
Fast Source Switching for Gossip-based Peer-to-Peer Streaming

Zhenhua Li 1,2, Jiannong Cao 2, Guihai Chen 1, and Yan Liu 2

1 State Key Lab for Novel Software Techonology, Nanjing University, China
2 Internet and Mobile Computing Lab, Hong Kong Polytechnic University

lizhenhua@dislab.nju.edu.cn, csjcao@comp.polyu.edu.hk, gchen@nju.edu.cn, and csyliu@comp.polyu.edu.hk

Abstract

In this paper we consider gossip-based Peer-to-Peer

streaming applications where multiple sources exist and

they work serially. More specifically, we tackle the prob-

lem of fast source switching to minimize the startup delay

of the new source. We model the source switch process and

formulate it into an optimization problem. Then we propose

a practical greedy algorithm that can approximate the op-

timal solution by properly interleaving the data delivery of

the old source and the new source. We perform simulations

on various real-trace overlay topologies to demonstrate the

effectiveness of our algorithm. The simulation results show

that our proposed algorithm outperforms the normal source

switch algorithm by reducing the source switch time by

20%-30% without bringing extra communication overhead,

and the reduction ratio tends to increase when the network

scale expands.

1 Introduction

In general, existing Peer-to-Peer (P2P) streaming sys-

tems can be classified into two categories: tree-based and

gossip-based. The gossip-based method is often named as

mesh-based. Tree-based systems [1,2,7,11] organize nodes

into a multicast tree. The root of the tree is the media

source and data segments are always delivered from par-

ent to children. Tree-based method can minimize redun-

dant data delivery and ensure full coverage of data dissemi-

nation, but cannot well adapt to network dynamics because

the failure of a single node will partition the tree to a for-

est. Gossip-based systems have been proved to be effec-

tive and resilient especially in dynamic and heterogeneous

network environments. In a typical gossip algorithm [4],

every node maintains a limited number of neighbors and

sends a newly generated or received data segment to a ran-

dom subset of its neighbors. The random choice of data

forwarding targets achieves high resilience to random fail-

ures and enables distributed operations. However, direct

use of gossip for streaming is ineffective because its ran-

dom push may cause significant redundancy. As a result,

existing gossip-based P2P streaming systems, e.g. Cool-

Streaming [10], PeerStreaming [5] and AnySee [6], adopt a

smart pull-based gossip algorithm: every node periodically

exchanges data availability information with its neighbors

and then retrieves required data segments from a subset of

its neighbors.

A gossip-based P2P streaming system may have one

source or multiple sources which disseminate data segments

to other nodes. For a multiple-source system, the sources

may work serially or in parallel. For example, in a video

conferencing system or a distance education system, every

member can become the streaming source but there is usu-

ally only one source (that is the speaker) at a time so the

sources work serially. In this paper we consider gossip-

based P2P streaming applications where multiple sources

exist and they work serially. In this scenario, one criti-

cal problem is how to make the source switch process fast,

that is to say, how to minimize the startup delay of the new

source.

��
��

��
��

��
��

��� �� �	
����� ��� ��� ��	�� ����� �
�� �� 	� ��

��� �� �	
�����

�� ��	� ������	� �
�� 	�� ���
���
��� ��

�� ��	� ������	� �
�� 	�� ���
���
��� ��

Figure 1. A source switch process from the
old source S1 to the new source S2.

Figure 1 demonstrates a source switch process. It is

composed of three phases. (a) At first the old source S1

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.21

17

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

was streaming its contents and every node was receiving

and playing the data segments of S1. (b) Then S1 stopped

streaming and the new source S2 started streaming. Both

the data segments of S1 and S2 were being disseminated

amongst all the non-source nodes. (c) Finally every node

had finished the whole playback of S1, and only the data

segments of S2 were being disseminated in the system. Ob-

viously, the source switch problem is essentially how to

minimize the duration of phase (b). More specifically, we

need to design a proper source switch algorithm for every

node to minimize its playback start time (or says the startup

delay) of S2, on condition that a node can start its playback

of S2 only when 1) it has finished the whole playback of S1,

and 2) it has gathered sufficient data segments of S2.

In this paper we first model the source switch process by

capturing its essential features, formulate the source switch

problem into an optimization problem, and deduce the opti-

mal solution to this optimization problem. Then we propose

a practical greedy algorithm, named fast switch algorithm,

that can approximate the optimal solution by properly in-

terleaving the data delivery of the old source and the new

source. This algorithm is triggered and executed by every

node independently and it relies on only local computation.

