Thread-Sensitive Modulo Scheduling for Multicore Procesesrs *

Lin Gao, Quan Hoang Nguyen, Lian Li and Jingling Xue Tin-Fook Ngai
University of New South Wales, Australia Microprocessor Technology Lab, Intel
Abstract assigns an instruction to a cycle in its scheduling window,

a range of cycles in which the instruction can be scheduled

This paper describes a generalisation of modulo with respect to already scheduled ones, so that the instruc-

scheduling to parallelise loops for SpMT processors that tion is the closest possible to its already scheduled depen-

exploits simultaneously both instruction-level parafiei dent instructions. When a modulo scheduled loop is ex-

and thread-level parallelism while preserving the simplic ecuted on multicore processors, these “tightly scheduled”

ity and effectiveness of modulo scheduling. Our generalisa dependences created by such a “lifetime-minimal” schedul-
tion is simple, drops easily into traditional modulo schedu ing strategy can turn out to be inter-thread dependences.

ing algorithms such as SWIhg in GCC 4.1.1 and prOduceS Our TMS a|g0ri'[hm relies on a new cost model to
good speedups for SPECfp2000 benchmarks, particularlystrengthen the aforementioned “lifetime-minimal” schiedu
in terms of its ability in parallelising DOACROSS loops. ing strategy used in existing modulo scheduling algorithms
For multicore processors, finding the best schedule for a
. loop by minimising the Il of the loop only is no longer ad-
1. Introduction equate. We need to develop a cost model by which we can
Even as we enter the multicore era, seeking methods toe_stimate the executiontime ofgmodulo §cheduled loop run-
boost the performance of single-threaded applications re-1Ng 0n SPMT processors. Guided by this cost model, TMS
mains critical [8]. In speculative multicore (SpMT) proees Will schedule an instruction to a cycle in its scheduling win
sors with fast on-chip interconnects [2, 10, 19, 23], inter- dow in order to minimise not on_Iy the Ilfetlmes of Ioop vari-
thread memory dependences can be tracked by rolling baclants but .also the synchronisation and mlssp_eculano_n over-
misspeculated threads and inter-thread register depeesien heads with respect to the already scheduled instructions.
enforced by fast communication and synchronisation. Such Specifically, this paper makes the following contribu-
SpMT processors can significantly boost the performancetions. First, we introduce a new cost model to approximate
of sequential applications that must be parallelised im@-fi ~ the execution time of a modulo scheduled kernel loop for
grain, communicating threads to be executed efficiently. ~ SpMT architectures. The execution time of the kernel loop
We present a new compiler technique to parallelise depends on not only the Il of the kernel loop but also the
a sequential loop for SpMT processors by breaking the overhead incurred in enforcing its inter-thread dependsnc
loop iteration boundaries to find a speculative schedule Second, we describe a generalisation of modulo schedul-
across multiple iterations of the loop. While modulo ing for parallelising loops, callethread-sensitive modulo
scheduling is the best known technique to generate non-scheduling(TMS), that exploits both ILP and TLP simul-
speculative schedules for loops, this paper generalises itaneously for SpMT multicore processors with fast on-
to generate speculative schedules for loops, particularlychip interconnects while preserving the simplicity and ef-
for DOACROSS loops. When applied directly to SpMT fectiveness of modulo scheduling. Our generalisation is
processors, modulo scheduling does not handle the oversimple, drops easily into traditional modulo scheduling al
head incurred in enforcing both synchronised and specu-gorithms and produces good speedups for SPECfp2000
lated inter-thread dependences between the threads éhat abenchmarks, particularly in terms of its ability in paréi#ie
executing differentiterations of a modulo scheduled loop 0 jng DOACROSS loops. Guide by our cost model, our algo-
different cores. Our key observation is that existing modul rithm aims to minimise the parallel execution time of a loop
scheduling algorithms [12, 15, 9] tend to schedule depen-py minimising the overheads incurred in enforcing synchro-
dentinstructions as close as possible so as to reducesegist nised and speculated inter-thread dependences.
pressure by means of s_hortening the Iifetim.es of loop vari- Finally, we have implemented TMS on top of Swing
ants. For example, Swing modulo scheduling (SMS) [12] 540 scheduling (SMS) [12] adopted in GCC 4.1.1 (since
* This work is supported by an ARC Grant DP0665581. SMS finds the best schedules in general [3]). But our work

is not tied to any existing modulo scheduling algorithms (as | Parameter | Values |
made clear in Section 4.1). We have evaluated the perfor- | Fetch, Issue, Commit bandwidth 4, out-of-order issye

mance of TMS on a quad-core SpMT architecture using L1 I-Cache 16KB, 4-way, 1 cycle (hit)
SPECfp2000 benchmarks. Compared to SMS, TMS can | L1 D-Cache 16KB, 4-way, 3 cycle (hit)
generate kernel loops with significantly reduced synchroni | L2 Cache (shared) |1MB, 4-way,

12 cycles (hit), 80 cycles (miss
Local Register File |1 cycle

SEND/RECYV Latency 3 cycles
Spawn Overhead 3 cycles
Commit Overhead |2 cycles

~

sation overhead and negligible misspeculation overhead. |
addition, the effectiveness of TMS is also substantiated in
terms of its ability in parallelising DOACROSS loops that
are difficult to parallelise by existing methods. Our experi

mental results are also analysed to provide insights into ho Invalidation Overhead 15 cycles
to improve this work to obtain greater speedups.
The plan of the paper is as follows. Section 2 reviews the Table 1. Architecture simulated.

related work. Section 3 introduces our speculative pdralle . o
loops for multicore processors. Thread-level speculdton

sation models. Section 4 presents our generalised modulg)
: . . not used. Instead, all inter-core dependences are synchro-
scheduling algorithm. Section 5 presents and analyses our

experimental results. Section 6 concludes the paper hised via a software-managed cache. In [13, 20], they ex-
P ' Paper. ploit TLP not ILP by partitioning a loop iteration into long-

