s memory hierarchy in a direct way. Network

swapping (Nswap[12], SDNMS[13], HPBD[10] and recent

dRamDisk[17]) is an attractive idea and gets reasonable per-

formance. It groups idle memory together, then splits it into

pieces. Each node get one (or more) piece(s) and install

them as swap devices. Some of these approaches have spe-

cial memory-server while others depend on nodes donating

memory. [7, 18] still focus on building file-systems over

NBD-like remote disks under specific impetus.

However, virtual disks always have fixed capacity and

hard to stretch or shrink. They often have static provider-

and-consumer topology while serving and always need man-

ual configuration when deploying. That means with a care-

less configuration, or unpredictable workload, idle nodes

may deny offering their idle memory, even worse it may

occupy remote memory (even busy nodes’ memory) while

busy nodes painfully swapping from local disks. More-

over, in a large, complex system, with serverless structure,

sometimes nodes loan out their memory while themselves

in debt.

[19] introduces so called memory server nodes to support

remote paging. Memory servers are nodes whose memory

is used for fast backing storage. Computation nodes can

page from memory servers. When page fault occurs, oper-

ating system retrieves pages from memory servers, and in

exchange, some local pages have to be stored on servers.

With the kernel support, it can provide malloc-like inter-

face for remote memory. They can also use free() to

release remote memory when applications exit. The size

of remote memory occupied by one node is dynamical, it

varies while workload changes. However, in client/server

model, the idle memory on clients is still wasted. In fact,

adding memory servers is equal to adding low-performance

memory. Though performance is improved, the resources

utilization rate is unchanged if not worse.

GMS[6, 11] provides a serverless method for remote pag-

ing, and it solves the loan while in debt problem with its

migrating algorithm. However, GMS implementation de-

pends on specific OS — OSF/1. GMS substitutes OS’s VM

mechanism, forces applications to use remote memory even

it may reduce the performance of critical applications. The

global LRU algorithm in GMS needs the global knowledge

of pages age within cluster. The requirement of the essential

disk is nasty, results in low performance.

With the fast development of network storage technolo-

gies like iSCSI, kernel applications and devices drivers are

becoming more and more memory hungry. [20, 21] show

the significance of utilizing memory on iSCSI target; [22]

presents a remote iCache model. Such a cache must re-

side in kernel mode because of performance consideration.

However, none of above technologies can make kernel ap-

plications benefit from the utilization of remote memory.

We compare CMP with some of the existing related sys-

tems in Table1.

3. DESIGN AND IMPLEMENTATION
The CMP architecture is shown in Figure 3.

CMP manager

mapper

CMP core 1

swapper

CMP core 2

CMP core 3

CMP core 4

CMP core 5

CMP memserver Disk

Figure 3. CMP Structure

CMP consists of three parts: CMP core, CMP manager,

CMP memserver. They are connected with high speed net-

work. CMP proposes a new concept of connector which

makes it can be applied under various network conditions

conveniently.

CMP provides a set of kernel APIs. Other kernel modules

could use them directly. Two applications are constructed

based on Kernel API: mapper and swapper. Mapper offers

a malloc-like interface for user-mode programs. Swapper

provides a virtual block device. Data-intensive applications

could benefit from swapper, and computing-intensive appli-

cations could benefit form mapper.

CMP Core

Functions
CMP core is the core component of CMP. It manages

local idle memory as a part of memory pool. It contains

four main functions:

• Providing an interface to access memory pool for local

applications.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

Table 1. Comparison CMP with related system

Dynamical Potential
Sharing Memory-like Disk-like Kernel while loan while

System accessing Interface Interface Interface Serverless Serving in debt

CMP No Yes Yes Yes Optional servers Yes No

Share memory:
GMM[2] Yes No No No No No –
DSM[3] Yes Yes No No Yes Yes Yes
Memto[15] No (low level) Yes No No Yes Yes Yes

Yes (Full system)

Remote swapping:
Anemone[8] No Yes Yes No No No –
Nswap[12] No Yes No No No Yes –
SDNMD[13] No Yes Yes No No No –
HPBD[10] No Yes Yes No No No –

Remote paging:
Memserver[19] No Yes No No No Yes –
Reliable Remote
Memory Pager[11] No Yes No No Yes Yes Yes
GMS[6] Yes Yes No No Yes Yes No

• Reporting memory usage to CMP manager.