We have done comprehensive simulations on various

real-trace overlay topologies, scaling from 100 to 10000

nodes, to demonstrate the effectiveness of our algorithm.

The simulation results show that our proposed fast switch

algorithm outperforms the normal switch algorithm by re-

ducing the source switch time by 20%-30% without bring-

ing extra communication overhead, and the reduction ratio

tends to increase when the network scale expands. The nor-

mal switch algorithm does not interleave the data delivery

of the old source and the new source. Instead, it always

gives priority to the data delivery of the old source. The

example in Figure 2 shows the difference between the two

algorithms. The current node can receive 7 data segments

per scheduling period but there exist 10 available data seg-

ments, 5 of S1 and 5 of S2. Each algorithm arranges the

order of data delivery according to its own computation of

the data priorities.

� � � �

! " # $ �%

� � � � ! "

� ! " � # $ �

&'������ ��	� ������	� �� ��

&'������ ��	� ������	� �� ��

(��	 ��	�� ����
	��

)�
��� ��	�� ����
	��

Figure 2. A comparison of our fast switch al-
gorithm and the normal switch algorithm.

Our contributions can be summarized as follows:

1. To the best of our knowledge, we are the first to inves-

tigate the source switch problem of gossip-based P2P

streaming. We model the source switch process and

formulate it into an optimization problem.

2. We propose a practical greedy algorithm that can ap-

proximate the optimal solution by properly interleav-

ing the data delivery of the old source and the new

source.

3. We demonstrate the effectiveness of our proposed al-

gorithm through comprehensive simulations on vari-

ous real-trace overlay topologies.

The rest of this paper is organized as follows. Section 2

overviews related work. Section 3 models the source switch

process. Section 4 presents our proposed fast source switch

algorithm and we evaluate its performance by simulation in

Section 5. Finally, we conclude the paper and point out the

future work in Section 6.

2 Related Work

Existing gossip-based P2P streaming systems optimize

some performance aspects like playback continuity, startup

delay, bandwidth utilization, and so on. Our work optimizes

the source switch time, which is the startup delay of the new

source. Such optimization is different from the traditional

optimization of startup delay because it takes into consider-

ation the playback requirements of both the old source and

the new source. Besides, since our proposed algorithm ac-

celerates the source switch process, it indirectly increases

the playback continuity and bandwidth utilization.

CoolStreaming [10] utilizes the gossip-based member-

ship protocol [4] to construct a practical and resilient

streaming system. It provides support of multiple sources

but exhibits little description about its source switch mech-

anism. The P2P live streaming system AnySee [6] employs

locality-aware and inter-overlay optimizations to improve

performance aspects like startup delay, source-to-end delay,

etc. However, we have not seen its consideration of source

switch methods.

Zhang et al. [9] observe that pure-pull method in P2P

streaming brings tremendous latency and thus propose a

push-pull system called GridMedia. They classify the

streaming packets into pulling packets and pushing pack-

ets. A pulling packet is delivered by a neighbor only when

the packet is requested, while a pushing packet is relayed

by a neighbor as soon as it is received. The main goal of

GridMedia is to reduce latency and it has the extra effect of

accelerating the source switch process. However, pushing

packets would bring considerable communication overhead.

Xu et al. [8] consider the problem of media data assign-

ment for a multi-supplier P2P streaming session. Given a

18

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

requesting peer and a set of supplying peers with hetero-

geneous out-bound rates, their algorithm, named OTSp2p,

computes optimal media data assignments for P2P stream-

ing sessions to achieve minimum buffering delay and thus

to reduce the startup delay. But OTSp2p has very strict

assumptions that can hardly hold in practical gossip-based

P2P streaming systems.

3 Model the Source Switch Process

Since the P2P streaming system we consider is fully dis-

tributed, a node does not know the source switch process

until it discovers data segments of a new source in its neigh-

bors, that is to say, the source switch algorithm assumes no

knowledge on the ordering of the sources’ sessions. When

a node discovers the new source it triggers its source switch

algorithm to execute and then re-executes the algorithm per

scheduling period until it finishes the whole playback of the

old source. We assume there exists a mechanism for syn-

chronizing the old source S1 and the new source S2 so that

S2 knows when S1 finishes streaming and adds the id of

S1’s ending segment into S2’s first several data segments to

notify the other nodes. Such synchronization mechanism is

out of this paper’s range so we do not address it here.

