
Thread-Sensitive Modulo Scheduling for Multicore Processors ∗

Lin Gao, Quan Hoang Nguyen, Lian Li and Jingling Xue
University of New South Wales, Australia

Tin-Fook Ngai
Microprocessor Technology Lab, Intel

Abstract

This paper describes a generalisation of modulo
scheduling to parallelise loops for SpMT processors that
exploits simultaneously both instruction-level parallelism
and thread-level parallelism while preserving the simplic-
ity and effectiveness of modulo scheduling. Our generalisa-
tion is simple, drops easily into traditional modulo schedul-
ing algorithms such as Swing in GCC 4.1.1 and produces
good speedups for SPECfp2000 benchmarks, particularly
in terms of its ability in parallelising DOACROSS loops.

1. Introduction

Even as we enter the multicore era, seeking methods to
boost the performance of single-threaded applications re-
mains critical [8]. In speculative multicore (SpMT) proces-
sors with fast on-chip interconnects [2, 10, 19, 23], inter-
thread memory dependences can be tracked by rolling back
misspeculated threads and inter-thread register dependences
enforced by fast communication and synchronisation. Such
SpMT processors can significantly boost the performance
of sequential applications that must be parallelised into fine-
grain, communicating threads to be executed efficiently.

We present a new compiler technique to parallelise
a sequential loop for SpMT processors by breaking the
loop iteration boundaries to find a speculative schedule
across multiple iterations of the loop. While modulo
scheduling is the best known technique to generate non-
speculative schedules for loops, this paper generalises it
to generate speculative schedules for loops, particularly
for DOACROSS loops. When applied directly to SpMT
processors, modulo scheduling does not handle the over-
head incurred in enforcing both synchronised and specu-
lated inter-thread dependences between the threads that are
executing different iterations of a modulo scheduled loop on
different cores. Our key observation is that existing modulo
scheduling algorithms [12, 15, 9] tend to schedule depen-
dent instructions as close as possible so as to reduce register
pressure by means of shortening the lifetimes of loop vari-
ants. For example, Swing modulo scheduling (SMS) [12]

∗ This work is supported by an ARC Grant DP0665581.

assigns an instruction to a cycle in its scheduling window,
a range of cycles in which the instruction can be scheduled
with respect to already scheduled ones, so that the instruc-
tion is the closest possible to its already scheduled depen-
dent instructions. When a modulo scheduled loop is ex-
ecuted on multicore processors, these “tightly scheduled”
dependences created by such a “lifetime-minimal” schedul-
ing strategy can turn out to be inter-thread dependences.

Our TMS algorithm relies on a new cost model to
strengthen the aforementioned “lifetime-minimal” schedul-
ing strategy used in existing modulo scheduling algorithms.
For multicore processors, finding the best schedule for a
loop by minimising the II of the loop only is no longer ad-
equate. We need to develop a cost model by which we can
estimate the execution time of a modulo scheduled loop run-
ning on SpMT processors. Guided by this cost model, TMS
will schedule an instruction to a cycle in its scheduling win-
dow in order to minimise not only the lifetimes of loop vari-
ants but also the synchronisation and misspeculation over-
heads with respect to the already scheduled instructions.

Specifically, this paper makes the following contribu-
tions. First, we introduce a new cost model to approximate
the execution time of a modulo scheduled kernel loop for
SpMT architectures. The execution time of the kernel loop
depends on not only the II of the kernel loop but also the
overhead incurred in enforcing its inter-thread dependences.

Second, we describe a generalisation of modulo schedul-
ing for parallelising loops, calledthread-sensitive modulo
scheduling(TMS), that exploits both ILP and TLP simul-
taneously for SpMT multicore processors with fast on-
chip interconnects while preserving the simplicity and ef-
fectiveness of modulo scheduling. Our generalisation is
simple, drops easily into traditional modulo scheduling al-
gorithms and produces good speedups for SPECfp2000
benchmarks, particularly in terms of its ability in parallelis-
ing DOACROSS loops. Guide by our cost model, our algo-
rithm aims to minimise the parallel execution time of a loop
by minimising the overheads incurred in enforcing synchro-
nised and speculated inter-thread dependences.

Finally, we have implemented TMS on top of Swing
modulo scheduling (SMS) [12] adopted in GCC 4.1.1 (since
SMS finds the best schedules in general [3]). But our work

is not tied to any existing modulo scheduling algorithms (as
made clear in Section 4.1). We have evaluated the perfor-
mance of TMS on a quad-core SpMT architecture using
SPECfp2000 benchmarks. Compared to SMS, TMS can
generate kernel loops with significantly reduced synchroni-
sation overhead and negligible misspeculation overhead. In
addition, the effectiveness of TMS is also substantiated in
terms of its ability in parallelising DOACROSS loops that
are difficult to parallelise by existing methods. Our experi-
mental results are also analysed to provide insights into how
to improve this work to obtain greater speedups.

The plan of the paper is as follows. Section 2 reviews the
related work. Section 3 introduces our speculative paralleli-
sation models. Section 4 presents our generalised modulo
scheduling algorithm. Section 5 presents and analyses our
experimental results. Section 6 concludes the paper.

2. Related Work

Most of the previous work on speculatively parallelising
sequential programs or loops [5, 14] focuses on improving
TLP by exploiting thread-level speculation. Typically, inter-
core memory dependences are tracked by the hardware by
backing up misspeculated threads and inter-core register de-
pendences enforced through memory [5] or by value pre-
diction and validation [5, 14]. However, many sequential
programs cannot be parallelised effectively this way if they
exhibit a lot of inter-thread register dependences.

