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Abstract—We address the recently recognizedprivatization H SE|-1!" To:
problem in software transactional memory (STM) runtimes, /1 privatizer /1 non-privatizer
and introduce the notion of partially visible reads (PVRs) to atomc { atomc {
heuristically reduce the overhead of transparent privatization. pL. head = L. head; n = L. head;
Specifically, PVRs avoid the need for a “privatization fence” L. head = NULL; while (n.val !=x) {

n = n.next; }

several techniques to trade off the cost of enforcing partial : for (each n in plL) { process(n);

visibility with the precision of conflict detection. We also consider process(n); }
certain special-case variants of our approach, e.g., for predom

nantly read-only workloads. We compare our implementations to Fig. 1. Privatization Problem Example.
prior techniques on a multicore Niagaral system using a variety

of artificial workloads. Our results suggest that while no one s . .
technigue performs best in all cases, a dynamic hybrid of PVRs The privatization problem has two manifestations. In the

and strict in-order commits is stable and reasonably fast across a delayed cleanup problem [7], transactional writes interfere
wide range of load parameters. At the same time, the remaining with nontransactional reads and writes of privatized data,

overheads are high enough to suggest the need for programming typically because a committed transaction has yet to “redo”
model or architectural support. its writes into the master copy of some object, or because an
. INTRODUCTION aborted transaction has yet to “undo” its writes to that erast

Transactional Memory (TM) is a promising technologyf@PY- In thedoomed transaction problem [17], nontransac-
for concurrency control in future multicore systems. Thional writes to privatized data lead to inconsistent reas,
programmer marks regions a& omi ¢ and relies on the consequently, erroneous behavior in some transactiorhtsat

underlying system to execute those regions concurrentgnwh N0t Yet realized it has to abort.
ever possible. Whether implemented in hardware (HTM), Figure 1 can be used to illustrate both cases. Thread T1 uses
software (STM), or a combination of the two, TM system@ transaction to truncate likt after which it processes entries
typically execute optimistically, using rollback to reemfrom hontransactionally. Her@r ocess(n) may modifyn in ar-
(hopefully uncommon) conflicts between transactions. Whikitrary ways. In parallel, thread T2 searches for and psees
HTM has the presumed advantage of speed, STM can be ma@ngle node in L transactionally. T2’s transactional accesses
flexible, and will be needed in any event for legacy system8f L are speculative, completely controlled by the state of
Recent work [1], [2], [14], [15] has revealed several sulransactionalmetadata associated with accessed locations. In
tleties in STM implementation, among them tpivatization MOst systems, however, T1's nontransactional accesseseign
problem. Informally, privatization is an action taken by athis metadata.
transaction that modifies program state in such a way thag¢ som Delayed cleanup.In anundo log-based STM, transactional
previously shared data structure will henceforth be aerkssvrites are made directly to the target locations, while main
by only one thread. Privatization is a logically valid ogeoa taining a log for old values that should be restored on abort.
under single-lock semantics [7] (an intuitively appealingdel In such a system, T2 may execute up to line 5, after which T1
in which every transaction executes as if by acquiring @xecutes its transaction and starts processing the tehtat
global lock). Unfortunately, most STM implementations d@L. At this point T2 is doomed to abort; however it continues
not correctly implement single-lock semantics in the fate ¢o modify n, which may be read by T1 nontransactionally,
privatization, because they allow accesses to privatizetd dresulting in a data race. Inrado log-based STM, transactional
to race with transactional accesses that are physically but natites are made in a local buffer and flushed to target lonatio
logically concurrent. on commit. In this case T2 may execute up to—and through—
o ) ] its commit point, and be about to flush its speculative update
At the University of Rochester, this work was supported imt iy NSF

grants CNS-0411127, CNS-0615139, CCF-0702505, and CSIB79B; and L0 N0den, when it gets delayed, say due to preemption.
by financial support from Intel and Microsoft. Meanwhile, T1 may execute its transaction (serializingraft

1Abadi et al. [1] and Menon et al. [8] have recently describgaligication T2) and then read the unmodified versionnof

problem symmetric to privatization. We do not consider the lipabon .
problem here, but our solutions support the intuitipeblication-by-store Doomed transactions. In both undo log and redo log STM

idiom. systems, suppose T2 locates nodand starts processing it. In
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the mean time, T1 completes its transaction (thus ensuiniaig t (wis/txn [ rts |

T2 will eventually abort) and starts modifying nontransac- (a) Simple orec (b) With read timestamp
tionally. If T2 does not immediately notice that its transac
is doomed to fail, it may access mutually inconsistent pairts
n. This may lead to arbitrary program behavior in unmanagée) For multiple readers (d) With grace periods
languages like C and C++.

|wts/txn| rts,tid | |wts/txn| rts,tid | grace|

[wis/txn [ ris;tid | grace | curr_reader|
Many previous systems have either explicitly [1] or im- (e) With current reader lock

plicitly assumed that sharable data is always accessednhwith

transagtlon_s. Others [15] have made prlyatlzgtlon an er_h Fig. 2. Ownership Record structures to support partiabiligy of reads.

