
MFLUSH : Handling Long-latency loads in SMT On-Chip Multiprocessors

Carmelo Acosta †, Francisco J. Cazorla ?, Alex Ramirez †?, Mateo Valero †?

† Universitat Politecnica de Catalunya
HiPEAC European Network of Excellence

Barcelona, Spain
{cacosta,aramirez,mateo}@ac.upc.edu

? Barcelona Supercomputing Center
Barcelona, Spain

{francisco.cazorla,alex.ramirez,mateo.valero}@bsc.es

Abstract

Nowadays, there is a clear trend in industry to-
wards employing the growing amount of transistors on
chip in replicating execution cores (CMP), where each
core is Simultaneous Multithreading (SMT). State-
of-the-art high-performance processors like the IBM
POWER5 and POWER6 corroborate this CMP+SMT
trend. Within each SMT core any of the well-known
SMT mechanisms may be applied to face SMT related
challenges. Among them, probably the most important
issue in an SMT execution pipeline concerns the In-
struction Fetch (IFetch) Policy. The FLUSH IFetch
Policy represents a choice for throughput-oriented sce-
narios. It handles L2 cache misses in order to avoid
hardware resource monopolization by any given exe-
cution thread; involving an additional energy cost via
instruction refetching. However, the new constraints
imposed by the CMP+SMT scenario may affect well-
known SMT mechanisms, like the FLUSH mechanism.

In this paper we revisit the FLUSH mechanism and
analyze its application in the emerging CMP+SMT
scenario. The included analysis points out the new
difficulties to be faced by the FLUSH mechanism in
the emerging CMP+SMT scenario. Then we pro-
pose a novel IFetch Policy designed to cope with the
CMP+SMT scenario: the MFLUSH. We also include
a complete evaluation of the MFLUSH policy, both in
terms of throughput and energy consumption. Our re-
sults indicate that the MFLUSH, specifically designed
for the emerging CMP+SMT scenario, succeeds not
only in overcoming the specific CMP+SMT constraints
but also allowing a 20% energy consumption reduction
without a significant system throughput loss.

1 Introduction

As process technology advances, and we have at
our disposal more transistors on a single chip, the is-
sue of how to effectively employ so many resources
gains importance. This quest of effectiveness led to
Simultaneous Multithreading (SMT) [7, 13, 16] and
On-Chip Multiprocessors (CMP) [8]. Nowadays, there
is a clear trend in industry towards CMP or even
CMP+SMT processors, like the Intel Core 2 Duo [15],
IBM POWER5 [11] and POWER6 [6], and Sun T1 [2]
and T2 [1] Niagara processors. This trend seems to
head towards high-degree CMPs 1, with lots of on-chip
cores.

On the one hand, conventional CMP designs share
the second level (L2) cache among all the on-chip cores
by means of an interconnection switch. As the num-
ber of on-chip cores increases, the pressure on both the
L2 cache and the interconnection network is also aug-
mented. As a result, the L2 cache access time turns
more unpredictable.

On the other hand, the L2 cache access time is used
in SMT processors to detect L2 cache misses. As shown
by Tullsen et al. in [12], L2 cache misses are of key im-
portance in SMTs. Thus, a long latency instruction,
like an L2 cache miss, in any running thread may stall
the whole machine. The Instruction Fetch (IFetch)
Policy may avoid these harmful situations, determining
from which thread(s) instructions are fetched every cy-
cle. Several authors have shown that long latency oper-
ations have to be taken into account by the IFetch Pol-
icy in order to boost SMT performance [3, 4, 12, 14].
Some of these IFetch Policies track the delay of loads
when accessing the outer cache level (the L2 cache in
our processor setup) in order to determine whether

1In this paper the term degree of a CMP refers to the number
of cores of the CMP. Analogously, the term degree of an SMT
refers to the number of contexts of that SMT. For example, the
IBM POWER5 is a 2-degree CMP where each core is a 2-degree
SMT.

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.48

173

they miss. Once an L2 cache miss is detected the corre-
sponding thread is stopped/flushed to prevent resource
monopolization.