Recently, multicore architectures have been extended to
support fast inter-core communication and synchronisation
of register values [2, 10, 19, 23]. It is demonstrated in [10]
that a one-cycle inter-core hop latency is realisable in mul-
ticore processors. Based on a mesh interconnect that can
route an operand between adjacent cores in one cycle, these
researchers have evaluated a 32-core design, called TFlex,
that allows cores to be aggregated together dynamically to
form more powerful single-threaded processors. Such com-
posability allows a right balance of ILP and TLP to be ex-
ploited in a sequential program. Based on [19], the Voltron
processor [23] extends a traditional multicore design witha
scalar operand network to provide fast inter-core communi-
cation to enable fine-grain threads to be executed efficiently.
In particular, Voltron allows two adjacent cores to commu-
nicate a register value in one cycle when exploiting VLIW-
style ILP and three cycles when exploiting fine-grain TLP.

These improvements in inter-core communication have
offered new opportunities for improving the performance of
many sequential programs by partitioning them for efficient
execution in terms of fine-grain, communicating threads.
In [18, 21], frequently occurring dependences are synchro-
nised. Thepost andwait instructions associated with
a synchronised dependence are moved as close as possi-
ble. In [4], the work in [16] on modulo scheduling multi-
dimensional loops is extended to parallelise non-innermost

Parameter Values

Fetch, Issue, Commit bandwidth 4, out-of-order issue
L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycle (hit)
L2 Cache (shared) 1MB, 4-way,

12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle
SEND/RECV Latency 3 cycles
Spawn Overhead 3 cycles
Commit Overhead 2 cycles
Invalidation Overhead15 cycles

Table 1. Architecture simulated.

loops for multicore processors. Thread-level speculationis
not used. Instead, all inter-core dependences are synchro-
nised via a software-managed cache. In [13, 20], they ex-
ploit TLP not ILP by partitioning a loop iteration into long-
running threads and roll back misspeculated long-running
threads by means of check-pointing and versioned memory.
In contrast, our TMS algorithm executes different iterations
of a modulo scheduled loop in different threads and rolls
back misspeculated threads using hardware.

There have been some research efforts on develop-
ing scheduling algorithms for clustered VLIW architec-
tures [17, 22, 1]. These architectures do not support thread-
level speculation. Separate register files in different clusters
are used to exploit ILP within and across the clusters. A
register value can be communicated synchronously between
adjacent clusters in one cycle. In these algorithms, an iter-
ation in a kernel loop is sub-divided with different subparts
executed in different clusters. In our work, different itera-
tions of a kernel loop are executed speculatively on different
cores in a speculative superscalar architecture.

3. Execution Model

As shown in Table 1, an SpMT system consists of multi-
ple cores connected by a uni-directional ring [6]. However,
this work is not limited to this architecture. Each core owns
its private function units, register file, L1 instruction cache
and L1 data cache. All cores share one unified L2 cache.
Data dependences through memory-resident values, known
as speculated dependences, are tracked by the hardware
and preserved by backing up any misspeculated threads.
Data dependences through register-resident values, known
assynchronised dependences, are preserved with their val-
ues being communicated asynchronously through the ring
bus between two cores as in Voltron’s queue model [23].

As a generalisation of modulo scheduling algorithms,
TMS aims at parallelising innermost loops only. After
scheduling, the distances of all inter-iteration registerde-
pendences are 1 since all overlapping lifetimes for scalars
are handled by introducing register copy instructions in a
post-pass. Thus, the values for synchronised register de-

pendences are communicated through adjacent cores.
A loop is executed speculatively in much the same way

as in prior work [5, 14, 18]. The iterations of a loop are
executed in different threads running in different cores ina
round-robin fashion. The first instruction in each thread is
a spawn instruction, which contains the start address of the
loop. The spawn instruction in iterationi causes a specu-
lative thread for iterationi + 1 to be created and executed
in the successor core. The oldest thread in the sequential
execution order of the loop, calledhead thread, is the only
non-speculativethread and thus allowed to commit its re-
sults. All others arespeculative. A thread that has com-
pleted its execution will check to see if some inter-thread
memory dependences were violated in more speculative
threads. LetT be the least speculative thread in which a vi-
olation is detected. ThenT and all its more speculative ones
are squashed andT will be re-executed on the core thatT
was executed before. Upon successful completion, a thread
will invalidate all more speculative threads that have been
misspeculated. Each invalidation operation that squashesa
thread running in a core involves only gang-clearing several
bits in MDT and several bits in L1 data cache and flushing
its send/receive queues and speculation write buffer. So 15
cycles is more than sufficient.

To communicate a register value between two adjacent
cores in the Voltron’s queue model [23], the compiler in-
serts a pair ofSEND andRECV instructions to synchronise
and forward the value. The latency incurred is 3 cycles: 1
for SEND, 1 per hop to transmit the value and 1 forRECV.
As also in Voltron [23], the spawning of a loop iteration
thread takes 3 cycles in the same queue model. Just before
a loop is executed, the registers holding the live-in values
for the loop are copied to all the cores participating in exe-
cuting the loop. This will happen only once for a loop since
the live-ins between iterations are communicated by register
communications viaSEND andRECV.

All memory dependences are tracked using the memory
disambiguation table (MDT) [11], which sits between L1
data cache and L2 cache. As in Hydra [7], a speculation
write buffer (of 64 entries) next to L2 cache is available in a
core to buffer all speculative writes. Using double buffering,
a core can start a new thread with a ”new” buffer while the
the “old” buffer is draining into L2 cache. So a commit
overhead of 2 cycles is assumed.

4. TMS

We describe a motivating example, a cost model for es-
timating the execution time of a modulo scheduled loop on
SpMT processors, and finally our TMS algorithm.