2 Related Work running threads and roll back misspeculated long-running
threads by means of check-pointing and versioned memory.
Most of the previous work on speculatively parallelising In contrast, our TMS algorithm executes different iterasio
sequential programs or loops [5, 14] focuses on improving of @ modulo scheduled loop in different threads and rolls
TLP by exploiting thread-level speculation. Typicallytén ~ back misspeculated threads using hardware.
core memory dependences are tracked by the hardware by There have been some research efforts on develop-
backing up misspeculated threads and inter-core register d ing scheduling algorithms for clustered VLIW architec-
pendences enforced through memory [5] or by value pre-tures [17, 22, 1]. These architectures do not support thread
diction and validation [5, 14]. However, many sequential level speculation. Separate register files in differenstelts
programs cannot be parallelised effectively this way ifgthe are used to exploit ILP within and across the clusters. A
exhibit a lot of inter-thread register dependences. register value can be communicated synchronously between
Recently, multicore architectures have been extended toadjacent clusters in one cycle. In these algorithms, an iter
support fast inter-core communication and synchronigatio ation in a kernel loop is sub-divided with different subgart
of register values [2, 10, 19, 23]. It is demonstrated in [10] executed in different clusters. In our work, different éer
that a one-cycle inter-core hop latency is realisable in-mul tions of a kernel loop are executed speculatively on differe
ticore processors. Based on a mesh interconnect that cagores in a speculative superscalar architecture.
route an operand between adjacent cores in one cycle, these
researchers have evaluated a 32-core design, called TFlex3. Execution Model
that allows cores to be aggregated together dynamically to
form more powerful single-threaded processors. Such com- As shown in Table 1, an SpMT system consists of multi-
posability allows a right balance of ILP and TLP to be ex- ple cores connected by a uni-directional ring [6]. However,
ploited in a sequential program. Based on [19], the Voltron this work is not limited to this architecture. Each core owns
processor [23] extends a traditional multicore design with its private function units, register file, L1 instructioncte
scalar operand network to provide fast inter-core communi-and L1 data cache. All cores share one unified L2 cache.
cation to enable fine-grain threads to be executed effigientl Data dependences through memory-resident values, known
In particular, Voltron allows two adjacent cores to commu- as speculated dependenceare tracked by the hardware
nicate a register value in one cycle when exploiting VLIW- and preserved by backing up any misspeculated threads.
style ILP and three cycles when exploiting fine-grain TLP. Data dependences through register-resident values, known
These improvements in inter-core communication have assynchronised dependencese preserved with their val-
offered new opportunities for improving the performance of ues being communicated asynchronously through the ring
many sequential programs by partitioning them for efficient bus between two cores as in Voltron’s queue model [23].
execution in terms of fine-grain, communicating threads. = As a generalisation of modulo scheduling algorithms,
In [18, 21], frequently occurring dependences are synchro-TMS aims at parallelising innermost loops only. After
nised. Thepost andwai t instructions associated with scheduling, the distances of all inter-iteration register
a synchronised dependence are moved as close as posgpendences are 1 since all overlapping lifetimes for scalars
ble. In [4], the work in [16] on modulo scheduling multi- are handled by introducing register copy instructions in a
dimensional loops is extended to parallelise non-innetmos post-pass. Thus, the values for synchronised register de-

—, intra-iteration

pendences are communicated through adjacent cores.

A loop is executed speculatively in much the same way
as in prior work [5, 14, 18]. The iterations of a loop are
executed in different threads running in different corea in
round-robin fashion. The first instruction in each thread is
a spawn instruction, which contains the start address of the
loop. The spawn instruction in iteratiancauses a specu-
lative thread for iteratiori + 1 to be created and executed \1 ld " L eyele
in the successor core. The oldest thread in the sequential adg/ Yoo
execution order of the loop, calldwad threadis the only
non-speculativéhread and thus allowed to commit its re-
sults. All others arespeculative A thread that has com-
pleted its execution will check to see if some inter-thread
memory dependences were violated in more speculative
threads. Lefl" be the least speculative thread in which a vi-
olation is detected. Théeh and all its more speculative ones
are squashed arifl will be re-executed on the core that
was executed before. Upon successful completion, a thread

— — * inter-iteration

Hardware:
2 ALUs
2 load/store units

Latencies:
add 1 cycle
mul 4 cycles

Figure 1. A motivating example. All depen-
dences shown are flow dependences with
their distances given. n5 — n0, nb5 — n2 and
nb — n3 are memory dependences with small
dependence probabilities and the remaining
ones are register dependences.

oo) =z3 3 zz3 3
will invalidate all more speculative threads that have been| &>== e
misspeculated. Each invalidation operation that squashes | _ 1,11 I -
thread running in a core involves only gang-clearing sdvera i:;" 3 4 core 0 §‘° 3 4
bits in MDT and several bits in L1 data cache and flushing | $ 3 5
its send/receive queues and speculation write buffer. So 1§ 7|5—¢7 [core 1 T cgre;’_ core 1
cycles is more than sufficient. - 10 1= _\
To communicate a register value between two adjacent 5“}; Yo 71 2 4 Sye
cores in the Voltron’s queue model [23], the compiler in- 3 3 = 1| 13 %
serts a pair o5END andRECV instructions to synchronise 15 1s

8
5 4
and forward the value. The latency incurred is 3 cycles: 1 |() Schedul ; (d) SChedU@[—*g
for SEND, 1 per hop to transmit the value and 1 RECV.