In this paper we shed some light on the implica-
tions of having multiple SMT cores sharing a single L2
cache. We focus our analysis on the application of the
FLUSH [12] IFetch Policy to the emerging CMP+SMT
scenario, with multiple SMT cores sharing an L2 cache.
As we augment the number of replicated SMT cores
sharing the same L2 cache both the memory traffic
(between each core and L2 cache) and the contention
(L2 cache banks and ports) increases, resulting in new
challenges to be faced up. From this analysis, we pro-
pose a novel IFetch Policy designed to cope with the
emerging CMP+SMT scenario: the MFLUSH. We in-
clude a complete evaluation of the MFLUSH both in
terms of throughput and energy consumption. Our re-
sults indicate that the MFLUSH, specifically designed
for the emerging CMP+SMT scenario, succeeds not
only in overcoming the specific CMP+SMT constraints
but also allowing a 20% reduction in the required en-
ergy consumption without a significative (less than 3%)
system throughput loss.

2 Methodology

We use a trace driven SMT simulator derived from
SMTsim [13]. The simulator consists of our own trace
driven front-end and an improved version of the SMT-
sim’s back-end that provides multicore support. Our
simulator also permits simulating the impact of execut-
ing along wrong paths on the branch predictor and the
instruction cache by having a separate basic block dic-
tionary, in which is contained information of all static
instructions.

Our workloads use the SPEC2000 benchmark suite.
We have collected traces of the most representative 300
million instruction segment of each benchmark, follow-
ing the idea presented in [9]. Each program is com-
piled with the –O2 –non shared options using DEC Al-
pha AXP-21264 C/C++ compiler and executed using
the reference input set. Since a complete study of all
benchmarks is not feasible due to excessive simulation
time, we have randomly chosen some of them compris-
ing 5 workloads for 4 different workload sizes (i.e., 20
workloads). The name of each workload is xWy, where
x stands for the number of threads involved and y
stands for the workload identifier (e.g., 6W2 identifies
the second workload with 6 threads). Each workload
size x is simulated on a CMP+SMT implementation
with x

2 two-hardware-context SMT cores. In order to
obtain comparable results using different IFetch Poli-
cies all simulations are executed for a fixed interval of

Core Parameters

Pipeline depth 11 stages
Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 4 int, 3 fp, 2 ld/st
Physical Registers 320 regs.
ROB Size* 256 entries
Branch Predictor perceptron

(4K local, 256 perceps.)
BTB 256 entries,

4-way associative
RAS* 100 entries

Cache Hierarchy Parameters

L1 icache 64KB, 4-way, 8 banks
L1 dcache 32KB, 4-way, 8 banks
L1 lat./miss 3/22 cycs.
I-TLB ,D-TLB 512 ent. Full-associative
TLB miss 300 cycs.
L2 Cache 4MB, 12-way, 4 banks
L2 latency 15 cycs.
Main Memory lat. 250 cycs.

gzip a eon h apsi o facerec v
vpr b gap i wupwise p applu w
gcc c vortex j equake q galgel x
mcf d bzip2 k lucas r ammp y
crafty e twolf l mesa s mgrid z
perlbmk f art m fma3d t
parser g swim n sixtrack u

Number of Threads
Name 2 4 6 8

xW1 b, j b, q, t, j l, b, q, f, t, j d, l, b, g, i, j, c, f
xW2 n, e l, n, p, e g, l, n, p, e, a b, g, m, n, a, h, o, p
xW3 d, a d, s, r, a d, l, s, w, r, a m, n, r, q, i, j, e, h
xW4 g, f g, b, m, f r, g, b, m, h, f l, b, g, m, n, r, f, s
xW5 r, p r, j, f, p h, l, e, r, m, d q, b, c, k, e, a, o, t

Figure 1. Simulation parameters and Work-
loads. (resources marked with * are repli-
cated per thread)

120 millions of simulation cycles. Figure 1 shows the
main simulation parameters and the chosen workloads.

3 Analysis

In our research we focus on CMPs comprised of SMT
cores, or simply CMP+SMT. Each SMT core allows
two threads running simultaneously and has its private
instruction and data cache (see details in Figure 1).
The first level cache is connected, through an on-chip
bus-based interconnection network, to a shared multi-
banked L2 cache. The icache and dcache of each core
is connected to all the shared L2 cache banks.

In our analysis, we evaluate the interaction between
the shared L2 cache and the IFetch Policy implemented
within each SMT core. Both the memory traffic, be-
tween L1 and L2 caches, and contention effects, regard-
ing the use of each shared L2 cache bank, are consid-
ered. Two well-known SMT IFetch Policies are used
in our research: ICOUNT and FLUSH.