4.1. A Motivating Example

We use an example to highlight the limitation of the
“lifetime-minimal” scheduling strategy used in modulo

n0

ldn1

add

n2

ld

n4

mul

n3

ld

n5

st

n6

add

n8

add

n7

add
1

1

1

11

1

1

1

1

Hardware:

2 ALUs

2 load/store units

Latencies:

add 1 cycle

mul 4 cycles

ld 1 cycle

st 1 cycle

intra-iteration

inter-iteration

Figure 1. A motivating example. All depen-
dences shown are flow dependences with
their distances given. n5 → n0, n5 → n2 and
n5 → n3 are memory dependences with small
dependence probabilities and the remaining
ones are register dependences.

l/
d

l/
d

A
L
U

A
L
U

0 30
11

22
3
4
5
6
5 6 77

4

8
9
10
11
12
13

814
15

st
a
g
e
0

st
a
g
e
1

(a) Schedule

(b) Kernel

1
2
4

8
5 6 7

1
2
4

8
5 6 7

core 0

core 1

0 3

0 3

S
y
n
c

(c) Execution
l/
d

l/
d

A
L
U

A
L
U

0 3 6 70
11

22
3
4
5
6
57

4

8
9
10
11
12
13

814
15

st
a
g
e
0

st
a
g
e
1

(d) Schedule

0 3 6 70
11

22
3
4

5

86

57

4

(e) Kernel

1
2
4

8
5

2
4

8
5

core 0 core 1

0 3 6 7

0 3 6 7
1

 Sync

(f) Execution

SMS TMS

Figure 2. A comparison of SMS and TMS with
respect to the execution of two consecutive
kernel iterations in a two-core SpMT architec-
ture. Each instruction ni shown in Figure 1 is
abbreviated to i here.

scheduling algorithms if a scheduled loop is executed on
SpMT processors. We also explain how we overcome
this limitation in TMS. Consider a data dependence graph
(DDG) and the architectural parameters relevant to modulo
scheduling shown in Figure 1. The resource II isResII = 4
(since themul has the longest latency). The recurrence II
is RecII = 8 due to the existence of the recurrence cir-
cuit (n0, n1, n2, n4, n5). So the minimum II i.e., MII is
max(ResII ,RecII) = max(4, 8) = 8. Figure 2 compares
the schedules produced by SMS and TMS and their runtime
overheads incurred in enforcing inter-thread dependences.

SMS According to [12], the nodes in the DDG are sched-
uled in the order:n5, n4, n2, n1, n0, n3, n6, n8 andn7. So
preference is given to the instructions in the critical pathin
order to avoid scheduling both an instruction’s predecessors
and successors at the same time before the instruction itself.
By placing each node as close as possible to its predecessors
and successors, SMS produces the schedule and kernel as
shown in Figures 2(a) and (b), respectively. Consider how
n6 is scheduled. Its associated scheduling window is[7, 0]
with the largest cycle being tried first. Son6 is scheduled at
cycle 7, which is the first valid choice in the window. The
successor noden0 of n6 has already been scheduled at cycle
0. Since the inter-iteration register dependencen6 → n0
has a distance of 1, the value produced byn6 in one itera-
tion will be consumed byn0 in the next iteration at cycle, 0
+ 1 * II = 8. As shown in Figure 2(b), bothn6 andn0 are
the closest possible to each other (in time).

Modulo scheduling can alter dependence distances in a
loop.

Definition 1. Let u → v be a dependence of distance
d(u, v) in a loop. The distance in the kernel, denoted
dker(u, v), is dker(u, v) = d(u, v) + sv − su, wheresu (sv)
is the stage number ofu (v).

In this example, the inter-iteration dependencen8 →
n5 (with d(n8, n5) = 1) has been turned into an intra-
iteration dependence in the kernel (withdker(n8, n5) = 0).
The distance ofn6 → n0 remains to bedker(n6, n0) =
d(n6, n0) = 1 since bothn6 andn0 are placed in stage 0.
We find that the kernel loop has the following inter-iteration
(flow) dependences:n5 → n0, n5 → n2, n5 → n3,
n6 → n0, n6 → n6, n7 → n3, n7 → n7 andn8 → n8.

Figure 2 (c) shows the execution of the kernel in a two-
core architecture. An arrow pointing from core 0 to core
1 symbolises a register communication event via a pair of
SENV andRECV. Sincen6 → n0 andn6 → n6 share one
producer, only one communication is required. The same is
true forn7 → n3 andn7 → n7.

Recall that in our execution model (Section 3), all over-
lapping lifetimes are implemented via copy instructions. So
the non-neighbouring communication whend(x, y) > 1 is
realised via a sequence of neighbouring communications.

Definition 2. Let x → y be an inter-iteration register de-
pendence, whered(x, y) = 1. The synchronisation delay
incurred by the dependence is estimated to be:

sync(x, y) = issue slot(x)%II − issue slot(y)%II
+ lat(x) + Creg com

(1)

whereissue slot(x) and issue slot(y) are the issue cycles
ofx andy (i.e., those shown in Figures 2(a) and (d)),lat(x)
is the latency ofx, andCreg com = 3 is the latency incurred
in moving a scalar from the producerx to the consumery.

As discussed in Section 5.1, the number of inserted
copies is small for SPECfp2000 benchmarks used in our
experiments. In this SMS solution,sync(n6, n0) =
sync(n7, n3) = 7%II − 0%II + 1 + Creg com = 8 +
Creg com = 8+3 = 11. So consecutive threads are sequen-
tialised due to the synchronisation delay caused. As a result,
the inter-thread memory dependencesn5 → n0, n5 → n2
andn5 → n3 are accidentally preserved.

TMS Instead of scheduling a node at the first available
cycle in its scheduling window to aggressively reduce reg-
ister lifetimes only, TMS finds a scheduling cycle such that
some presently acceptable synchronisation and misspecu-
lation overhead thresholds are also satisfied with respect
to already scheduled nodes. Figures 2(d) and (e) give the
schedule and kernel obtained by TMS, respectively. When
schedulingn6, the time slot in its scheduling window[7, 0]
that leads to the shortest synchronisation delay betweenn6
and the already scheduled successorn0 is cycle 0. So it has
been placedn6 at cycle 1. The noden7 is scheduled iden-
tically. Figure 2(f) shows the execution of the kernel gener-
ated by TMS. Compared to the SMS solution, the synchro-
nisation delay caused byn6 → n0 has been significantly
reduced in the TMS solution. The inter-core memory de-
pendencesn5 → n0, n5 → n2 and n5 → n3 are tracked
by the hardware. Since their dependence probabilities are
assumed to be negligibly small, few misspeculations will
occur during the execution of the TMS-generated kernel.