As also in Voltron [23], the spawning of a loop iteration | §[°F Sori| OPPRT (f) Execution
thread takes 3 cycles in the same queue model. Just before 3 e (c) Execution| 3 2l

a loop is executed, the registers holding the live-in values % . % .

for the loop are copied to all the cores participating in exe- | 7[5 16l7 7[5

cuting the loop. This will happen only once for a loop since | (b) Kernel (e) Kernel

the live-ins between iterations are communicated by regist SMS ™S

communications Vi&END andRECV.
All memory dependences are tracked using the memory Figure 2. A comparison of SMS and TMS with

disambiguation table (MDT) [11], which sits between L1 respect to the execution of two consecutive

data cache and L2 cache. As in Hydra [7], a speculation kernel iterations in a two-core SpMT architec-

write buffer (of 64 entries) nextto L2 cache is availableina tyre. Each instruction ni shown in Figure 1 is

core to buffer all speculative writes. Using double buffigri abbreviated to i here.

a core can start a new thread with a "new” buffer while the

the “old” buffer is draining into L2 cache. So a commit

overhead of 2 cycles is assumed. scheduling algorithms if a scheduled loop is executed on

SpMT processors. We also explain how we overcome

4. TMS this limitation in TMS. Consider a data dependence graph
We describe a motivating example, a cost model for es- (DDG) gnd the archite_ctural parameters relevqnt to modulo

timating the execution time of a modulo scheduled loop on Scheduling shown in Figure 1. The resource IRis;/T = 4

SpMT processors, and finally our TMS algorithm. (since themul has the longest latency). The recurrence Il
. . is RecIl = 8 due to the existence of the recurrence cir-
4.1. A Motivating Example cuit (n0,n1,n2,n4,n5). So the minimum Il i.e., Ml is

max(ResIl, RecIT) = max(4,8) = 8. Figure 2 compares
the schedules produced by SMS and TMS and their runtime
overheads incurred in enforcing inter-thread dependences

We use an example to highlight the limitation of the
“lifetime-minimal” scheduling strategy used in modulo

SMS According to [12], the nodes in the DDG are sched- As discussed in Section 5.1, the number of inserted
uled in the ordern5,n4,n2,n1,n0,n3,n6,n8 andn7. So copies is small for SPECfp2000 benchmarks used in our
preference is given to the instructions in the critical path experiments. In this SMS solutionsync(n6,n0) =
order to avoid scheduling both an instruction’s predeassso sync(n7,n3) = 7%II — 0%II + 1 + Cregcom = 8 +

and successors at the same time before the instructioh itsel Cyeg com = 8 +3 = 11. So consecutive threads are sequen-
By placing each node as close as possible to its predecessotglised due to the synchronisation delay caused. As atresul
and successors, SMS produces the schedule and kernel dbe inter-thread memory dependeness— n0, nb — n2
shown in Figures 2(a) and (b), respectively. Consider how andn5 — n3 are accidentally preserved.

n6 is scheduled. Its associated scheduling windo(w i8]

with the largest cycle being tried first. $6 is scheduledat TMS Instead of scheduling a node at the first available
cycle 7, which is the first valid choice in the window. The cycle in its scheduling window to aggressively reduce reg-
successor node) of n6 has a|ready been scheduled at Cyc|e ister lifetimes Only, TMS finds a SChedU”ng CyCle such that
0. Since the inter-iteration register dependenée— n0 Some presently acceptable synchronisation and misspecu-
has a distance of 1, the value producediyin one itera- lation overhead thresholds are also satisfied with respect

tion will be consumed by.0 in the next iteration at cycle, 0 to already scheduled nodes. Figures 2(d) and (e) give the
+1* 11 =8. As shown in Figure 2(b), both6 andn0 are schedule and kernel obtained by TMS, respectively. When

the closest possible to each other (in time). scheduling6, the time slot in its scheduling windoj#, 0]
Modulo Schedu”ng can alter dependence distances in athat leads to the shortest synchronisation delay betwéen
loop. and the already scheduled successgbis cycle 0. So it has

been placed.6 at cycle 1. The node? is scheduled iden-
Definition 1. Let v — v be a dependence of distance tically. Figure 2(f) shows the execution of the kernel gener
d(u,v) in a loop. The distance in the kernel, denoted ated by TMS. Compared to the SMS solution, the synchro-
dier (U, V), I8 dier (u, v) = d(u, v) + Sy — Su, Wheres,, (s,) nisation delay caused bys — n0 has been significantly
is the stage number aof (v). reduced in the TMS solution. The inter-core memory de-
pendences5 — n0, n5 — n2 andnb — n3 are tracked
by the hardware. Since their dependence probabilities are
assumed to be negligibly small, few misspeculations will
occur during the execution of the TMS-generated kernel.

In this example, the inter-iteration dependence —
n5 (with d(n8,n5) = 1) has been turned into an intra-
iteration dependence in the kernel (with,.(n8, n5) = 0).
The distance o6 — n0 remains to b&ly.(n6,n0) =
d(n6,n0) = 1 since bothn6 andn0 are placed in stage 0. 4.2. Cost Model

We find that the kernel loop has the following inter-iteratio
(flow) dependencesn5 — n0, n5 — n2, n5 — n3, This section describes a cost model used to approximate

n6 — n0, n6 — n6, n7 — n3,n7 — n7andnd — ns. the execution time of a modulo scheduled loop running on

Figure 2 (c) shows the execution of the kernel in a two- SPMT processors by taking into account the synchronisa-
core architecture. An arrow pointing from core 0 to core tion and misspeculation overheads incurred in enforcing
1 symbolises a register communication event via a pair of inter-thread dependences. We consider not only the Il of
SENV andRECV. Sincen6 — n0 andn6 — n6 share one theloop but also the following four major cost components:
producer, only one communication is required. The sameis o Cspn: the overhead of spawning a thread on a core
true forn7 — n3 andn7 — nT7.