The parameters used in modeling the source switch pro-

cess are shown in Table 1. We use Figure 3 to visualize

these parameters. The stream from S1 is played once Q

consecutive data segments of S1 have been gathered, but the

stream from S2 is started to play when the first Qs data seg-

ments of S2 have been gathered. In a practical P2P stream-

ing system usually Qs is configured much bigger than Q to

guarantee a smooth startup of the new source. The total in-

bound rate I is a constant and I is divided into I1 and I2 to

receive data segments of S1 and S2 respectively. I1 and I2

are dynamically configured by the source switch algorithm.

*�

*�

*�

��

��

��

�� ��+

	�� ��� �� ��

���,
*

���� 	��
���,���- �� ��

�	�
	 	��
���,���- �� ��

���,

���,

Figure 3. The time sequence graph corre-
sponding to our model.

The problem of fast source switching can be formulated

into the following optimization problem:

Table 1. Model parameters
Param Description

S1 The old source.

S2 The new source.

Q The stream from S1 is played once Q consecu-

tive data segments of S1 have been gathered.

Q1 The number of undelivered data segments of

S1.

Qs The number of required data segments of S2 to

start the playback of S2.

Q2 The number of undelivered data segments of S2

to start the playback of S2. Initially Q2=Qs.

p The number of segments being played per sec-

ond.

I Total inbound rate of the local node. The rate is

measured by the number of data segments per

second. I is a constant.

I1 The inbound rate allocated to receive data seg-

ments of S1. I1 is dynamically configured.

I2 The inbound rate allocated to receive data seg-

ments of S2. I2 is dynamically configured.

T1 The expected time to receive all the undelivered

data segments of S1.

T ′

1 The expected time to finish the playback of S1.

T2 The expected time to receive the first Qs data

segments of S2.

Minimize T2

subject to the following conditions:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I = I1 + I2;

T1 = Q1

I1

;

T ′

1 = T1 + Q
p
;

T2 = Q2

I2

;

T2 ≥ T ′

1;

The conditions can be rewritten as⎧⎨
⎩

T ′

1 = Q1

I1

+ Q
p
;

T2 = Q2

I−I1

;

T2 ≥ T ′

1;
So we get the inequality

Q2

I − I1
≥

Q1

I1
+

Q

p
; (1)

which can be rewritten as

I2
1 + (

p(Q1 + Q2)

Q
− I)I1 −

pIQ1

Q
≥ 0; (2)

Solving the above inequality, we have the following

I1 ≥ r1 or I1 ≤ r′1; (3)

19

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

r1 =
I − p(Q1+Q2)

Q
+

√
(p(Q1+Q2)

Q
− I)

2
+ 4pIQ1

Q

2
(4)

r′1 =
I − p(Q1+Q2)

Q
−

√
(p(Q1+Q2)

Q
− I)

2
+ 4pIQ1

Q

2
(5)

Clearly r′1 < 0 and thus r′1 is not a reasonable solution.

I1 ≥ r1 is the only solution. Therefore, in order to mini-

mize T2 we let I1 = r1 and I2 = r2 = I − r1, which is the

optimal solution to the optimization problem.

4 Fast Source Switch Algorithm

The ideal condition for achieving the optimal solution

does not always hold when applied to practical systems be-

cause the real environments usually involve more compli-

cated constraints. Therefore, we need a practical source

switch algorithm that can approximate the optimal solution.

)�

��

)�

��

)�

��

)�

��

.

.� .�

�������

Figure 4. The local working environment of a

node.

Figure 4 demonstrates the local working environment of

a node. The local node has neighbors N1, N2, N3, N4 with

outbound rate o1, o2, o3, o4 respectively. Suppose O1 is the

total available outbound rate for the data delivery of S1 and

O2 is the total available outbound rate for the data delivery

of S2, then the optimization problem in Section 3 changes

to:

Minimize T2

subject to the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 + I2 ≤ I;
I1 ≤ O1;
I2 ≤ O2;

T1 = Q1

I1

;

T ′

1 = T1 + Q
p
;

T2 = Q2

I2

;

T2 ≥ T ′

1;

Under the above conditions, the solution I1 = r1, I2 =
r2 we get in Section 3 can only hold when r1 ≤ O1 and

r2 ≤ O2. r1 is defined in the equation (4) and r2 = I − r1.