174

The ICOUNT policy [14] prioritizes threads with
fewer instructions in the pre-issue stages, and presents
good results for threads with high Instruction Level
Parallelism (ILP). However, SMTs have difficulties
with threads that experience many loads that miss
in the L2 cache. When this situation happens, the
ICOUNT does not realize that a thread can be blocked
on an L2 cache miss and will not make forward progress
for many cycles. Depending on the amount of instruc-
tions dependent of the blocked load, many processor
resources may be blocked and the total throughput suf-
fers from a serious slowdown.

The performance of IFetch Policies dealing with
load miss latency depends on the following two fac-
tors: the Detection Moment (DM) and the Response
Action (RA). The DM indicates the moment in which
the policy detects a load that fails or is predicted to
fail in cache. Possible values range from the fetch of
the load until the moment that the load finally fails
in the L2 cache. Two characteristics associated with
the DM are the reliability and the speed. The higher
the speed of a method to detect a delinquent load, the
lower its reliability. On the one hand, if we wait un-
til the load misses in L2 (Non-Speculative implementa-
tion), we know for certain that it is a delinquent load:
totally reliable but too late. On the other hand, we
can predict (Speculative implementation) which loads
are going to miss by adding a load miss predictor to
the front-end. In this case, the speed is higher, but
the reliability is low due to predictor mispredictions.
The RA indicates the behavior of the policy once a
load is detected or predicted to miss in cache. That
is, it defines the measures that the IFetch Policy takes
for delinquent threads. With these two parameters, we
will classify all current policies related to long latency
loads.

In [12] several RA are proposed. We focus on the
mechanism leading to the best performance, called
FLUSH. As a result of applying FLUSH, the offend-
ing thread temporarily does not compete for resources.
More importantly, the hardware resources used by this
thread are freed, giving the other threads full access
to them. Several DM are proposed for the FLUSH
response action.

• Delay after issue DM: When this DM is used, a
load is declared to miss in the L2 cache when it
spends more cycles in the cache hierarchy than
needed to access the L2 cache, including possible
resource conflicts. We will refer to this FLUSH ’s
DM as Speculative (FL-SX), where X stands for
the delay (cycles) after which the mechanism is
triggered.

Figure 2. Throughput in single-core SMT.

• Trigger on miss DM: In this case we wait until
the load miss in the L2 cache to start the corre-
sponding RA. We will refer to this FLUSH ’s DM
as Non-Speculative (FL-NS).

3.1 Single-core analysis

According to our simulation parameters (see Fig-
ure 1) we chose 30 cycles (FL-S30) as FLUSH trigger,
that is the delay waited prior to activate the FLUSH
mechanism once a load is issued from the correspond-
ing queue.

Our results are consistent with [12]: the delay-after-
issue DM yields better results than trigger on miss,
both improving ICOUNT. For this experiment, we sim-
ulated a single-core SMT configuration. In this unipro-
cessor, with two hardware contexts, we ran all 2-thread
(2Wy) workloads in Figure 1. Figure 2 shows the
comparison between ICOUNT and Speculative FLUSH
(FL-S30) results. From these results it can be asserted
that the FLUSH mechanism effectively reduces system
throughput losses in workloads containing threads with
bad memory behaviors. Thus, the FLUSH mechanism
yields speedups of up to 93%, with average speedup of
22%. However, as described in the following section,
these asserts are highly dependent on the amount of
replicated SMT cores.

3.2 Multiple-core analysis

Next, we simulated the remainder workloads in Fig-
ure 1, replicating SMT cores with two threads per core.
Figure 3 shows the average results per each workload
size. These results point out that the prior asserts
made for the single-core case, regarding the perfor-
mance of the FLUSH mechanism, are not valid for the
multicore CMP+SMT configurations. In fact, as we in-
crease the amount of replicated SMT cores the 22% av-
erage speedup, obtained with the FLUSH mechanism
in a single-core SMT when compared to ICOUNT, ex-
periences a progressive reduction. With a 4-core config-
uration (8 thread workloads - 8Wy), the FLUSH mech-

175

Figure 3. Average throughput in multicore
CMP+SMT configurations.

Figure 4. Average L2 cache hit time.

anism’s performance improvement disappears yielding
a 9% average slowdown.