Recall that in our execution model (Section 3), all over-
lapping lifetimes are implemented via copy instructions. S

e (C.;: the commit overhead by the head thread.
e (i, : the invalidation overhead from a thread.

the non-neighbouring communication whéfx,) > 1 is ® Caelay: the maximal delay incurred bgny synchro-
realised via a sequence of neighbouring communications. nised register dependence in a thread. This parameter
approximates the time that a thread spends on wait-
Definition 2. Letz — Yy be an inter-iteration register de- |ng for receiving the values foall Synchronised reg-
pendence, wheré(z,y) = 1. The synchronisation delay ister dependences from the predecessor thread. It in-
incurred by the dependence is estimated to be: cludes the register communication laterigy, cor in-

troduced in Definition 1 (line 5 of Figure 3).
sync(xz,y) = issueslot(z)%II — issueslot(y) %Il (g)

+1at(z) + Creg.com @)

It is assumed that the number of iterations in a loop is suffi-
ciently larger than the number of cores: > ncore.
whereissue_slot () andissueslot(y) are the issue cycles The execution time]’, of a modulo scheduled loop is
ofz andy (i.e., those shown in Figures 2(a) and (dj),(x) composed off,,,miss (the execution time of the loop in the
is the latency of, andCreg com = 3 is the latency incurred absence of misspeculations) affighis «pec (the total mis-

in moving a scalar from the producerto the consumey. speculation overhead in the loop). They are derived below.

Thomiss Threads are spawned and committed sequentially,
their spawn times never overlap, and similarly, their com-
mit times never overlap. If thread suffers a maximum
synchronisation delay, denotéfci.y, So will thread: + 1.

The maximum synchronisation delay times of two threads
cannot overlap. However, one of three cost components
Cspn, Cei andCyelay, may cancel one of the other two when
threads are executed in parallel. Hence, if a core is always
freely available when a new thread is to be spawned, the|
execution time of a loop is bounded by the serial part of a
thread, which is estimated to betax(Cspn, Cei, Cdelay) X

N. Otherwise, thread spawning can be stalled if no free core
is available. In this case, the execution time is approxéuhat
by b x N, whereTj, = 11 + C¢; + max(Cypn, Cdelay)

is the lower bound for the execution time of a thread. By
combining the two cases, we have:

Tip
max(cspn 3 C’ci; Cdelayv
ncore

=) x N (2)

7jnomiss

Twisspec The parallel execution of a loop may be inter-
rupted by misspeculations. After a misspeculated thread

#DEFINE P,,.x = aturnable parameter {0, 1]
TMS()
Qo < the ordered node list for scheduling
Let]—"(II, Cdclay) = Tnomiss/N = max(cspn; Cei, Cdclaya
Let Frin = F(MII, 1+ Creg_com)
while true do
for every(I1, Caelay) S-t. F(I1, Cdclay) = Fmin dO
Q— Qo
PS — 0
while Q # 0 do
v~ pop(Q)
if ISSUESLOT_SELECTION@, PS) then

Addv to PS
else

break; // restart all over again
if Q =0 then return PS
Fmin ++
ISSUE.SLOT_SELECTION (v, PS)

Tl];)
ncore

) s S XIS N
== =R[==== ~ w
SslE HEseEE=M [l

for every slotc in the scheduling windoWi, «] of v do
if slotc has resource conflicthen continue
21 LetRps = RegDep(PS)
22 LetMps = MemDep(PS)
23 LetR, = RegDep(PS U {v}) \ RegDep(PS)
24 LetM, = MemDep(PS U {v}) \ MemDep(PS)
25 Let M, be the set of dependenceshifir s U M, such that they are
notpreserved byRps U R, (Def. 3)
26 if the following two conditions holthen
CliVz — y € R, : sync(z, y) < Cdelay (Def. 2)
C2:M, #) = 1_1_[661\%11 (1—pe) < Pmax
return true

[28] return false

is squashed, its execution will be re-started. The penalty
paid for one misspeculation is roughly/ + Ci,, —
max(0, Cgelay — Cspn), WherelT 4+ Ciy,, is the number of
cycles wasted in executing and invalidating the squashed
thread andnax(0, Cyclay — Cspn) is the number of cycles
gained in re-execution since all inter-thread registeretgep
dences of the re-started thread are already satisfied.

The probability valuey; of a memory dependendas in
[0, 1], meaning that for ever¥ writes at the producep, X

cation. As in [5, 14], we assume conservatively that i§
an inter-thread memory dependence, thgl of X may be

Definition 2.
dependence in the kernel of a loop.
reads from the consumer will be made to same memory lo-0f some inter-iteration register dependences in the kernel
loop. We say that — y is preservedby D if there exists
u — v € D, whereu is executed earlier tham in the ker-

Figure 3. TMS as a generalisation of SMS
(with the new code indicated with boxes).

Definition 3. For an instructioni, let its latency be de-
noted bylat(i) and its issue slot byssue slot(i) as in
Letz — y be an inter-iteration memory

LBt be a set

misspeculated. Let/ be the set of all inter-thread memory Nel, i.e. issueslot(u)% 11 < issueslot(x)%I1, such that

dependences that may be misspeculated in the kernel. Theync(u,v) >

misspeculation probability, denotdtl,, for the kernel is:

Py = 1-J] (-p) (3)

eeM

Thus,Py; x N is the total number of misspeculations. The

issue_slot(z) %I —issueslot(y) %II+lat(x)
dier (,Y)

According to this definition, the produceris likely to

be executed before the consumetue to some earlier syn-
chronisation delay. So — y is preserved in this sense.

To help us understandSSUE SLOT_SELECTION,

total misspeculation overhead of a loop is approximated asthe following definition is introduced.

Tmis_spec = (II+Cinv_maX(0; Cdelay_cspn)) X Ppr < N.