Therefore, when r1 > O1 or r2 > O2 we try to maximize

the inbound throughput of the local node. Then the solu-

tions become:

• Case 1: when r1 ≤ O1 and r2 ≤ O2, then I1 =
r1, I2 = r2;

• Case 2: when r1 ≤ O1 and r2 > O2, then I1 =
min(O1, I − O2), I2 = O2;

• Case 3: when r1 > O1 and r2 ≤ O2, then I1 =
O1, I2 = min(O2, I − O1);

• Case 4: when r1 > O1 and r2 > O2, then I1 =
O1, I2 = O2;

Now the critical problem is how to compute O1 and O2,

more exactly, to compute the two sets O1 and O2, where

O1 = |O1| and O2 = |O2|. Data segments in O1 are in de-

scending order of their priorities and O2 is alike. Required

parameters for our algorithm are listed in Table 2.

Table 2. Parameters for our algorithm
Param Description

τ Data scheduling period.

idi The id of data segment Di.

ni The number of neighbors that can supply the

data segment Di.

Rij
The receiving rate of segment Di from the jth

neighbor.

Ri The maximum receiving rate of segment Di.

idplay The id of the segment being played at this mo-

ment.

idend The id of the ending segment of S1.

idbegin The id of the beginning segment of S2. We set

idbegin = idend + 1.

ti The expected deadline left time of segment Di.

B Buffer size, i.e. the number of data segments

Buffer can accommodate.

pij
Segment Di’s position in the jth neighbor’s

buffer. The replacement strategy of Buffer is

FIFO, and the position is the distance from the

tail of Buffer.

urgencyi The urgency of segment Di, i.e. the probability

of Di to miss its deadline.

rarityi The rarity of segment Di, i.e. the probabil-

ity that Di will be replaced in all its suppliers’

buffers.

priorityi The requesting priority of segment Di. It takes

both urgency and rarity into consideration.

Taking both the urgency and rarity of each data segment

into consideration, a data segment Di’s requesting priority

is computed through equations (6) to (9).

20

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

Ri = max{Ri1 , Ri2 , · · · , Rini
} (6)

ti =
idi − idplay

p
−

1

Ri

then urgencyi =
1

ti
(7)

Segment i’s rarity is the probability it will be replaced in

all its suppliers’ buffers, which we think is more reasonable

than the traditional computation rarityi = 1
ni

.

rarityi = (
pi1

B
) × (

pi2

B
) × · · · × (

pini

B
) (8)

And finally, priorityi = max{urgencyi, rarityi} (9)

Having got each segment’s priority, our proposed fast

source switch algorithm is able to compute O1, O2 and then

arrange the data retrieval process, see Algorithm 1. The data

segments are sorted in the descending order of their priori-

ties. Usually the data segments of S1 and S2 are mixed in

this order. Suppose the order is like D1, D2, D3, · · · , Dm.

For a segment Di, there may exist several neighbors who

can supply it, and usually the neighbor who can send it earli-

est will become Di’s supplier. But here we encounter a con-

flict problem where two segments choose the same supplier,

so one of them needs to wait or choose another supplier. The

problem is: how to choose a proper supplier for every data

segment so that the number of segments missing deadlines

or being replaced can be the minimal? In fact, even a simple

special case of this problem is NP-hard (known as the Par-

allel machine scheduling problem [3]), so we use a greedy

algorithm trying to get high-priority segments as early as

possible. In this algorithm, the scheduler makes greedy ef-

forts to minimize the expected receiving time tmin of every

data segment. For a data segment Di, the scheduler checks

all its suppliers to find a proper supplier which can send Di

earliest.

After getting O1 and O2, the computation of I1 and I2

follows one of the four cases described formerly. And the

data retrieval is straightforward.