In order to shed some light into the rationale behind
these results, we deeply analyzed the influence of the
access time to the shared L2 cache. Figure 4 shows the
average number of cycles required for each load that
hits on the shared L2 cache, since it is issued from
the load/store queue until it is finally served. For this
measurement we use the ICOUNT policy since it does
not alter the L2 cache access patern.

Figure 4 points out that the probability of suffer-
ing from high latencies in L2 cache accesses increases
with the amount of SMT cores. As indicated in Fig-
ure 1, each of the 4 banks of the shared L2 cache is
single-ported and has an access latency of 15 cycles.
That is, two consecutive accesses to the same L2 cache
bank cannot be served in less than 15 cycles. Each
SMT core implements 2 Load/Store Units, shared by
the two threads running in the core. Within each core
it is also implemented a 16-entry MSHR queue that
keeps track of the outstanding memory requests. In
case of L2 hits, consecutive accesses to the same L2
cache bank may overlap yielding a higher access time.
As an example, the fourth consecutive L2 hit to the
same L2 cache bank would experience a 45-cycle delay.
Each additional SMT core increases in 2 the number
of loads that can be issued in a single cycle, with the
consequent increment of the pressure on both the in-
terconnection network (L1-L2 bus) and the shared L2
cache.

Figure 4 also indicates that the dispersion of the

L2 access time also increases with the number of SMT
cores. Focusing on the average L2 hit time for a 4-core
implementation in Figure 4, about half the L2 hits are
equally distributed in the range of 20-70 cycles. This
fact points out that there is no a single threshold, to be
used as trigger value for the FLUSH mechanism, which
provides good results for all cases. This high variability
in the L2 cache access time hampers the predictability
of the L2 behavior:

• On the one hand, if we set a low threshold value
the number of false misses increases. That is, the
number of long-latency L2 hits predicted as L2
misses. As a result, the performance of the FLUSH
policy is heavily affected.

• On the other hand, if we set a high threshold value
the number of cycles a thread can clog resources
increases, leading to performance loss. We com-
ment this issue in the next section.

To sum up, the performance of the FLUSH mecha-
nism exhibits a clear trend to get diminishing returns as
we increase the number of SMT cores in a CMP+SMT
scenario. In fact, the FLUSH mechanism turns inef-
fective just by passing from a dual core to a quad core
implementation, as depicted in Figure 3.

3.3 Detection Moment Analysis

The results in Figure 4 exhibit higher levels of dis-
persion as the number of SMT cores increases. In this
section we analyze how does this issue affect the choice
of the right trigger for the FLUSH mechanism. Thus,
we ran some additional simulations covering a wider
DM spectrum. For an explanatory analysis, we chose
two representative 8-thread workloads: (a) 8W3 (see
Figure 1) and (b) an 8-thread workload comprised of
instances of bzip2 and twolf, where instances of the
two applications never share a single core. Figure 5
shows the results obtained using different values for
the FLUSH’s trigger, ranging from 30 to 150 cycles.
The non-speculative implementation (FL-NS) is also
included.

In Figure 5(a), the trigger that yields the highest
throughput is 50 cycles. However, compared to spec-
ulative instances, the non-speculative FLUSH imple-
mentation yields the highest overall throughput. In
Figure 5(b), the best trigger value is 90 cycles. These
examples illustrate that there may be different trig-
ger values which best balance the amount of false
misses and clog resources, yielding the highest over-
all throughput. That is, the choice of the right value
depends on each specific workload.

176

Figure 5. Detection Moment Analysis.

4 The MFLUSH Policy

The MFLUSH mechanism adapts the FLUSH [12]
and STALL [12] phylosophy to the emerging
CMP+SMT scenario. Built on top of ICOUNT [13],
the MFLUSH mechanism avoids the waste of resources
by threads blocked waiting for memory. Whenever a
thread waits for a memory access to be resolved, the
MFLUSH mechanism predicts its resolution time and
reacts accordingly. Since the CMP+SMT scenario has
less memory access predictability than the prior SMT
scenario, this issue turns into a non-trivial task. The
MFLUSH is designed to cope with the varying work-
load behavior and memory traffic conditions of the
emerging CMPs comprised of SMT cores sharing one
or multiple L2 Caches. Thus, it adapts its L2 miss pre-
dictions to the varying conditions instead of using an
heuristic prediction value, as done in FLUSH.