Definition 4. Let S be a set of scheduled instructions in
the kernel. ThemRegDep(S) (MemDep(S)) is the set of

Figure 3 gives TMS as a generalisation of SMS, where Z!qgn;eriﬁzr?;g?uft% rs],tseir ﬁ;(m%mn?rﬁosveggngﬁggﬁiggr;gd
the lines in the SMS code are boxed. Like SMS, TMS finds . 9 ’ y P

. . ; . included in both cases.
a schedule iteratively for a loop starting with an empty par-
tial schedule,PS. Whenever a new instruction is added Let us first explain briefly how SMS works. Given an or-
to PS, some new inter-iteration, i.e., inter-thread mem- dered list of the nodes in the DDG of a loop (lines 3 and 8),
ory dependence may be introduced. Some of these maySMS starts with Il being the minimum 11, i.e., Mll (line 5)
be preserved due to the synchronisation delay introducedand iteratively increases the Il until a valid schedule igfd
by already scheduled instructions. This can be checked by(line 16). For a given Il, the partial schedule, represebted
applying Definition 3, which makes use df.,(x,y) and PS and initialised to empty (line 9), is incrementally con-
sync(z, y) from Definitions 1 and 2. structed (lines 11 and 13). When assigning an issue slot to

4.3. Algorithm

the current node (line 12), SMS will choose the free avail-
able slotc (line 19) that results in no resource conflicts at
the cycle (line 20). This ensures that aftdras been added
to PS (line 13), all new lifetimes introduced are minimised
so that register pressure in the kernel code is reduced.

In addition to iteratively increasingl, TMS relies on
two additional parameterg/qe1.y (lines 4, 7 and 26) and
Phax (lines 1 and 26), which are also iteratively increased.

of all non-preserved inter-iteration memory dependenees i
the kernel with respect to the already scheduled instrastio

in PS andwv. Note that synchronised and speculated de-
pendences are handled differently. For a synchronised de-
pendence: — y, we only require its delay to be no larger
than the presently acceptable thresh@ld,,, (line 26.C1).

For a speculated dependence» y, some will be unlikely

to cause misspeculations if they are preserved in the kernel

When a schedule is constructed, the synchronisation de{Definition 3). For those that are not preserved, we require

lay associated with every inter-iteration register de gewne
must not be larger thaflyciay (line 26.C1). The misspecu-
lation frequency caused by the non-preserved inter-itarat

the misspeculation frequency caused by the instructions in
PS U {v} to be no larger that,,.. (line 26.C2).
After a schedule is built, all overlapping lifetimes are re-

memory dependences among all already scheduled instruchamed by introducing register copies. Thus, the distances

tions must not be larger thah,,.. (line 26.C2).

Guided by our cost model, we have evolved SMS into
TMS by making two major modifications. First, TMS min-
imises the execution tim& of a kernel loop rather than
its Il. As discussed in Section 4.Z, has two components:
Thomiss @NdThis spec. It is difficult to minimiseT” directly
since Pas in Thisspec iS defined for all instructions in the
kernel butPS is only constructed incrementally. So TMS
minimises both components separately as follows:

e Minimisation of T,,miss- Instead of minimisingl’,
TMS seeks to minimis&;,omiss as its objective func-
tion (lines 4, 5, 7 and 17). In line 4, minimising
F(11,Cqelay) is equivalent to minimisingomiss- 1N
line 5, F i, is initialised with the minimum ofF at-
tached when II=MIl andCyclay = 1 + Cregcom- BY
Definition 2,1 + Cregcom IS the smallest value for
Cdelay. TMS starts withF i, in line 5 and iteratively
increases i, (line 17) until a valid schedule is found
such thatF (11, Caelay) = Fmin (line 7).

11 can be bounded by the longest critical path in the
DDG of the l00p.Cygelay can be bounded byl /ncore
since not all cores can be fully utilised otherwise.

Minimisation of Tinisspec- INStead 0l yis spec OF Pas
given in (3), TMS minimises the misspeculation fre-
guency calculated using (3) for all non-preserved inter-
iteration memory dependences (line 26.C2). In prac-
tice, several values faP,,,, (line 1) can be tried so
that the best schedule for a loop can be picked.

Second, the issue slot selection strategy in SMS is mod-

of inter-iteration register dependences in the kernel are 1
All required SEND and RECV instructions are inserted to
synchronise inter-thread register dependences for scalar

5. Experimental results

We have implemented TMS on top of SMSin GCC 4.1.1
and evaluated the performance on a quad-core SpMT ar-
chitecture using SPECfp2000 benchmarks by simulation.
The effectiveness of TMS in striking a balance between ILP
and TLP and in reducing synchronisation and misspecula-
tion overheads (as motivated in Figure 2) is demonstrated
with the significant speedups attained by TMS- over SMS-
scheduled programs on the quad-core system. In addition,
the effectiveness of TMS in parallelising DOACROSS loops
is demonstrated by examining in detail the performance im-
pact of its success in parallelising a number of frequently
executed DOACROSS loops in some benchmarks.

We excludedjal gel since it cannot be compiled suc-
cessfully. All other 13 benchmarks are compiled under “-
02" exceptf ma3d, which is compiled under “-O1" since a
correct binary was not emitted under “-O2”". In GCC 4.1.1,
loops with single basic blocks and those whose branches
can be converted by compare and move instructions are con-
sidered as candidates for modulo scheduling.

All benchmarks are evaluated using a detailed,
execution-driven micro-architectural simulator built tmp
of SimpleScalar. The train input sets are used to collect
profiling information. The MinneSPEC large input sets are
used for simulation. All benchmarks are simulated to com-
pletion (to measure the impact of all scheduled loops).