4.2. Cost Model

This section describes a cost model used to approximate
the execution time of a modulo scheduled loop running on
SpMT processors by taking into account the synchronisa-
tion and misspeculation overheads incurred in enforcing
inter-thread dependences. We consider not only the II of
the loop but also the following four major cost components:

• Cspn: the overhead of spawning a thread on a core

• Cci: the commit overhead by the head thread.

• Cinv: the invalidation overhead from a thread.

• Cdelay: the maximal delay incurred byany synchro-
nised register dependence in a thread. This parameter
approximates the time that a thread spends on wait-
ing for receiving the values forall synchronised reg-
ister dependences from the predecessor thread. It in-
cludes the register communication latencyCreg com in-
troduced in Definition 1 (line 5 of Figure 3).

It is assumed that the number of iterations in a loop is suffi-
ciently larger than the number of cores:N ≫ ncore.

The execution time,T , of a modulo scheduled loop is
composed ofTnomiss (the execution time of the loop in the
absence of misspeculations) andTmis spec (the total mis-
speculation overhead in the loop). They are derived below.

Tnomiss Threads are spawned and committed sequentially,
their spawn times never overlap, and similarly, their com-
mit times never overlap. If threadi suffers a maximum
synchronisation delay, denotedCdelay, so will threadi + 1.
The maximum synchronisation delay times of two threads
cannot overlap. However, one of three cost components,
Cspn, Cci andCdelay, may cancel one of the other two when
threads are executed in parallel. Hence, if a core is always
freely available when a new thread is to be spawned, the
execution time of a loop is bounded by the serial part of a
thread, which is estimated to be:max(Cspn, Cci, Cdelay) ×
N . Otherwise, thread spawning can be stalled if no free core
is available. In this case, the execution time is approximated
by Tlb

ncore
×N , whereTlb = II + Cci + max(Cspn, Cdelay)

is the lower bound for the execution time of a thread. By
combining the two cases, we have:

Tnomiss = max(Cspn, Cci, Cdelay,
Tlb

ncore
) × N (2)

Tmis spec The parallel execution of a loop may be inter-
rupted by misspeculations. After a misspeculated thread
is squashed, its execution will be re-started. The penalty
paid for one misspeculation is roughlyII + Cinv −
max(0, Cdelay − Cspn), whereII + Cinv is the number of
cycles wasted in executing and invalidating the squashed
thread andmax(0, Cdelay − Cspn) is the number of cycles
gained in re-execution since all inter-thread register depen-
dences of the re-started thread are already satisfied.

The probability valuepd of a memory dependenced is in
[0, 1], meaning that for everyX writes at the producer,pdX
reads from the consumer will be made to same memory lo-
cation. As in [5, 14], we assume conservatively that ifd is
an inter-thread memory dependence, thenpdX of X may be
misspeculated. LetM be the set of all inter-thread memory
dependences that may be misspeculated in the kernel. The
misspeculation probability, denotedPM , for the kernel is:

PM = 1 −
∏

e∈M

(1 − pe) (3)

Thus,PM ×N is the total number of misspeculations. The
total misspeculation overhead of a loop is approximated as
Tmis spec = (II+Cinv−max(0, Cdelay−Cspn))×PM ×N .

4.3. Algorithm

Figure 3 gives TMS as a generalisation of SMS, where
the lines in the SMS code are boxed. Like SMS, TMS finds
a schedule iteratively for a loop starting with an empty par-
tial schedule,PS. Whenever a new instruction is added
to PS, some new inter-iteration, i.e., inter-thread mem-
ory dependence may be introduced. Some of these may
be preserved due to the synchronisation delay introduced
by already scheduled instructions. This can be checked by
applying Definition 3, which makes use ofdker(x, y) and
sync(x, y) from Definitions 1 and 2.

1 #DEFINE Pmax = a turnable parameter in[0, 1]
2 TMS()
3 Q0 ← the ordered node list for scheduling
4 LetF(II, Cdelay) = Tnomiss/N = max(Cspn, Cci, Cdelay,

Tlb
ncore

)
5 LetFmin = F(MII, 1 + Creg com)
6 while true do
7 for every(II, Cdelay) s.t.F(II, Cdelay) = Fmin do
8 Q← Q0

9 PS ← ∅
10 while Q 6= ∅ do
11 v← pop(Q)
12 if ISSUE SLOT SELECTION(v,PS) then
13 Addv toPS
14 else
15 break; // restart all over again
16 if Q =∅ then return PS
17 Fmin ++

18 ISSUE SLOT SELECTION (v,PS)
19 for every slotc in the scheduling window[l, u] of v do
20 if slotc has resource conflictsthen continue
21 LetRPS = RegDep(PS)
22 LetMPS = MemDep(PS)
23 LetRv = RegDep(PS ∪ {v}) \ RegDep(PS)
24 LetMv = MemDep(PS ∪ {v}) \MemDep(PS)
25 LetMall be the set of dependences inMPS ∪Mv such that they are

not preserved byRPS ∪ Rv (Def. 3)
26 if the following two conditions holdthen

C1: ∀ x→ y ∈ Rv : sync(x, y)6Cdelay (Def. 2)
C2: Mv 6= ∅ =⇒ 1−

Q

e∈Mall
(1−pe) 6 Pmax

27 return true
28 return false

Figure 3. TMS as a generalisation of SMS
(with the new code indicated with boxes).