The MFLUSH mechanism establishes, according to
the specific system characteristis, an operational en-
vironment as shown in Figure 6. For each memory
access the MFLUSH mechanism predicts its resolution
time, based on prior accesses. These predictions fall in
the MIN - MAX range (See Figure 6), where MIN and
MAX correspond to the L1 and L2 cache miss latency,
respectively. As seen in prior sections, the access time
of an L2 cache may experience high variability when
multiple SMT cores share it. The more cores shar-
ing a single L2 cache and interconection bus, the more
traffic/memory contention. In order to consider this
factor, the MFLUSH operational environment includes
a Multicore Traffic (MT) delay, that is added to both
MIN and MAX values as shown in Figure 6. The MT
delay obeys the following equation:

MT = (L1 L2 Bus delay + L2 Bank Acc delay)∗

∗(Num Cores− 1) (cycles)

Due to the high-variability of the L2 cache access
time in CMP+SMT implementations sharing a single
L2 cache, it cannot be used an static value to predict
L2 cache misses, as done by the the FLUSH mecha-
nism in SMT processors. For each L2 cache access,
the MFLUSH mechanism predicts its resolution time
according to the varying conditions of memory traf-
fic and contention. The mechanism to obtain these
predictions is described in Section 4.1. Based on each
prediction, the MFLUSH dynamically estimates a Bar-
rier value for that memory access. Whenever a mem-
ory access lasts more than Barrier cycles without be-
ing resolved it is considered to miss in the L2 cache.
In that case, the FLUSH mechanism is triggered (See
Figure 6), both stalling the offending thread and free-
ing some of its hardware resources (e.g., rename regis-
ters, instruction queue entries, etc). Exactly as in the
FLUSH mechanism, the offending thread remains idle
until the memory access is resolved. During this pe-
riod of time, the freed resources, originally devoted to
the newest instructions of the offending thread, may
be used by all other running threads in the same SMT
core. The Barrier estimation obeys the following equa-
tion:

BARRIER = L2prediction+MIN
2 + MT (cycles)

In presence of high memory traffic/contention, an
L2 cache hit (Late) may be as harmful as an L2 cache
miss. In that case, the Barrier value could be too
high, involving a possible resource waste. In order
to reduce the negative effects of Late L2 hits, the
MFLUSH considers suspicious all L2 cache accesses
that last more than MIN + MT execution cycles to
be resolved. As shown in Figure 6, the MFLUSH op-
erational environment establishes a Preventive State
for all suspicious memory accesses. Thus, any threads
with a suspicious in-flight memory access is stalled by
the MFLUSH mechanism, preventing it from obtain-
ing additional hardware resources. However, a thread
in the Preventive State is still running and can make
forward progress with the instructions priorly fetched
into the execution pipeline. Whether the suspicious
memory access is resolved before reaching the Barrier
the corresponding thread is removed from the Preven-
tive State. In that case, the thread is allowed to fetch
new instructions into the pipeline. Otherwise, the sus-
picious memory access is predicted as an L2 miss, and
the FLUSH mechanism is triggered.

177

Figure 6. MFLUSH Operational Environment.

Triggering the FLUSH mechanism has a cost, both
in terms of performance and power consumption. A
flushed thread is stalled until the offending memory ac-
cess (load instruction) is resolved, avoiding additional
forward progress in the whole thread. Besides, all
the newest instructions issued, from the last fetched
instruction to the offending memory instruction, are
flushed away from the execution pipeline. By the time
the offending memory access is resolved, the thread
resumes its execution, fetching again in the execu-
tion pipeline all flushed instructions. Consequently,
all flushed instructions have a higher cost in terms of
power consumption. The exact cost depends on the
pipeline stage the instruction was by the time it was
flushed. Therefore, making an smart use of the FLUSH
mechanism is critical to obtain both good performance
and a moderated power consumption.

4.1 MFLUSH Hardware Support

In order to obtain both fast and accurate dynamic
predictions, the MFLUSH policy requires some addi-
tional hardware support, shown in Figure 7. Each
SMT core holds an 8-bit register (MCReg) per each
L2 cache bank used. The MCReg register keeps the
latency of the last L2 cache hit in the corresponding
L2 cache bank. The MFLUSH mechanism assumes the
same behavior in consecutive accesses to the same L2
cache bank. Hence, the MFLUSH uses the value in the
corresponding MCReg register to quickly predict the
latency of the next access to the same L2 cache bank.