In Section 5.1, we present the performance results

ified so that when searching for a free slot for the current achieved by TMS over SMS. In Section 5.2, we demonstrate
nodew in its scheduling window, both the synchronisation the performance advantages of TMS over single-threaded
and misspeculation overheads incurred by the instructionscode using a number of selected DOACROSS loops. We
in PSU{v} are also kept to presently acceptable thresholdsalso explain how a balanced exploitation of ILP and TLP

(lines 23 — 26). Inline 21 (22Rps (Mps) denotes the set
of inter-iteration register (memory) dependences amoag th
already scheduled instructionsiS that will appear in the
kernelloop. Inline 23 (24)R, (M,) contains the new ones
to be introduced it is added tdPS. In line 25,M is the set

has contributed to these performance results. Furthegmore
by comparing TMS and SMS, we show how TMS has sig-
nificantly reduced execution stalls at the expense of dlight
increased communication overheads by aggressively reduc-
ing Caelay. Finally, we give evidence that data speculation

[#Loop: AVGTAVG SMS ™S 100

Benchmarl #inst Ml | 11 [MaxLive]Cueray | 1 [MaxLive]Cgerny "

wupwise | 16 [16.2] 4.4[5.4] 140 | 54 [95] 125 | 3.1 3 e

swim 11 |25.7/6.0|8.6| 146 | 6.5 [10.1 150 | 2.0 2 .

mgrid | 10 |34.3/83(14.3 151 | 14.2 152 26.3 | 5.0 2

applu | 41 |46.8/11.9(19.4 189 | 19.2 [23.7 242 | 5.8 2

mesa | 51 |243|5.7|6.8| 132 | 6.3 |9.2| 159 | 26 Mlmn Lo I

art 10 |16.1|7.6|8.1| 7.8 | 81 [10.§ 84 | 4.0 e o b e o® e oo o
equake | 5 [43.6(11.4/12.3 16.2 | 11.8 |16.§ 17.8 | 5.0 $o S T ST
facerec | 26 |31.7|8.0(10. 174 | 95 (127 165 | 2.9 S S
ammp | 11 [356|9.6(13.4 137 | 13.3 |16.3 14.0 | 4.8

lucas | 24 |169.642.2(59.2 38.7 | 59.1 |65.8 422 | 7.9)

fma3d | 170 |29.0{ 7.3|8.8| 16.8 | 8.8 |11.d 19.4 | 3.7 Figure 4. Speedups of TMS over SMS.
sixtrack | 340 |41.2|10.7|14.1 21.9 | 13.9 [23.q 26.8 | 6.7

apsi 63 |29.0/7.7]|10.1 176 | 10.1 |13.1] 18.2 | 36

Table 2. SMS and TMS compared using statistics given in Table 2. Takar t , which achieves the

largest loop speedup 83%, as an example. The gap be-
tween the average Il and averaQg.1., achieved by TMS
is far greater than that achieved by SMS. So a greater de-
gree of TLP has been exposed by TMS. The Il obtained
can be helpful in achieving performance in some loops. by TMS is slightly larger, indicating that the amount of

In addition to MIl, I, MaxLive and Cqelay, Where P exposed by TMS is slightly less. Due to a better bal-
MaxLive represents the number of scalar live ranges thatance achieved between ILP and TLP, the TMS-scheduled
are simultaneously live at a program point, the following |oops run much faster than the SMS-scheduled loops in
metrics are also used. The LDP of a loop is referred to thethis benchmark. As fonupwi se, TMS achieves no loop
|OngeSt dependence path inthe DDG of the |00p. |ntuitive|y, Speedup, and Consequenﬂy, no program Speedup a|though
the Mil and LDP for a given loop delineate the range of Il the TMS-scheduled loops exhibit potentially more TLP.
ValueS at Wh|Ch a Certain degree Of ILP iS eXpIOitabIe. The This is because TMS has increased TLP at the expense of
C|Oser the I OfaSChedu|e iS to M“, the hlgherthe ILP iS. So ILP (by near'y doub"ng the average Il of SMS-scheduled
the gap between Il and LDP represents roughly the degregoops). A detailed examination of the code farpwi se
of ILP exposed in the scheduled loop. The gap betweenreveals that the performance-dominating loopvirpwi se
IT andCqe1ay indicates roughly the percentage of a thread parallelised by both SMS and TMS has only one non-trivial
that can be executed in parallel with other threads, i.e., th SCC (Strongly-Connected Component). SMS has opted to
degree of TLP exposed in the scheduled loop. fully exploit the inherent ILP with the Il being close to the
recurrence Il while TMS has opted to exploit more TLP at
the expense of ILP. As a result, both solutions are on a par

Table 2 compares SMS and TMS using a total of 778 in terms of their performance results.
innermost loops from all the 13 SPECfp2000 benchmarks. For eight benchmarks, their loop speedups have trans-
in terms of some traditional metrics used for measuring the 1ated into visible program speedups due to their good loop
quality of modulo scheduling algorithms for single cores. coverage ratios. The average loop and program speedups
According to Columns 3 and 4, the average thread sizes forfor all benchmarks are 28% and 10%, respectively.
most benchmarks are _smaII, ?ndicating that TMS has beens 5 TMS vs. Single-Threaded Code
designed to embrace fine-grain, communicating threads.

Let us examine the average values of the three metrics, Seven loops from four benchmarks are selected to eval-
II, MaxLive and Cyelay, for all benchmarks by comparing uate the effectiveness of TMS in parallelising DOACROSS
SMS (Columns 5 —-7) and TMS (Columns 8 — 10). For each loops. All their enclosing loops are also DOACROSS.
benchmark, TMS exhibits a larger 1l but a much smaller Table 3 lists the benchmarks from which these loops are
Caelay than SMS. On the other hand, the TMS solutions selected and some statistics about the selected loops and
are found with respect to our cost model despite their rel- their modulo scheduled loops. Two selected looparit
atively larger Il values. Since TMS is aggressive in reduc- are small (with 11 instructions each) and are thus unrolled
ing Caelay, the average number of stage counts tends to befour times. The selected loops in these benchmarks account
slightly larger, resulting in relatively larger MaxLive va for between 14.3% and 58.5% of the execution times of
ues. Note that the gaps betweehand Cy.1., vValues are these benchmarks. These loops are fine-grained and con-
smaller under TMS than SMS. Thus, far more TLP has beentain between 16 and 102 instructions.
exposed in TMS- than SMS-scheduled loops. For each benchmark, the average number of SCCs, the

The more TLP exposed by TMS over SMS has mostly average MIl and the average length of LDPs for its se-
translated into the speedups as shown in Figure 4. Goodected loops are given (Columns 4 — 6). Recall that the
loop speedups are observed in all benchmarks excepgap between Il (Column 8) and LDP (Column 7) represents
wupwi se. The loop speedups correlate well with the the roughly the potential ILP achievable in the TMS-scheduled

traditional metrics for measuring modulo
scheduling in single cores.