• Offering local idle memory to other CMP cores.

• Requesting remote idle memory on other nodes for

local applications.

Working mechanism
In CMP, the memory in one node is divided into two parts,

one consists of the used memory and part of idle memory, ans

this part is managed by OS. The rest memory is managed by

CMP core. Those memory on different nodes is bundled to

establish a big memory pool (called Collaborative Memory

Pool). When an application runs out of memory, it asks for

CMP’s help. CMP core in this node will find free blocks for

the application. The proceduce is transparent to user. The

application has to make an exchange, it sends a local page

to remote node and then get the free block. This strategy is

to ensure that the number of block managed by CMP core

will not decrease.

Key data structure and algorithm
CMP uses cmp block structure to describe a block. All

these blocks are linked in five lists which are free list, LLL,

LRL, RLL, RRL. Free list is a list for free blocks. The

detailed functions of other four lists are described in table 2.

Two principles should be indicated in the design of CMP

core:

• Unless all local blocks are used by local applications,

local applications will not take blocks from other re-

mote nodes.

• When releasing blocks in LLL, if LRL is not empty,

CMP core will get blocks in LRL and move back them

to LLL.

Example of allocating, accessing and freeing blocks

Table 2. LL, LR, RL, RR lists

List Name User Provider

LLL local node local node
(Local-Local list)

LRL local node Remote node
(Local-Remote list)

RLL Remote node Local node
(Remote-Local list)

RRL Remote node Remote node
(Remote-remote list)

Taken a three-node system as example, there are node

A,B and C. Node A and B offer two blocks individually and

node C provides one block. As shown in figure 4.

free list

LLL

LRL

RLL

RRL

A B C

BID:1
0x0
clean

BID:2
0x1
clean

BID:1
0x0
clean

BID:2
0x1
clean

BID:1
0x0
clean

Figure 4. The initial state

As shown in figure 5, node A requests for one block

and node B requests for two. In node A, CMP core gets a

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

free block from free list and links it at the tail of LLL. The

procedure is similar in node B.

free list

LLL

LRL

RLL

RRL

A B C

BID:2
0x1
clean

BID:1
0x0
clean

BID:1
0x0
block1

BID:2
0x1
block3

BID:1
0x0
block2

Figure 5. Node A requests for one block and node B
requests for two

In Figure 6, node B requests for one more block . CMP

core asks CMP manager to locate a free block. The manager

can return with a block on node A or C. We assume node

A is selected. Node B’s CMP core contacts with node A,

transfers the content of block 2 (the last block at LLL) to

it and node A put that block into RLL. At the same time,

node B relink block 2 to it’s LRL, the memory block it used

before belongs to block 4 now.

free list

LLL

LRL

RLL

RRL

A B C

BID:1
0x0
clean

BID:1
0x0
block1

BID:3
0x0
block4

BID:2
0x1
block3

BID:1
NodeA
RBID:2

BID:2
0x1
block2

Figure 6. NodeB requests for one more block

In Figure 7, it’s node A’s turn to request for one more

block. CMP core in node A finds that the free list is empty

and it has provided block to other node. So, it need recycle

the shared block first. It needs a free block and the manager

returns node C’s free block. CMP core then turns to node

C. After receiving acknowledgement, node A moves the

content of node B’s block 2 (node A doesn’t care who is the

host of block 2) to node C and moves its description to RRL.

In node C, it inserts it into RLL. After that, node A gets a

free block, it uses that block to fulfill its application.

free list

LLL

LRL

RLL

RRL

A B C

BID:3
0x1
block5

BID:1
0x0
block1

BID:3
0x0
block4

BID:2
0x1
block3

BID:1
NodeA
RBID:2

BID:1
0x0
block2

BID:2
NodeC
RBID:1

Figure 7. Node A requests for one more block

In figure 8, when node B accesses block 2, the LRL shows

that the wanted block resides in node A and remote BID is

2. Then node A finds that the target block is located on node

C now. It replies node B about that and deletes the related

block description from it’s RRL. Node B then turns to node

C and finally finds the target block. It will take the following

actions:

• Gets a block from the tail of LLL, which is block 3 in

our case;

• Exchanges the content in block 3 and block 2 (BID:1),

this action relinks block 3 to LRL, and makes block 2

linked to LLL. Physical memory used to hold block 3

now belongs to block 2;