Figure 7 shows an example for a 4-core CMP imple-
mentation where all cores share a 4-banked L2 cache.
Each core is connected to each of the L2 cache banks
by means of a shared bus. In case of an L1 cache miss
in core 0, the L2 cache bank that should contain the re-
quested data is first determined using the address of the
corresponding memory access. The MFLUSH mecha-
nism then accesses the corresponding MCReg register
and uses its content as prediction of the L2 hit latency.
Thus, if bank 2 was acceded, the latency prediction
would be of 55 cycles, as shown in Figure 7. Using this
L2 hit latency prediction the MFLUSH mechanism pro-

Figure 7. MFLUSH hardware support for a 4-
core CMP with a 4-banked L2 Cache.

ceeds with the appropriate response according to the
varying memory traffic/contention conditions, as de-
scribed in Section 4.

The MCReg registers admit more complex con-
figurations, involving queues (i.e., history length :
MCReg = 1 ; queues > 1) and more complex func-
tions to determine the prediction from all queue entries.
However, to keep it simple and fast we use a single
MCReg register per core and per L2 cache bank. Our
results confirm that this choice allows tracking quick
memory behavior changes.

4.2 MFLUSH Throughput Evaluation

Figure 8 shows the system throughput evaluation for
CMP+SMT implementations with 2, 3, and 4 cores,
using 4, 6, and 8-thread workloads respectively. The
results in Figure 8 include, for each workload, 4 evalua-
tions using different IFetch Policies: ICOUNT, Specula-
tive FLUSH with 30-cycle trigger (FLUSH-S30), Spec-
ulative FLUSH with 100-cycle trigger (FLUSH-S100),
and MFLUSH. Figure 8 shows that in general, the high-
est results are obtained using FLUSH-S100. However,
it is not true for all considered workloads, as in the case
of 4W4, 6W4, and 8W1, in which the MFLUSH yields
the highest results. The results in Figure 8 also con-
firm that a bad trigger choice in Speculative FLUSH,
as happens with FLUSH-S30 (30 cycles) in most of the
cases, may yield even worse results than the ICOUNT
IFetch Policy. Examples of this situation are 4W1,
6W1, and 8W4. Recall that this trigger choice yields
an average 22% speed-up over ICOUNT in single-core
SMT, as shown in Figure 2. Something similar occurs
in the 4W3 workload, where the ICOUNT IFetch Pol-
icy yields 4% speed-up over MFLUSH. This isolated
fact is due to the specific workload and microarchitec-
ture characteristics.

Focusing on average results, it can be asserted from
Figure 8 that the MFLUSH effectively succeeds in
giving high throughput results, 2% close to the best
performing Speculative FLUSH option (FLUSH-S100).
This goal is achieved without requiring additional in-
formation regarding neither the trigger value to be used

178

Figure 8. Throughput Results.

nor the underlying CMP+SMT implementation. Re-
call that Speculative FLUSH requires to specify apriori
a trigger value (i.e., a 100-cycle trigger for the FLUSH-
S100).

4.3 MFLUSH Power Consumption Evalu-
ation

It is well-known that the FLUSH mechanism
is a high-power-consumption alternative aimed at
throughput-oriented scenarios, in which the system
throughput is the main concern regardless of the power
required. Flushing away instructions from the pipeline,
and having to re-fetch them afterwards, implies an ad-
ditional energy cost. This cost depends on the pipeline
stage in which was the instruction by the flush time.
According to the energy consumption analysis done
in [5], Figure 9(a) shows the energy consumption dis-
tribution, per each hardware resource, in a typical ex-

ecution pipeline. Assuming that each instruction re-
quires 1 energy unit to be committed (the exact en-
ergy amount depends on the specific microarchitecture
specifications), and given the resource usage through
the execution pipeline stages shown in Figure 9(b) for
a typical SMT core, Figure 10 shows the Energy Con-
sumption Factor. This factor allows to estimate the
additional energy required by the FLUSH mechanism,
just tracking the number of flushed instructions in each
pipeline stage and applying the corresponding factor
value. Compared to FLUSH, the MFLUSH mechanism
only adds a read access to a local 8-bit register on L1
cache misses. A write access to that register is only
required in case of L2 hits. Due to its reduced cost,
the MFLUSH hardware support is not added to the
Energy Consumption Factor.