5.1. TMS vs. SMS

Benchmard #Loops| L |AYS| AVSIAYS | pp by TV RS is measured to be the total number of cycles that all its

— e ST 12_5 '\fé = committed threads spend on stalling @RECV instruction
equake | 1 %850 821 3 | 2|28 |20 3] & (on an empty receive queue). In Figure 6(a), we see that
fma3d 1 |143% 72| 3 |18 |34| 20| 30| 6 TMS-scheduled loops stall significantly less frequentirth

LDP: LongestDep Path LC:Loop Coverage ML:MaxLive Olciay SMS-scheduled loops. The average Mlls of the selected
Table 3. Selected loops and their TMS- loops inart, equake and fma3d are constrained by re-
scheduled loops. sources rather than recurrences. So tbgis,, values can
be small relatively to their lls (Table 3). As a result, a re-
loops and the gap between Il (Column 8) afig., (Col- duction of more than 50% is observed in the three sets of

umn 10) represents the potential TLP in the TMS-scheduledSelected loops. On the other hand, the largest SCC in the
loops. Thus, the TMS-scheduled loops for the selectedselected loop irl ucas is formed by (flow) dependences
loops inart andf ma3d exhibit good ILP and TLP. The Whose dependence probabilities are all equal to 1. So its
modulo scheduled loop iaquake exhibits TLP only and MIlis constrained by the recurrence in the SCe1ay for

the modulo scheduled loop irucas exhibits ILP only. the loop turns out to be larger than its MIl. Thus, the re-
duced synchronisation overhead is slightly less impressiv

10.7
oo y izati Dynamic #SEND/RECV Reduced Communication
__ 80 Stalls of TMS over SMS Instrutions of TMS over SMS Overheads of TMS over SMS
= 80% 80% 80%
60
§ 60% 60% 60%
T a0
g " " "
& 204 40% 40% 40%
ol 20% 20% 20%
179.art 183.equake 189.lucas 191.fma3d Geo.Mean 0% 0% 0%
& 3 2 t-3 o & 3 S 3 3 3 S
. . T E T E T
Figure 5. Speedups of TMS over single- & o o
threaded code. (@ (b) (©)

Speedups Figure 5 shows that the above-mentioned im- Figure 6. Synchronisation of TMS vs. SMS.

prcr)]v%mler;tls in ILhP or TLPI %r.bc.)th n thde seven TMS' TMS tradeoffs communication for TLP. By using the
scheduled loops have resulted in iImproved execution tImessmallestelay possible, TMS-scheduled loops tend to have
over their corresponding single-threaded programs. Both

he | q dth q hieved bmore stages than SMS-scheduled loops. As a result, TMS-
the loop speedups and the program speedups achieved byqp,q qjeq loops exhibit slightly larger MaxLive valuesrtha

these loops alone are given. TMS has S|gn|flqantly M SMS-scheduled loops (Table 2). Figure 6(b) shows the per-
proved the performgncg for the selected loops in all Zour centage increases (in dynamic term)SEND/ REVC pairs
ben(t):hmgrks, resulting in theo speedups bet_/veen 37% '8 all committed threads for the four sets of selected loops.
210% with an average of 73%. Due 1o their good loop Even the increase for the loopliucas is the largest, only
coverage (Col_umn 3 in Table 3), these loop s_peedups haV‘?hree more pairs 6BEND/ REVC instructions are executed
all tran.slated into program speedups. The single _Ioop Se'per loop iteration under TMS than SMS.
lected inequake has the largest Ipop coverage rat_lo. The By combining the synchronisation stall cycles and
largest program _speedup of 24% is _observed in this bench—SEND/ RECV cycles spent in executing all committed
mark. Th_e loop irf ma3d has a relatlve_ly small I(?Op_ COV" * threadsin a loop, theommunication overhedar the loop
erage ratio. So the program speedup is not as significant a%an be approximated. The synchronisation stall is as de-
Yined earlier and the number BEND/ RECV cycles is sim-
ply the product 0fCieg com and the dynamic number of
Analysis In comparison with SMS and single-threaded SEND/ RECV pairs executed. Despite some more register
code, the performance speedups achieved by TMS arecommunications used, TMS, as shown in Figure 6(c), is ef-
largely due to the significant reductions@hiei., values at fective in reducing the communication overhead in a loop
the expense of some slight increases in register communicarelative to SMS, which is important in achieving the perfor-
tions. As mentioned earlier, the smalléfe.a, is, the larger ~ mance speedups given earlier in Figures 4 and 5.
the part of a kernel iteration can be executed in paralled wit Finally, let us briefly examine the impact of specula-
other iterations. TMS is thus aggressive in redudiig.y tion on performance (due to space limitations). Our TMS
to expose more TLP in a loop. As shown in Table 2, TMS- algorithm ensures that the misspeculation frequency (over
scheduled loops have small€e,, and larger MaxLive the total number of all committed threads) in these seven
values than SMS-scheduled loops. loops is less than 0.1%, resulting in negligible misspecu-
At run time, Cqyelay values can be approximated with lation overhead. Although misspeculations are infrequent
synchronisation stalls. Th&/nchronisation stalfor a loop and their performance impact on our benchmarks is negligi-

improved the overall program performance by 12%.

ble, data speculation can be effective in boosting the perfo
mance of certain loops. Without speculation, all inteetd
memory dependences will have to been synchronised, re{10]
sulting in some loss of TLP in these loops. For example, the
performance gain for the loop (program) would be reduced
by 19.0% forequake and 21.4% fof ma3d otherwise.