• Finally, swaps the content with node C’s block to re-

trieve block 2 and puts block 3’s content to node C’s

block.

free list

LLL

LRL

RLL

RRL

A B C

BID:3
0x1
block5

BID:1
0x0
block1

BID:1
0x1
block2

BID:3
0x0
block4

BID:2
NodeC
RBID:1

BID:1
0x0
block3

Figure 8. Node B accesses block 2

In figure 9 node B wants to free block 4. It checka if

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

LRL is empty. In our case, it’s not, so it retrieves the content

of the first block in LRL back from node C, then move the

block to the tail of LLL.

free list

LLL

LRL

RLL

RRL

A B C

BID:1
0x0
clean

BID:3
0x1
block5

BID:1
0x0
block1

BID:1
0x1
block2

BID:2
0x0
block3

Figure 9. Node B frees block 4

CMP Manager
CMP manager is a user-mode program whose function

is to locate free memory blocks. Every node connects to

the manager and registers its quantity of free memory of-

fered to CMP. Then the manager records all the information

of connections and computing nodes and memory servers.

When computing nodes request for memory, the manager

looks for idle memory by polling and responds to nodes

which have idle memory. According to the information re-

turned from manager, CMP cores on the computing nodes

communicate with those nodes. The manager does not need

to perform complicated computation and avoids heavy data

transfer. Therefore it can be deployed in either computing

or memory servers nodes.

Memory Server
Memory servers could be considered as normal nodes

with plenty of idle memory. In CMP architecture, memory

servers are optional. However, memory servers can offer

high capacity virtual memory based on disks. Meanwhile,

in order to take full advantage of memory resources, mem-

ory servers offer storage space through filesystems. Linux

filesystems optimize disks accesses with page buffers and

write-back technology, keep disk’s content into memory to

improve performance of read and write system calls[23, 24].

On the contrary, accessing block device directly in [6, 9] can

not benefit from these technologies.

Connector
Connector defines an abstract layer offering connect func-

tion in CMP. Different types of connectors are implement

to provide a unified interface over different networks such

as TCP/IP and InfiniBand without modifying core code in

CMP. Connector’s interfaces mirror UNIX socket’s inter-

faces.

Kernel API
CMP provides two types of kernel APIs. The first one

is based on remote paging (using CMP core), the other

bases on direct accessing. When kernel application needs

CMP memory, it can choose to retrieve the whole page

by remote paging or to retrieve only the requested data by

direct accessing. Direct accessing provides memcpy-like

interface. It grabs only required data to specified kernel

buffer, and keeps the whole page remotely. It is mush faster

than remote paging which must pull the whole page back

and push another page out.

Swapper and Mapper
Swapper and mapper are two kernel applications based

on CMP. Swapper maps memory in CMP into virtual block

devices. Applications can create filesystems on them or use

block devices as swapping partitions. Mapper implements

the mmap() system call to offer an malloc-like interface to

applications. Applications can use CMP’s memory like local

physical memory.

4. EVALUATION

Experiments Setup
The experiments are conducted on three Dell PowerEdge

SC430 nodes called dell-172, dell-175, dell-176. They are

configured with Intel(R) Pentium(R) CPU 2.80GHz with

1024KB cache, 2GB memory and PCI-X 133MHz buses.

They are connected by both Gigabit Ethernet and InfiniBand

network with IB driver of IBG2. Two disks resides on the

nodes, one is seagate 40GB, the other is 80GB SATA disk

that is manufactured by Westdigit. The operating system is

SUSE 10.0 with Linux kernel 2.6.13.

Software are configured as following: Manager resides

on dell-172. CMP runs on all three nodes. Both dell-

172 and dell-175 contribute 512M memory to pool, and the

contribution of dell-176 is a variable that will be specified in

experiments. All the experiments are conducted on dell-176

without memory server in our system.

Experiments Tools

Qsort
Qsort can be used to evaluate performance of memory-

intensive applications. It uses the code in Linux kernel

(2.6.11.12) XFS (the code can be found in kernel source

tree: fs/xfs/support/qsort.c) in user mode. Qsort benchmark

can perform large in-memory sorting with quick-sort algo-

rithm. The data array is initially ordered, Qsort sorts it into

reverse ordered. The time complexity of quick-sort algo-

rithm is O(N log N), but with ordered initial data, quick-

sort is actually bubble sort, and its time complexity becomes

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

O(n2). With ordered initial data, the result in different sort-

ing is comparable and analysable. In each experiment, It

does three sorts and calculates the average processing time.