Definition 3. For an instructioni, let its latency be de-
noted bylat(i) and its issue slot byissue slot(i) as in
Definition 2. Letx → y be an inter-iteration memory
dependence in the kernel of a loop. LetD be a set
of some inter-iteration register dependences in the kernel
loop. We say thatx → y is preservedby D if there exists
u → v ∈ D, whereu is executed earlier thanx in the ker-
nel, i.e.,issue slot(u)%II < issue slot(x)%II, such that
sync(u, v) > issue slot(x)%II−issue slot(y)%II+lat(x)

dker(x,y) .

According to this definition, the producerx is likely to
be executed before the consumery due to some earlier syn-
chronisation delay. Sox → y is preserved in this sense.

To help us understandISSUE SLOT SELECTION ,
the following definition is introduced.

Definition 4. Let S be a set of scheduled instructions in
the kernel. ThenRegDep(S) (MemDep(S)) is the set of
all inter-iteration register (memory) dependences formed
among the instructions inS. Only flow dependences are
included in both cases.

Let us first explain briefly how SMS works. Given an or-
dered list of the nodes in the DDG of a loop (lines 3 and 8),
SMS starts with II being the minimum II, i.e., MII (line 5)
and iteratively increases the II until a valid schedule is found
(line 16). For a given II, the partial schedule, representedby
PS and initialised to empty (line 9), is incrementally con-
structed (lines 11 and 13). When assigning an issue slot to

the current nodev (line 12), SMS will choose the free avail-
able slotc (line 19) that results in no resource conflicts at
the cycle (line 20). This ensures that afterv has been added
toPS (line 13), all new lifetimes introduced are minimised
so that register pressure in the kernel code is reduced.

In addition to iteratively increasingII, TMS relies on
two additional parameters,Cdelay (lines 4, 7 and 26) and
Pmax (lines 1 and 26), which are also iteratively increased.
When a schedule is constructed, the synchronisation de-
lay associated with every inter-iteration register dependence
must not be larger thanCdelay (line 26.C1). The misspecu-
lation frequency caused by the non-preserved inter-iteration
memory dependences among all already scheduled instruc-
tions must not be larger thanPmax (line 26.C2).

Guided by our cost model, we have evolved SMS into
TMS by making two major modifications. First, TMS min-
imises the execution timeT of a kernel loop rather than
its II. As discussed in Section 4.2,T has two components:
Tnomiss andTmis spec. It is difficult to minimiseT directly
sincePM in Tmis spec is defined for all instructions in the
kernel butPS is only constructed incrementally. So TMS
minimises both components separately as follows:

• Minimisation of Tnomiss. Instead of minimisingT ,
TMS seeks to minimiseTnomiss as its objective func-
tion (lines 4, 5, 7 and 17). In line 4, minimising
F(II, Cdelay) is equivalent to minimisingTnomiss. In
line 5,Fmin is initialised with the minimum ofF at-
tached when II=MII andCdelay = 1 + Creg com. By
Definition 2, 1 + Creg com is the smallest value for
Cdelay. TMS starts withFmin in line 5 and iteratively
increasesFmin (line 17) until a valid schedule is found
such thatF(II, Cdelay) = Fmin (line 7).

II can be bounded by the longest critical path in the
DDG of the loop.Cdelay can be bounded byII/ncore

since not all cores can be fully utilised otherwise.

• Minimisation of Tmis spec. Instead ofTmis spec or PM

given in (3), TMS minimises the misspeculation fre-
quency calculated using (3) for all non-preserved inter-
iteration memory dependences (line 26.C2). In prac-
tice, several values forPmax (line 1) can be tried so
that the best schedule for a loop can be picked.

Second, the issue slot selection strategy in SMS is mod-
ified so that when searching for a free slot for the current
nodev in its scheduling window, both the synchronisation
and misspeculation overheads incurred by the instructions
in PS∪{v} are also kept to presently acceptable thresholds
(lines 23 – 26). In line 21 (22),RPS (MPS) denotes the set
of inter-iteration register (memory) dependences among the
already scheduled instructions inPS that will appear in the
kernel loop. In line 23 (24),Rv (Mv) contains the new ones
to be introduced ifv is added toPS. In line 25,M is the set

of all non-preserved inter-iteration memory dependences in
the kernel with respect to the already scheduled instructions
in PS andv. Note that synchronised and speculated de-
pendences are handled differently. For a synchronised de-
pendencex → y, we only require its delay to be no larger
than the presently acceptable thresholdCdelay (line 26.C1).
For a speculated dependencex → y, some will be unlikely
to cause misspeculations if they are preserved in the kernel
(Definition 3). For those that are not preserved, we require
the misspeculation frequency caused by the instructions in
PS ∪ {v} to be no larger thanPmax (line 26.C2).

After a schedule is built, all overlapping lifetimes are re-
named by introducing register copies. Thus, the distances
of inter-iteration register dependences in the kernel are 1.
All required SEND andRECV instructions are inserted to
synchronise inter-thread register dependences for scalars.

5. Experimental results

We have implemented TMS on top of SMS in GCC 4.1.1
and evaluated the performance on a quad-core SpMT ar-
chitecture using SPECfp2000 benchmarks by simulation.
The effectiveness of TMS in striking a balance between ILP
and TLP and in reducing synchronisation and misspecula-
tion overheads (as motivated in Figure 2) is demonstrated
with the significant speedups attained by TMS- over SMS-
scheduled programs on the quad-core system. In addition,
the effectiveness of TMS in parallelising DOACROSS loops
is demonstrated by examining in detail the performance im-
pact of its success in parallelising a number of frequently
executed DOACROSS loops in some benchmarks.

We excludedgalgel since it cannot be compiled suc-
cessfully. All other 13 benchmarks are compiled under “-
O2” exceptfma3d, which is compiled under “-O1” since a
correct binary was not emitted under “-O2”. In GCC 4.1.1,
loops with single basic blocks and those whose branches
can be converted by compare and move instructions are con-
sidered as candidates for modulo scheduling.

All benchmarks are evaluated using a detailed,
execution-driven micro-architectural simulator built ontop
of SimpleScalar. The train input sets are used to collect
profiling information. The MinneSPEC large input sets are
used for simulation. All benchmarks are simulated to com-
pletion (to measure the impact of all scheduled loops).