5 Performance Evaluation

5.1 Simulation Methodology

To evaluate the performance of our algorithm we per-

form simulations on 30 real-trace P2P overlay topologies

whose data was collected from Dec. 2000 to Jun. 2001

on dss.clip2.com (this web site is unavailable now). The

data contains each node’s ID, IP, host name, port, ping time,

speed and so on, but we just use the ID, IP and ping time

information. The trace topologies scale from 100 to 10000

nodes. Because their average node degree is too small for

media streaming, we add random edges into each overlay to

let every node hold M=5 connected neighbors. According

Algorithm 1 Fast Source Switch Algorithm

1: Input:

2: Data segments D1, D2, D3, · · · , Dm, in descending or-

der of priority;

3: Supplier set for each segment: S1, S2, S3, · · · , Sm;

4: Sending rate of node j: R(j);

5: Queuing time of node j: τ(j), initially τ(j) = 0;

6:

7: Step 1: Computing O1 and O2

8: for i = 1 to m do

9: set segment Di’s earliest receiving time tmin = ∞;

10: suppose Si contains k suppliers Si1 , Si2 , · · · , Sik
;

11: for j = 1 to k do

12: compute the expected transfer time of Di from

Sij
: ttrans = 1

R(Sij
) ;

13: if ttrans+τ(Sij
) < tmin and ttrans+τ(Sij

) < τ

then

14: tmin ← ttrans + τ(Sij
); supplieri ← Sij

;

15: end if

16: end for

17: if supplieri �= null then

18: τ(supplieri) ← tmin;

19: add Di to its corresponding set O1 or O2;

20: end if

21: end for

22:

23: Step 2: Arranging Data Retrieval

24: compute I1 and I2 according to O1, O2, r1 and r2;

25: retrieve the first I1 data segments of O1;

26: retrieve the first I2 data segments of O2;

to our simulation experience, M=5 is usually a good prac-

tical choice and using a larger M cannot bring more ben-

efit. The default streaming rate is 300 Kbps and each data

segment contains 30 Kb, so the playback rate p= 300Kb
30Kb

=10.

Each node maintains a Buffer of 600 data segments. We

randomly arrange inbound rate (from 300 Kbps to 1 Mbps)

to each node and let the average inbound rate be 450 Kbps,

i.e. I ∈ [10, 33] and I=15 in average. The arrangement of

outbound rate is alike. An exception is that the source node

has zero inbound rate and much larger outbound rate. The

data scheduling period τ=1.0 second.

For each simulation, we first let the system run for a

sufficient period of time to enter its stable phase, and then

stop S1 from generating new data segments and meanwhile

choose a new source S2 to generate new data segments.

Therefore, in all the following paragraphs the simulation

time “0” means the time when S1 stops and S2 starts. The

stream from S1 is played once Q=10 consecutive data seg-

ments of S1 have been gathered. The total number of re-

quired data segments of S2 to start the playback of S2 is

Qs=50.

21

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

We compare the performances of our fast switch algo-

rithm with the normal switch algorithm. The normal switch

algorithm works as follows: for a node n when its neigh-

bors can supply data segments of both S1 and S2, node n

would retrieve data segments of S1 in priority. If n still has

available inbound rate after retrieving data segments of S1,

it would allocate the remaining inbound rate to retrieve data

segments of S2.

5.2 Metrics

We mainly use the following three metrics to evaluate

the performance of our fast switch algorithm:

1. Average preparing time of S2 (= Average switch time)

means the average time for all nodes to prepare suffi-

cient data segments of S2 to start the playback of S2.

2. Reduction ratio means the reduction ratio of average

source switch time by using the fast switch algorithm

compared with using the normal switch algorithm.

3. Communication overhead: For every scheduling pe-

riod each node exchanges buffer information with its

neighbors. Communication overhead is defined as the

ratio of communication cost for buffer information ex-

change over the real communication cost for data seg-

ments transfer.

We also measure some supplementary metrics which can

help to understand the source switch process. The sup-

plementary metrics include: (1) Undelivered ratio of S1

(= Q1

Q0

) means the ratio of the undelivered data segments of

S1 currently (Q1) to the undelivered data segments of S1 at

time “0” (Q0). (2) Delivered ratio of S2 (= Qs−Q2

Qs
) means

the ratio of the delivered data segments of S2 (Qs − Q2) to

the total required data segments of S2 to start the playback

of S2 (Qs). (3) Average finishing time of S1 (= T ′

1) means

the average time for all nodes to finish the playback of S1.

5.3 Simulation Results in Static Environ-
ments

We first track the undelivered ratio of S1 and delivered

ratio of S2 of our fast switch algorithm and the normal

switch algorithm in a static network environment with 1000

nodes. From Figure 5 we can see that the normal switch al-

gorithm gathers the undelivered data segments of S1 more

quickly than the fast switch algorithm but prepares suffi-

cient data segments to start the playback of S2 more slowly.