[11]
6. Conclusion

In this paper, we present for the first time a generalisa-
tion of traditional modulo scheduling for parallelising in
nermost loops to exploit both ILP and TLP simultaneously
on SpMT architectures. We have implemented our algo- [13]
rithm on top of SMS adopted in GCC 4.1.1. Our algorithm
is simple, achieves good performance speedups over the
SMS-scheduled loops and can be effective in speeding up
DOACROSS loops that are difficult to parallelise. [14]

We are working on incorporating loop unrolling into
TMS to allow us to tradeoff between communication and
parallelism by varying thread granularities. We are also
working on extending TMS to also parallelise outer loops.

[12]

[15]

References

16
[1] A. Aleta, J. M. Codina, A. Gonzalez, and D. Kaeli. Hetero- [16]

geneous clustered VLIW microarchitectures. GO '07:
Proceedings of the International Symposium on Code Gener-
ation and Optimizationpages 354-366, 2007.

B. M. Beckmann and D. A. Wood. Managing wire delay in
large chip-multiprocessor caches. MICRO 37: Proceed-
ings of the 37th annual IEEE/ACM International Symposium

on Microarchitecture pages 319-330, 2004.

[3] J.M. Codina, J. Llosa, and A. Gonzalez. A comparativelgt
of modulo scheduling techniques. IIBS '02: Proceedings of
the 16th international conference on Supercomputpages
97-106, 2002.

[4] A.Douilletand G. R. Gao. Software-pipelining on mutibre
architectures. IfPACT '07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilatio

Techniques (PACT 200pages 39-48, 2007.
[5] Z. H. Du, C. C. Lim, X. F. Li, C. Yang, Q. Zhao, and T. F.

Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. HRroceedings of
Conference on Programming Language Design and Imple-

mentation 2004.
M. Franklin. The Multiscalar Architecture PhD thesis, The

University of Wisconsin at Madison, 1993.
L. Hammond, M. Willey, and K. Olukotun. Data speculation

support for a chip multiprocessor. ABPLOS-VIII: Proceed-
ings of the eighth international conference on Architeatur
support for programming languages and operating systems

pages 58-69, 1998.
M. D. Hill and M. R. Marty. Amdahl’s law in the multicore

era. Technical Report CS-TR-2007-1593, University of Wis- 23]

consin, April 2007.
R. A. Huff. Lifetime-sensitive modulo scheduling. RLDI

'93: Proceedings of the ACM SIGPLAN 1993 conference on

(2] [17]

[18]

[19]

[20]

21
6] [21]

(7]

[22]

(8]

(9]

Programming language design and implementatipages
258-267, 1993.
C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ran-

ganathan, D. Gulati, D. Burger, and S. W. Keckler. Com-
posable lightweight processors. MiCRO 50: Proceedings
of the 40th annual IEEE/ACM International Symposium on

Microarchitecture 2007.
V. Krishnan and J. Torrellas. Hardware and software- sup

port for speculative execution of sequential binaries on a
chip-multiprocessor. IRroceedings of the 12th International

Conference on Supercomputjmages 85-92, 1998.
J. Llosa. Swing modulo scheduling: A lifetime-sensitap-

proach. InPACT '96: Proceedings of the 1996 Conference

on Parallel Architectures and Compilation Techniqu#396.
G. Ottoni, R. Rangan, A. Stoler, and D. |. August MiCRO

38: Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitectyrpages 105-118, Washing-
ton, DC, USA.

C. G. Quinones, C. Madrile, J. Sanchez, P. Marcuello,
A. Gonzalez, and D. M. Tullsen. Mitosis compiler: An infras-
tructure for speculative threading based on pre-compuurtati
slices. InProceedings of Conference on Programming Lan-
guage Design and Implementatjd005.

B. R. Rau. lIterative modulo scheduling: an algorithm fo
software pipelining loops. IMICRO 27: Proceedings of the
27th annual international symposium on Microarchitecture

pages 63-74, 1994.
H. B. Rong, Z. Z. Tang, R. Govindarajan, A. Douillet, and

G. R. Gao. Single-dimension software pipelining for multi-
dimensional loops. €GO '04: Proceedings of the interna-
tional symposium on Code generation and optimizatiaye

163, 2004.
J. Sanchez and A. Gonzalez. Modulo scheduling forllg-fu

distributed clustered VLIW architecture. MICRO 33: Pro-
ceedings of the 33rd annual ACM/IEEE international sympo-
sium on Microarchitecturgpages 124-133, 2000.

J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.
Improving value communication for thread-level specolati

In International Symposium on High-Performance Computer

Architecture 2002.
M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.

Scalar operand networkEEEE Trans. Parallel Distrib. Syst.
16(2):145-162, 2005.

N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges,tG. O
toni, and D. |. August. Speculative decoupled software
pipelining. InPACT '07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilatio

Techniques (PACT 200pages 49-59, 2007.
A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.

Compiler optimization of scalar value communication be-
tween speculative threads. International Symposium on
Architectural Support for Programming Languages and Op-

erating System<002.
H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A dis-

tributed control path architecture for vliw processors.lIrin
Proc. of the 14th International Conference on Parallel Arch

tectures and Compilation Technigu@sages 197-206, 2005.
H. T. Zhong, S. A. Lieberman, and S. A. Mahlke. Extend-

ing multicore architectures to exploit hybrid parallelism
single-thread applications. HPCA pages 25-36, 2007.