In Section 5.1, we present the performance results
achieved by TMS over SMS. In Section 5.2, we demonstrate
the performance advantages of TMS over single-threaded
code using a number of selected DOACROSS loops. We
also explain how a balanced exploitation of ILP and TLP
has contributed to these performance results. Furthermore,
by comparing TMS and SMS, we show how TMS has sig-
nificantly reduced execution stalls at the expense of slightly
increased communication overheads by aggressively reduc-
ing Cdelay. Finally, we give evidence that data speculation

#Loops
AVG AVG SMS TMS

Benchmark
#Inst MII II MaxLive Cdelay II MaxLive Cdelay

wupwise 16 16.2 4.4 5.4 14.0 5.4 9.5 12.5 3.1
swim 11 25.7 6.0 8.6 14.6 6.5 10.1 15.0 2.0
mgrid 10 34.3 8.3 14.2 15.1 14.2 15.2 26.3 5.0
applu 41 46.8 11.9 19.4 18.9 19.2 23.7 24.2 5.8
mesa 51 24.3 5.7 6.8 13.2 6.3 9.2 15.9 2.6
art 10 16.1 7.6 8.1 7.8 8.1 10.6 8.4 4.0

equake 5 43.6 11.4 12.2 16.2 11.8 16.6 17.8 5.0
facerec 26 31.7 8.0 10.5 17.4 9.5 12.7 16.5 2.9
ammp 11 35.6 9.6 13.4 13.7 13.3 16.3 14.0 4.8
lucas 24 169.6 42.2 59.2 38.7 59.1 65.8 42.2 7.9
fma3d 170 29.0 7.3 8.8 16.8 8.8 11.8 19.4 3.7

sixtrack 340 41.2 10.7 14.1 21.9 13.9 23.0 26.8 6.7
apsi 63 29.0 7.7 10.1 17.6 10.1 13.1 18.2 3.6

Table 2. SMS and TMS compared using
traditional metrics for measuring modulo
scheduling in single cores.

can be helpful in achieving performance in some loops.
In addition to MII, II, MaxLive and Cdelay, where

MaxLive represents the number of scalar live ranges that
are simultaneously live at a program point, the following
metrics are also used. The LDP of a loop is referred to the
longest dependence path in the DDG of the loop. Intuitively,
the MII and LDP for a given loop delineate the range of II
values at which a certain degree of ILP is exploitable. The
closer the II of a schedule is to MII, the higher the ILP is. So
the gap between II and LDP represents roughly the degree
of ILP exposed in the scheduled loop. The gap between
II andCdelay indicates roughly the percentage of a thread
that can be executed in parallel with other threads, i.e., the
degree of TLP exposed in the scheduled loop.

5.1. TMS vs. SMS

Table 2 compares SMS and TMS using a total of 778
innermost loops from all the 13 SPECfp2000 benchmarks.
in terms of some traditional metrics used for measuring the
quality of modulo scheduling algorithms for single cores.
According to Columns 3 and 4, the average thread sizes for
most benchmarks are small, indicating that TMS has been
designed to embrace fine-grain, communicating threads.

Let us examine the average values of the three metrics,
II, MaxLive andCdelay, for all benchmarks by comparing
SMS (Columns 5 – 7) and TMS (Columns 8 – 10). For each
benchmark, TMS exhibits a larger II but a much smaller
Cdelay than SMS. On the other hand, the TMS solutions
are found with respect to our cost model despite their rel-
atively larger II values. Since TMS is aggressive in reduc-
ing Cdelay, the average number of stage counts tends to be
slightly larger, resulting in relatively larger MaxLive val-
ues. Note that the gaps betweenII andCdelay values are
smaller under TMS than SMS. Thus, far more TLP has been
exposed in TMS- than SMS-scheduled loops.

The more TLP exposed by TMS over SMS has mostly
translated into the speedups as shown in Figure 4. Good
loop speedups are observed in all benchmarks except
wupwise. The loop speedups correlate well with the the

0

20

40

60

80

100

16
8.
w
up
w
is
e

17
1.
sw
im

17
2.
m
gr
id

17
3.
ap
pl
u

17
7.
m
es
a

17
9.
ar
t

18
3.
eq
ua
ke

18
7.
fa
ce
re
c

18
8.
am
m
p

18
9.
lu
ca
s

20
0.
si
xt
ra
ck

19
1.
fm
a3
d

30
1.
ap
si

S
p
ee
d
u
p
s
(%
)

Region Benchmark

Figure 4. Speedups of TMS over SMS.

statistics given in Table 2. Takeart, which achieves the
largest loop speedup 83%, as an example. The gap be-
tween the average II and averageCdelay achieved by TMS
is far greater than that achieved by SMS. So a greater de-
gree of TLP has been exposed by TMS. The II obtained
by TMS is slightly larger, indicating that the amount of
ILP exposed by TMS is slightly less. Due to a better bal-
ance achieved between ILP and TLP, the TMS-scheduled
loops run much faster than the SMS-scheduled loops in
this benchmark. As forwupwise, TMS achieves no loop
speedup, and consequently, no program speedup although
the TMS-scheduled loops exhibit potentially more TLP.
This is because TMS has increased TLP at the expense of
ILP (by nearly doubling the average II of SMS-scheduled
loops). A detailed examination of the code forwupwise
reveals that the performance-dominating loop inwupwise
parallelised by both SMS and TMS has only one non-trivial
SCC (Strongly-Connected Component). SMS has opted to
fully exploit the inherent ILP with the II being close to the
recurrence II while TMS has opted to exploit more TLP at
the expense of ILP. As a result, both solutions are on a par
in terms of their performance results.

For eight benchmarks, their loop speedups have trans-
lated into visible program speedups due to their good loop
coverage ratios. The average loop and program speedups
for all benchmarks are 28% and 10%, respectively.