By using the normal switch algorithm, the last node finishes

S1 at time 15 but prepares S2 at time 24. Note that the last

node that finishes S1 is usually different from the last node

that prepares S2. Meanwhile, by using the fast switch al-

gorithm, the last node finishes S1 and prepares S2 both at

time 18. So we can find the fast switch algorithm brings

on a “compromise” between the speeds of gathering data

segments of S1 and S2, and thus makes the whole source

switch process faster.

We further examine the average finishing time of S1 and

average preparing time of S2 of overlay networks with dif-

ferent sizes, ranging from 100 to 8000, working in static

network environments. The bar graph in Figure 6 illustrates

the results. For each size there are 4 bars corresponding to

(from left to right): 1) the average finishing time of S1 by

using the normal switch algorithm; 2) the average finish-

ing time of S1 by using the fast switch algorithm; 3) the

average preparing time of S2 by using the fast switch al-

gorithm; 4) the average preparing time of S2 by using the

normal switch algorithm. The 4 bars of each size indicates

that the fast switch algorithm splits the difference between

the average finishing time of S1 and preparing time of S2

of the normal switch algorithm, and thus makes the startup

delay of the new source shorter. To illustrate the effect more

clearly, the average switch time and its reduction by using

the fast switch algorithm are shown in Figure 7. We can see

the reduction ratio lies between 0.2 and 0.3, and it tends to

increase when the network scale expands.

Besides, we measure the communication overhead of the

two algorithms in overlay networks with different sizes.

The buffer can accommodate B = 600 data segments, so

we use 600 bits to record the data availability, with bit 1

indicating this segment is available and bit 0 indicating this

segment is unavailable. The id of the first segment in the

buffer is indicated by 20 bits because the source will dis-

seminate at most 10×3600×24 = 864000 ∈ (219, 220) data

segments per day (one hour is 3600 seconds, and one day is

24 hours). Therefore, getting the buffer information of one

neighbor takes 620 bits’ communication cost in total. Ev-

ery data segment contains 30 Kb data of streaming. If every

node can get p = 10 required data segments from its neigh-

bors per second, i.e. the data delivery rate just matches the

media play rate, then the communication overhead is about
620×M

30×1024×10 = 5
495 ≈ 1%. Simulation results in Figure 8

are a little larger than 1% because in fact most nodes’ data

delivery rate cannot catch the media play rate. The commu-

nication overhead of the fast switch algorithm is a bit lower

than that of the normal switch algorithm because the fast

switch algorithm indirectly increases the bandwidth utiliza-

tion.

5.4 Simulation Results in Dynamic Envi-
ronments

To create a dynamic network environment, we randomly

let 5% old nodes leave and 5% new nodes join per schedul-

ing period. A new joining node does not need to retrieve

all the disseminated data segments from each source, and

22

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

U
nd

el
iv

er
ed

 ra
tio

 o
f S

1
Normal switch algorithm
Fast switch algorithm

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

D
el

iv
er

ed
 ra

tio
 o

f S
2

Fast switch algorithm
Normal switch algorithm

Figure 5. Ratio track in a static network with

1000 nodes.

100 500 1000 2000 4000 8000
0

5

10

15

20

25

30

35

Total number of overlay nodes

A
vg

 fi
ni

sh
in

g
/ p

re
pa

rin
g

tim
e

Normal switch algorithm: Avg finishing time of S1
Fast switch algorithm: Avg finishing time of S1
Fast switch algorithm: Avg preparing time of S2
Normal switch algorithm: Avg preparing time of S2

Figure 6. Avg finishing time of S1 and prepar-

ing time of S2 in static environments.

it just requests the data segments being played or will be

played by its neighbors. That is to say, a new joining node

starts its media playback by following its neighbors’ current

steps.

In general, simulation results in dynamic environments,

as shown in Figure 9, 10, 11 and 12, are consistent with

those in static environments.

6 Conclusion and Future Work

This paper discusses about how to minimize the delay

of source switching between two sources in P2P streaming

systems. we model the source switch process of gossip-

based P2P streaming and formulate it into an optimization

problem. Then we propose a practical greedy algorithm

that can approximate the optimal solution by properly in-

100 500 1000 2000 4000 8000
0

10

20

30

A
ve

ra
ge

 s
w

itc
h

tim
e

Normal switch algorithm
Fast switch algorithm

100 500 1000 2000 4000 8000
0

0.1

0.2

0.3

0.4

Total number of overlay nodes

R
ed

uc
tio

n
ra

tio

Figure 7. Avg switch time and its reduction

ratio in static environments.