In the following experiments, we use Qsort to sort 1GB

data (134217728unsigned long integers in x86 64 ma-

chine).

IOzone
IOzone is a filesystem benchmark which generates and

measures a variety of file operations. IOzone is very useful

for performing a broad filesystem analysis on a vendor’s

platform. The benchmark tests I/O performance for the

following operations: Read, write, re-read, re-write, read

backwards, read strided, fread, fwrite, random read, pread

,mmap, aio read, aio write.

Performance Evaluation

Qsort result
We run Qsort in three scenarios: system memory with

disk swap, CMP memory (512MB local and 512MB re-

mote) with mapper and system memory with swapper as

swap partition. Results in Figure 10 show that the average

processing time in the three cases were 1008s, 168s, 687s.

Mapper performs the best, it can achieve 83.28% improve-

ment. While swapper’s performance is a little poorer, it still

runs 1.5 times faster than using disk swap.

Figure 10. Qsort run time of memory with mapper, swap-
per and disk

IOzone result
In IOzone test, we use swapper as a block device, with

ext3 filesystem on it, and then run IOzone on it.

The result of IOzone is not very promising. We list

two figures here. Figure 11 is the result when the size of

IOzone’s test file is 512MB and accessing size is 16KB. In

figure 12, the size of IOzone’s test file is 1GB and accessing

size is 16KB, too. From the results, we observe that the

performance of swapper is close to disk.

Figure 11. IOzone result when testing 1GB file

Figure 12. IOzone result when testing 512MB file

CMP’s data access protocol is based on “swap”, which

means if we want to read or write a remote data block, CMP

will send a block out and retrieve the full excepted block

(in our implementation, block size is 4KB) even the wanted

data is just 512 bytes. Furthermore, in QSort experiments,

local memory acts as caches and cache hit rate is very high

(nearly 70% in our experiments). But in IOZone, the local

cache’s hit rate is very poor. For above reasons, IOZone test

result is not satisfied.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduce a new mechanism to exploit

idle memory in cluster system — CMP. Compared with

old methods, CMP has many advantages. First, CMP has

flexible interfaces that benefit both computing-intensive and

data-intensive applications, both user-level applications and

kernel-level applications. Second, CMP is Complemen-

tary to traditional VM mechanism, letting programmers and

users to decide whether to use CMP memory or not, offers

flexibility. Furthermore, CMP eliminates remote swapping

in kernel applications, which reduces accessing cost. CMP

also solves the loan while in debt problem with its migration

algorithm. Finally, CMP has an optional memory servers
structure that also increases flexibility.

We conducted experiments with QSort, the results show

that CMP is practical. The performance improvement is

great, it gains 83.28% improvement comparing with disk-

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

based swap. However, IOZone experiments show that in

some scenarios, the performance of CMP is not as good

as expected. We have explained the reasons of that. We

believe with the “direct access” protocol, CMP can boost

such applications as well as Qsort. In our future work, we

will conduct those experiments to verify this protocol. We

also intend to investigate designs that can eliminate copy and

synchronization cost with zero-copy RDMA operations.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science

Foundation Grant CNS-0509207 and National Basic Re-

search Program of China (973 Program) 2004CB318202.

We gratefully acknowledges the support of K. C. Wong Edu-

cation Foundation, Hong Kong. We would also like to thank

the anonymous reviewers for their valuable comments.

REFERENCES

[1] A. Acharya and S. Setia, “Availability and utility of

idle memory in workstation clusters,” ACM
SIGMETRICS Performance Evaluation Review, 1999.

[2] M. J. Frankling, M. J. Carey, and M. Livny, “Globla

memory management in client-server dbms

architectures,” in Proceeding of the 18th VLDB
Conference, Aug. 1992.

[3] Kai Li and Paul Hudak, “Memory coherence in

shared virtual memory systems,” ACM Trans.
Comput. Syst., vol. 7, no. 4, pp. 321–359, 1989.