5.2. TMS vs. Single-Threaded Code

Seven loops from four benchmarks are selected to eval-
uate the effectiveness of TMS in parallelising DOACROSS
loops. All their enclosing loops are also DOACROSS.

Table 3 lists the benchmarks from which these loops are
selected and some statistics about the selected loops and
their modulo scheduled loops. Two selected loops inart
are small (with 11 instructions each) and are thus unrolled
four times. The selected loops in these benchmarks account
for between 14.3% and 58.5% of the execution times of
these benchmarks. These loops are fine-grained and con-
tain between 16 and 102 instructions.

For each benchmark, the average number of SCCs, the
average MII and the average length of LDPs for its se-
lected loops are given (Columns 4 – 6). Recall that the
gap between II (Column 8) and LDP (Column 7) represents
roughly the potential ILP achievable in the TMS-scheduled

AVG AVG AVG TMS
Benchmark #Loops LC LDP AVG AVG AVG#Inst #SCC MII II ML D

art 4 21.6% 27 3 11 29 15.5 15 5
equake 1 58.5% 82 3 20 26 27 31 6
lucas 1 33.4% 102 8 62 89 64 15 62
fma3d 1 14.3% 72 3 18 34 20 30 6

LDP: Longest Dep Path LC: Loop Coverage ML: MaxLive D:Cdelay

Table 3. Selected loops and their TMS-
scheduled loops.

loops and the gap between II (Column 8) andCdelay (Col-
umn 10) represents the potential TLP in the TMS-scheduled
loops. Thus, the TMS-scheduled loops for the selected
loops inart andfma3d exhibit good ILP and TLP. The
modulo scheduled loop inequake exhibits TLP only and
the modulo scheduled loop inlucas exhibits ILP only.

210.7

0

20

40

60

80

100

179.art 183.equake 189.lucas 191.fma3d Geo.Mean

S
p
ee
d
u
p
s
(%
)

Loop Benchmark

Figure 5. Speedups of TMS over single-
threaded code.

Speedups Figure 5 shows that the above-mentioned im-
provements in ILP or TLP or both in the seven TMS-
scheduled loops have resulted in improved execution times
over their corresponding single-threaded programs. Both
the loop speedups and the program speedups achieved by
these loops alone are given. TMS has significantly im-
proved the performance for the selected loops in all four
benchmarks, resulting in the speedups between 37% to
210% with an average of 73%. Due to their good loop
coverage (Column 3 in Table 3), these loop speedups have
all translated into program speedups. The single loop se-
lected inequake has the largest loop coverage ratio. The
largest program speedup of 24% is observed in this bench-
mark. The loop infma3d has a relatively small loop cov-
erage ratio. So the program speedup is not as significant as
its loop speedup. On average, parallelising these loops has
improved the overall program performance by 12%.

Analysis In comparison with SMS and single-threaded
code, the performance speedups achieved by TMS are
largely due to the significant reductions inCdelay values at
the expense of some slight increases in register communica-
tions. As mentioned earlier, the smallerCdelay is, the larger
the part of a kernel iteration can be executed in parallel with
other iterations. TMS is thus aggressive in reducingCdelay

to expose more TLP in a loop. As shown in Table 2, TMS-
scheduled loops have smallerCdelay and larger MaxLive
values than SMS-scheduled loops.

At run time, Cdelay values can be approximated with
synchronisation stalls. Thesynchronisation stallfor a loop

is measured to be the total number of cycles that all its
committed threads spend on stalling at aRECV instruction
(on an empty receive queue). In Figure 6(a), we see that
TMS-scheduled loops stall significantly less frequently than
SMS-scheduled loops. The average MIIs of the selected
loops inart, equake and fma3d are constrained by re-
sources rather than recurrences. So theirCdelay values can
be small relatively to their IIs (Table 3). As a result, a re-
duction of more than 50% is observed in the three sets of
selected loops. On the other hand, the largest SCC in the
selected loop inlucas is formed by (flow) dependences
whose dependence probabilities are all equal to 1. So its
MII is constrained by the recurrence in the SCC.Cdelay for
the loop turns out to be larger than its MII. Thus, the re-
duced synchronisation overhead is slightly less impressive.

Reduced Synchronization

Stalls of TMS over SMS

0%

20%

40%

60%

80%

ar
t

eq
ua
ke

lu
ca
s

fm
a3
d

G
eo
.M
ea
n

Increased Dynamic #SEND/RECV

Instrutions of TMS over SMS

0%

20%

40%

60%

80%

ar
t

eq
ua
ke

lu
ca
s

fm
a3
d

G
eo
.M
ea
n

Reduced Communication

Overheads of TMS over SMS

0%

20%

40%

60%

80%

ar
t

eq
ua
ke

lu
ca
s

fm
a3
d

G
eo
.M
ea
n

(a) (b) (c)

Figure 6. Synchronisation of TMS vs. SMS.

TMS tradeoffs communication for TLP. By using the
smallestCdelay possible, TMS-scheduled loops tend to have
more stages than SMS-scheduled loops. As a result, TMS-
scheduled loops exhibit slightly larger MaxLive values than
SMS-scheduled loops (Table 2). Figure 6(b) shows the per-
centage increases (in dynamic term) ofSEND/REVC pairs
in all committed threads for the four sets of selected loops.
Even the increase for the loop inlucas is the largest, only
three more pairs ofSEND/REVC instructions are executed
per loop iteration under TMS than SMS.

By combining the synchronisation stall cycles and
SEND/RECV cycles spent in executing all committed
threads in a loop, thecommunication overheadfor the loop
can be approximated. The synchronisation stall is as de-
fined earlier and the number ofSEND/RECV cycles is sim-
ply the product ofCreg com and the dynamic number of
SEND/RECV pairs executed. Despite some more register
communications used, TMS, as shown in Figure 6(c), is ef-
fective in reducing the communication overhead in a loop
relative to SMS, which is important in achieving the perfor-
mance speedups given earlier in Figures 4 and 5.