Nowadays, the power-aware constraints are present
even for throughput-oriented scenarios. Although
there are still scenarios in which obtaining the highest
throughput is the main concern, the power constraints
impose severe constraints on how this goal is achieved.
Consequently, any architectural advance which reduces
the energy consumption without hardly compromissing
the total throughput is of particular interest.

Figure 11 shows the Wasted Energy implied by each
Speculative FLUSH (FLUSH-S30 and FLUSH-S100)
and MFLUSH IFetch Policy. This Wasted Energy
strictly corresponds to the additional energy required
by the FLUSH mechanism, which requires re-fetching
flushed instructions once resolved the corresponding
memory accesses. The Wasted Energy is measured in
energy units in Figure 11, that is the amount of en-
ergy required to commit 1 instruction. The results in
Figure 11 are obtained using the Energy Consumption
Factor (See Figure 10) and the number of instructions
flushed in each pipeline stage. Figure 11 indicates that
FLUSH-S100 wastes in average 10% more energy than
FLUSH-S30. Although FLUSH-S100 involves less to-
tal flushes than FLUSH-S30, it involves more instruc-
tions to be reflushed. Waiting more time implies more
instructions fetched into the execution pipeline by the
time the FLUSH mechanism is triggered, and therefore
a greater amount of instructions to refetch. Figure 11
also points out that aggressive flushing comes at an
extra energy cost. In all cases the MFLUSH obtains
significant energy consumption reductions, reaching
20% when compared with the best-performing Spec-
ulative FLUSH choice (FLUSH-S100), that obtains a
marginal 2% throughput improvement over MFLUSH.
Consequently, the MFLUSH IFetch Policy constitutes
not only a solution to the unpredictability of the L2
cache latency in the emerging CMP+SMT scenario but
also provides an important energy consumption saving.

179

(a) Distribution (% per resource).

(b) Pipeline Stages/Resources Distribution.

Figure 9. Energy Consumption.

Energy Consumption Factor
Pipeline stage Local Accumulated
Fetch 0,13 0,13
Decode 0,03 0,16
Rename 0,22 0,38
Queue 0,26 0,64
Reg. Read 0,05 0,69
Execute 0,13 0,82
Reg. Write 0,05 0,87
Commit 0,13 1

Figure 10. Energy Consumption Factor.

Figure 11. FLUSH Wasted Energy.

5 Related Work

The FLUSH mechanism was proposed by Tullsen et
al. in [12] as an improvement for the ICOUNT [14]
policy in single-core SMT processors. The ICOUNT
policy has difficulties with threads that experience
many loads that miss in L2, being unable to realize
that a thread can be blocked on an L2 miss and do
not make forward progress for many cycles. Depend-
ing on the amount of instructions dependent of the
blocked load, many processor resources may be blocked
and the total throughput suffers from a serious slow-

down. Several FLUSH implementation choices were
analyzed in [12], focusing on the simplest and less ex-
pensive ones : Trigger on Delay or Speculative FLUSH.
With the rise of the emerging CMP comprised of SMT
cores, like the IBM POWER5 [11] and POWER6 [6],
it must be faced a new challenge: the unpredictabil-
ity of the L2 cache hit latency. The MFLUSH mech-
anism adapts the FLUSH and STALL phylosophy to
the new CMP+SMT scenario, obtaining both dynamic
adaptability to the varying memory traffic/contention
conditions and important energy consumption savings.

Several authors have shown that long latency opera-
tions have to be taken into account by the IFetch Policy
in order to boost SMT performance [3, 4, 12, 14]. In
order to apply them to the new CMP+SMT scenario a
similar analysis, as done in this paper, should be per-
formed. Revisiting prior well-known high-performance
proposals when moving to a new application scenario
generally requires this type of prior analyses.