100 500 1000 2000 4000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Total number of overlay nodes

C
om

m
un

ic
at

io
n

ov
er

he
ad

Fast switch algorithm
Normal switch algorithm

Figure 8. Communication overhead in static
environments.

terleaving the data delivery of the old source and the new

source. Simulation results confirm the effectiveness of our

algorithm. Our current work considers the application sce-

nario where multiple sources exist and they work serially.

Next step we would try to extend our work to the scenario

where multiple sources work in parallel.

7 Acknowledgements

The work is partly supported by Hong Kong RGC un-

der the CERG grant PolyU 5103/06E, China NSF grants

(60573131, 60673154,60721002), Jiangsu High-Tech Re-

search Project of China (BG2007039), and China 973

project (2006CB303000).

23

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

U
nd

el
iv

er
ed

 ra
tio

 o
f S

1
Normal switch algorithm
Fast switch algorithm

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

D
el

iv
er

ed
 ra

tio
 o

f S
2

Fast switch algorithm
Normal switch algorithm

Figure 9. Ratio track in a dynamic network

with 1000 nodes.

100 500 1000 2000 4000 8000
0

5

10

15

20

25

30

35

Total number of overlay nodes

A
vg

 fi
ni

sh
in

g
/ p

re
pa

rin
g

tim
e

Normal switch algorithm: Avg finishing time of S1
Fast switch algorithm: Avg finishing time of S1
Fast switch algorithm: Avg preparing time of S2
Normal switch algorithm: Avg preparing time of S2

Figure 10. Avg finishing time of S1 and
preparing time of S2 in dynamic environ-

ments.

References

[1] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Row-

stron, and A. Singh. SplitStream: high-bandwidth multicast

in cooperative environments. Proc. ACM SOSP, pages 298–

313, 2003.

[2] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.

Scribe: a large-scale and decentralized application-level

multicast infrastructure. IEEE Journal on Selected Areas

in Communications, 20(8):1489–1499, 2002.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to al-

gorithms. MIT Press Cambridge, MA, USA, 1990.

[4] A. Ganesh, A. Kermarrec, and L. Massoulie. Peer-to-peer

membership management for gossip-based protocols. IEEE

Trans on Computers, 52(2):139–149, 2003.

[5] J. Li. PeerStreaming: An On-Demand Peer-to-Peer Media

Streaming Solution Based On A Receiver-Driven Streaming

100 500 1000 2000 4000 8000
0

10

20

30

A
ve

ra
ge

 s
w

itc
h

tim
e

Normal switch algorithm
Fast switch algorithm

100 500 1000 2000 4000 8000
0

0.1

0.2

0.3

0.4

Total number of overlay nodes

R
ed

uc
tio

n
ra

tio

Figure 11. Avg switch time and its reduction

ratio in dynamic environments.

100 500 1000 2000 4000 8000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Total number of overlay nodes

C
om

m
un

ic
at

io
n

ov
er

he
ad

Fast switch algorithm
Normal switch algorithm

Figure 12. Communication overhead in dy-
namic environments.

Protocol. IEEE 7th Workshop on Multimedia Signal Pro-

cessing, 2005, pages 1–4, 2005.

[6] X. Liao, H. Jin, Y. Liu, L. Ni, and D. Deng. AnySee: Peer-

to-Peer Live Streaming. Proc. INFOCOM, 2006.

[7] D. Tran, K. Hua, and T. Do. ZIGZAG: an efficient peer-to-

peer scheme for media streaming. Proc. INFOCOM 2003.

[8] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava. On

peer-to-peer media streaming. Proc. ICDCS 2002, pages

363–371, 2002.

[9] M. Zhang, J. Luo, L. Zhao, and S. Yang. A peer-to-peer net-

work for live media streaming using a push-pull approach.

Proc. ACM Multimedia, pages 287–290, 2005.

[10] X. Zhang, J. Liu, B. Li, and T. Yum. CoolStreaming/DONet:

A Data-driven Overlay Network for Peer-to-Peer Live Me-

dia Streaming. Proc. IEEE Infocom, 2005.

[11] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatow-

icz. Bayeux: an architecture for scalable and fault-tolerant

wide-area data dissemination. ACM Press New York, NY,

USA, 2001.

24

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