Finally, let us briefly examine the impact of specula-
tion on performance (due to space limitations). Our TMS
algorithm ensures that the misspeculation frequency (over
the total number of all committed threads) in these seven
loops is less than 0.1%, resulting in negligible misspecu-
lation overhead. Although misspeculations are infrequent
and their performance impact on our benchmarks is negligi-

ble, data speculation can be effective in boosting the perfor-
mance of certain loops. Without speculation, all inter-thread
memory dependences will have to been synchronised, re-
sulting in some loss of TLP in these loops. For example, the
performance gain for the loop (program) would be reduced
by 19.0% forequake and 21.4% forfma3d otherwise.

6. Conclusion

In this paper, we present for the first time a generalisa-
tion of traditional modulo scheduling for parallelising in-
nermost loops to exploit both ILP and TLP simultaneously
on SpMT architectures. We have implemented our algo-
rithm on top of SMS adopted in GCC 4.1.1. Our algorithm
is simple, achieves good performance speedups over the
SMS-scheduled loops and can be effective in speeding up
DOACROSS loops that are difficult to parallelise.

We are working on incorporating loop unrolling into
TMS to allow us to tradeoff between communication and
parallelism by varying thread granularities. We are also
working on extending TMS to also parallelise outer loops.

References

[1] A. Aleta, J. M. Codina, A. Gonzalez, and D. Kaeli. Hetero-
geneous clustered VLIW microarchitectures. InCGO ’07:
Proceedings of the International Symposium on Code Gener-
ation and Optimization, pages 354–366, 2007.

[2] B. M. Beckmann and D. A. Wood. Managing wire delay in
large chip-multiprocessor caches. InMICRO 37: Proceed-
ings of the 37th annual IEEE/ACM International Symposium
on Microarchitecture, pages 319–330, 2004.

[3] J. M. Codina, J. Llosa, and A. González. A comparative study
of modulo scheduling techniques. InICS ’02: Proceedings of
the 16th international conference on Supercomputing, pages
97–106, 2002.

[4] A. Douillet and G. R. Gao. Software-pipelining on multi-core
architectures. InPACT ’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), pages 39–48, 2007.

[5] Z. H. Du, C. C. Lim, X. F. Li, C. Yang, Q. Zhao, and T. F.
Ngai. A cost-driven compilation framework for speculative
parallelization of sequential programs. InProceedings of
Conference on Programming Language Design and Imple-
mentation, 2004.

[6] M. Franklin. The Multiscalar Architecture. PhD thesis, The
University of Wisconsin at Madison, 1993.

[7] L. Hammond, M. Willey, and K. Olukotun. Data speculation
support for a chip multiprocessor. InASPLOS-VIII: Proceed-
ings of the eighth international conference on Architectural
support for programming languages and operating systems,
pages 58–69, 1998.

[8] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore
era. Technical Report CS-TR-2007-1593, University of Wis-
consin, April 2007.

[9] R. A. Huff. Lifetime-sensitive modulo scheduling. InPLDI
’93: Proceedings of the ACM SIGPLAN 1993 conference on

Programming language design and implementation, pages
258–267, 1993.

[10] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ran-
ganathan, D. Gulati, D. Burger, and S. W. Keckler. Com-
posable lightweight processors. InMICRO 50: Proceedings
of the 40th annual IEEE/ACM International Symposium on
Microarchitecture, 2007.

[11] V. Krishnan and J. Torrellas. Hardware and software sup-
port for speculative execution of sequential binaries on a
chip-multiprocessor. InProceedings of the 12th International
Conference on Supercomputing, pages 85–92, 1998.

[12] J. Llosa. Swing modulo scheduling: A lifetime-sensitive ap-
proach. InPACT ’96: Proceedings of the 1996 Conference
on Parallel Architectures and Compilation Techniques, 1996.

[13] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. InMICRO
38: Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture, pages 105–118, Washing-
ton, DC, USA.

[14] C. G. Quinones, C. Madrile, J. Sanchez, P. Marcuello,
A. Gonzalez, and D. M. Tullsen. Mitosis compiler: An infras-
tructure for speculative threading based on pre-computation
slices. InProceedings of Conference on Programming Lan-
guage Design and Implementation, 2005.

[15] B. R. Rau. Iterative modulo scheduling: an algorithm for
software pipelining loops. InMICRO 27: Proceedings of the
27th annual international symposium on Microarchitecture,
pages 63–74, 1994.

[16] H. B. Rong, Z. Z. Tang, R. Govindarajan, A. Douillet, and
G. R. Gao. Single-dimension software pipelining for multi-
dimensional loops. InCGO ’04: Proceedings of the interna-
tional symposium on Code generation and optimization, page
163, 2004.

[17] J. Sánchez and A. González. Modulo scheduling for a fully-
distributed clustered VLIW architecture. InMICRO 33: Pro-
ceedings of the 33rd annual ACM/IEEE international sympo-
sium on Microarchitecture, pages 124–133, 2000.

[18] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry.
Improving value communication for thread-level speculation.
In International Symposium on High-Performance Computer
Architecture, 2002.

[19] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal.
Scalar operand networks.IEEE Trans. Parallel Distrib. Syst.,
16(2):145–162, 2005.

[20] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ot-
toni, and D. I. August. Speculative decoupled software
pipelining. In PACT ’07: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), pages 49–59, 2007.

[21] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry.
Compiler optimization of scalar value communication be-
tween speculative threads. InInternational Symposium on
Architectural Support for Programming Languages and Op-
erating Systems, 2002.

[22] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A dis-
tributed control path architecture for vliw processors. InIn
Proc. of the 14th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 197–206, 2005.

[23] H. T. Zhong, S. A. Lieberman, and S. A. Mahlke. Extend-
ing multicore architectures to exploit hybrid parallelismin
single-thread applications. InHPCA, pages 25–36, 2007.