[4] A. Leff, J. L. Wolf, and P. S. Yu, “Replication

algorithms in a remote caching architecture,”

Parallel.and.Distributed.Systems,.IEEE
Transactions.on., vol. 4, no. 11, pp. 1185–1204, 1993.

[5] E. A. Anderson and J. M. Neefe, “An exploration of

network ram,” Tech. Rep. CSD-98-1000, UC Berkley,

Dec. 1994.

[6] M. Joseph Feeley, W. E. Morgan, F. H. Pighin, A. R.

Karlin, H. M. Levy, and C. A. Thekkath,

“Implementing global memory management in a

workstation cluster,” ACM SIGOPS Operating
Systems Review, pp. 201–212, 1995.

[7] M. D. Flouris and E. P. Markatos, “The network

ramdisk: Using remote memory on heterogeneous

nows,” Cluster Computing, vol. 2, no. 4, pp. 281–293,

1999.

[8] M. R. Hines, M. Lewandowski, and K. Gopalan,

“Anemone: Adaptive network memory engine,” M.S.

thesis, Florida State University, 2003.

[9] S. Koussih and S. Setia A. Acharyam, “Dodo:a

user-level system for exploiting idle memory in

workstation clusters,” in Proceeding of the Eighth
IEEE International Symposium on High Performance
Distributed Computing, 1999.

[10] S. Liang, R. Notonha, and D. K. Panda, “Swapping to

remote memory over infiniband: An approach using a

high performance network block device,” IEEE
Cluster Computing, Sept. 2005.

[11] E. P. Markatos and G. Dramitions, “Implementation

of a reliable remote memory pager,” in Proceeding of
the 1996 Usenix Technical Conference, 1996.

[12] T. Newhall, S. Finney, K. Ganchevm, and M. Spiegel,

“Nswap:a network swapping module for linux

clusters,” in Proceeding of Euro-Par’03 International
Conference on Parallel and Distributed Computing,

Klagenfurt, Austria, Aug. 2003.

[13] H. Tang Sun, M. Chen, and J. Fan, “A scalable

dynamic network memory service system,” in

Proceeding of High-Performance Computing in
Asia-Pacific Region, 2005.

[14] B. Nitzberg and V. Lo, “Distributed shared memory:

a survey of issues and algorithms,” Computer., vol.

24, no. 8, pp. 52–60, 1991.

[15] T. S. Trevisan, V. S. Costal, L. Whately, and C. L.

Amorim, “Distributed shared memory in kernel

mode,” in Proceeding of Computer Architecture and
High Performance Computing, 2002.

[16] P. Machek, “Network block device (tcp version),”

http://nbd.sourceforge.net/.

[17] V. Roussev, G. Richard, III, and D. Tingstrom,

“dramdisk: efficient ram sharing on a commodity

cluster,” in Performance, Computing, and
Communications Conference, 2006. IPCCC 2006.
25th IEEE International, 2006.

[18] Yun Mao, Youhui Zhang, Dongsheng Wang, and

Weimin Zheng, “Lnd: a reliable multi-tier storage

device in now,” SIGOPS Oper. Syst. Rev., vol. 36, no.

1, pp. 70–80, 2002.

[19] L. Iftode, K. Li, and K. Petersen, “Memory servers

for multicomputers,” in Proceeding of the IEEE
Spring COMPCON 93, Feb. 1993, pp. 538–547.

[20] X. He, Q. Yang, and M. Zhang, “A caching strategy to

improve iscsi performance,” in Proceeding of Local
Computer Networks, 2002.

[21] Jizhong Han, Dan Zhou, Xubin He, and Jinzhu Gao,

“I/O profiling for distributed ip storage systems,” in

Proceeding of The Second International Conference
on Embedded Software and Systems, Dec. 2005.

[22] Xuhui Liu, Nan Wang, Guozhong Sun, Jizhong Han,

Lisheng Zhang, and Chengde Han, “Remote iscsi

cache on infiniband: An approach to optimize iscsi

system,” icppw, vol. 0, pp. 527–534, 2006.

[23] Daniel P. Bovet and Marco Cesati, Understanding the
Linux Kernel, O’Reilly, 3rd edition, 2005.

[24] Robert Love, Linux Kernel Development, Sams

Publishing, 2nd edition, 2005.

2007 International Conference on Parallel Processing (ICPP 2007)
0-7695-2933-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