Shin et al. propose an Adaptative Dynamic Thread
Scheduling (ADTS) [10] to manage the resource shar-
ing in SMT processors. The ADTS improves the
system throughput in SMT processors by adapting
the underlying IFetch Policy to the workload charac-
teristics. Thus, the ADTS changes the IFetch Pol-
icy used among ICOUNT [14], BRCOUNT [14], and
L1DMISSCOUNT [14], according to the varying work-
load characteristics. In this work we propose the
MFLUSH mechanism that adapts the FLUSH and
STALL philosophy to the emerging CMP+SMT sce-
nario. The MFLUSH dynamically adapts to the vary-
ing memory traffic/contention conditions and addition-
ally achieves important energy consumption savings.

6 Conclusions

In this paper we analyze the new challenges to be
faced in future high-degree Multithreaded CMPs, with
multiple SMT execution cores sharing an L2 cache
(CMP+SMT). In particular we focus on probably the
most important SMT issue: the Instruction Fetch Pol-
icy. Considering ICOUNT and FLUSH IFetch Policies
we show results which evidence that CMP+SMT may
not simply relly on SMT IFetch Policies to boost over-
all throughput. SMT IFetch Policies must be revisited
when moving to the new CMP+SMT scenario.

From the exhaustive analysis included herein, it is
proposed a novel IFetch Policy designed to cope with
the emerging CMP+SMT scenario: the MFLUSH. We
include a complete evaluation of the MFLUSH, both
in terms of throughput and energy consumption. Our
results indicate that the MFLUSH succeeds not only
in overcoming the specific CMP+SMT constraints but

180

also allowing a 20% energy consumption reduction
without a significative system throughput loss.

Acknowledgements

This work has been supported by the Ministry of
Education of Spain under contract TIN2007-60625,
the Barcelona Supercomputing Center(BSC) and the
HiPEAC European Network of Excellence. The au-
thors wish to thank Daniel Ortega, Ayose Falcon,
Jeroen Vermoulen, and Oliverio J. Santana for their
support and help with the simulation tools.

References

[1] UltraSPARC T2 Supplement to the UltraSPARC Ar-
chitecture 2007.

[2] UltraSPARC T1 Supplement. Draft D2.0, 17 Mar,
2006.

[3] F. J. Cazorla, E. Fernández, A. Ramirez, and
M. Valero. Dynamically Controlled Resource Alloca-
tion in SMT Processors. In Proc. of MICRO-37, 2004.

[4] A. El-Moursy and D. H. Albonesi. Front-end policies
for improved issue efficiency in SMT processors. In
Proc. of HPCA-9, 2003.

[5] D. Folegnani and A. Gonzalez. Energy-Effective Issue
Logic. In Proc. of ISCA-28, 2001.

[6] H. Le, W. Starke, J. Fields, F. O’Connell, D. Nguyen,
B. Ronchetti, W. Sauer, E. Schwarz, and M. Vaden.
IBM POWER6 microarchitecture. IBM J. Res. Dev.,
51(6):639–662, 2007.

[7] M. J. Serrano and R. Wood and M. Nemirovsky. A
Study on Multistreamed Superscalar Processors. Tech-
nical Report 93-05, University of California Santa Bar-
bara, 1993.

[8] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,
and K. Chang. The case for a single-chip multiproces-
sor. In Proc. of ASPLOS-7, 1996.

[9] T. Sherwood, E. Perelman, and B. Calder. Basic Block
Distribution Analysis to Find Periodic Behavior and
Simulation Points in Applications. In Proc. of PACT-
10, 2001.

[10] C. Shin, S-W. Lee, and J-L. Gaudiot. Dynamic
scheduling issues in SMT architectures. 2003.

[11] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eicke-
meyer, and J. B. Joyner. POWER5 System microar-
chitecture. IBM J. Res. Dev., 49(4/5):505–521, 2005.

[12] D. M. Tullsen and J. A. Brown. Handling Long-latency
loads in a Simultaneous Multithreaded Processor. In
Proc. of MICRO-34, 2001.

[13] D. M. Tullsen, S. Eggers, and H. M. Levy. Simultane-
ous multithreading: Maximizing on-chip parallelism.
In Proc. of ISCA-22, 1995.

[14] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy,
J. L. Lo, and R. L. Stamm. Exploiting choice: Instruc-
tion fetch and issue on an implementable simultaneous
multithreading processor. In Proc. of ISCA-23, 1996.

[15] Ofri Wechsler. Inside Intel Core Microarchitecture.
White Paper.

[16] W. Yamamoto and M. Nemirovsky. Increasing super-
scalar performance through multistreaming. In Proc.
of PACT, 1995.

181