operation, in which case one can consider |mplementat|0nsg

that incur costs only when privatization is required. In the

current paper we explore the possibility sife, transparent o0 rrent transactions to reach a safe point. Reader hint

privatization—that is, true realization of single-lock smICS. o4 ency can be tuned to balance the rate of false positives
Prior work with similar goals has tended to pursue one of W, ingt the Jatency of transactional reads and the overhead
approaches: (1) By waiting at the end of a transaction unfif .ache contention. Since the balance may be different in

all potentially competing transactions have complete@, €m jitarent applications, we consider a scheme that adapttseto
ensure that subsequent nontransactional accesses docaot SRered workload

with those transactions. If privatization is to be transpdyr We present our basic scheme of partially visible reads in

such afence operation must appear, conservatively, at thgection Il. Extensions that reduce metadata updates ame cac

end of each transaction. (2) By instrumenting nontrangaati ‘pressure appear in Section Ill. In Section IV we contrast
accesses, one can arrange for them to respect trar_lsaCt'&?ﬁT approaches based on serialization of both transaction
metadata, th.er(_aby avoiding both races and e.nd'Of'traDBathommit and cleanup [3], [9], [16]. We also present a hybrid
blocking. This is the approach typically required fsrong approach that combines strict ordering and partial vigybil

isolation [2], [7], [14], a stricter semantics that guaranteeg, give reasonably good performance for a variety of work-

isolation of transa}ctions with respect tp npntr.ansactimaﬂs loads. Empirical evaluation appears in Section V, follovgd
and stores even in the absence of privatization. conclusions in Section VI.

In a previous technical report [15] we compared instru-
mentation based privatization to several implementatiohs Il. BASIC SCHEME FORPARTIAL VISIBILITY
fences. In general, we found that fences were faster at modeiNe say that a transactional read fartially visible if
thread counts, but that instrumentation of nontransaation

accesses led to greater scalability for workloads domihatg writer can tell that readeredst (or are likely to exis),

by transactions. Note, however, that privatization i ve Without necessarily being able to tell who they are. If npléi

mainly as a Waiy o a,void instrijmentation overhead on nngnsactions read a location more or less concurrentlyt mos
fransactional accesses. In one locally developed conipuat of them can ski2p the metadata updates, letting the other(s)
geometry benchmark [13], over 95% of run-time is devote&oVer for them:

. . L s We have implemented partially visible reads inward-
to manipulation of privatized data; in this case zero-ogarh . : .
M based STM, where conflict detection occurs at the granularity
access is critical to acceptable performance.

geall . Id wai it time for “cl of small, contiguous, fixed-size blocks of memory [4], [11].
I. e"q y, & transaction would wait at commit t'lme Or "Cl€aRrhis section describes our implementation for an undo log-
point” in all and only those concurrent transactions withiakh based version of the system. A redo log variant (with commit-

ithas a _conflict. '!'he principal difficulty m implem_entinquu time locking [4]) is discussed in Section IV. We believe that
a fence is the typical asymmetry of conflict detection. Tou;hvoour techniques can also be applied in an object-based STM.
the overhead of metadata updates in reader transactiods (an

the cache misses those updates impose on other transictigNSThe Word-based STM

most STM systems make readérsisible to writers [12]. A .
committing writer has no way to identify the readers with Like several state-of-the-art STMs [4], [10], [17], our wler

which it conflicts. Our previous fence-based work therefor?ea_sed STM leverages a glpbally synchromze_d CIOCk.tO ef-
waited for a clean point ill concurrent transactions. iciently guarantee transaction consistency. Like Harnsl a

. ) Fraser [5], we hash each memory location into a table of
In this paper we explore an alternative approach based (SWnership record (orec) structures. An orec consists of a 32-
partially visible reads (PVRs). Rather than a precise indicatio

. 'hit field that contains either a write timestamyptg), which
of reader status, we regard metadata updateresabout the indicates the time at which the orec was modified, or a pointer

possibility' 9f conflict. When used for privatigation, ocazsal to the transaction descriptor (txn) of the transaction that
false positives are harmless (false negatives are of COULSE < the orec. as shown in Figure 2(a). A transaction résor
not permitted). After detecting a possible conflict with a '
concurrent reader, the writer executespravatization fence 2|n general,two readers must make updates, so a writer can tell whether

in its commit phase; this forces it to wait for a subset afere any readers other than itself. We return to this issugeiction II-E.




the global clock value (implemented as a 32-bit integerjrdur to quickly identify the oldest transaction that has not yet
its initialization in a privatebegin_ts field. completed cleanup.

A transactional read of location by a transactionR Our current implementation maintains a linked list con-
verifies that the corresponding ore@, is unowned (contains taining all active transactions and all those that have tador
a timestamp, not a descriptor pointer) and also thatvas but not yet completed cleanup. The list is sortedbegin_ts
last modified beforeR began execution (by comparin@’s values, and is protected by a simple spin lock. A transaction
wts with R’s begin_ts). If the verification succeeds® logs! inserts (enqueues) itself in the list during initializatiand
and O’s wts in its private read set; otherwis® aborts. removes itself after completing its commit/abort protoddie

A transactional write ofl by a transactioni requires head node corresponds to the oldest incomplete transaction
ownership ofl. This is achieved by first confirming that Since list nodes are statically allocated on a per-threaispa
is consistent (as in the case of reads) and then atomicallydbegin_ts values are monotonically increasing, we can ob-
modifying O to indicate ownership. (I©D is already owned, tain a lower bound on the timestamp of the oldest transaction
W aborts.) Transactional writes are made directly to the'slatavithout acquiring the lock, provided that we double-cheud t
“real” location; old values are stored in a privatedo log. At head pointer after reading the contents of the head nodee If t
commit time, W atomically advances the global clock to th@ransaction doing the lookup is itself the head of the lisg t
next time step. The above rules imply a contention manageext node in the list is inspected to assess a potential cbonfli
ment policy in which both readers and writers defer to prioks we shall see in Section V, the list can become a bottleneck,
concurrent writers, but writers “sail past” prior concurre but only when transactions are very short. We are currently
readers, dooming them to eventually abort. exploring lighter weight implementations of the centrat.li

B. Reader Timestamps D. The Privatization Fence

Our implementation of partial visibility, like our consisicy A writer W that identifies a possible conflict with concur-
checks, relies on the global clock. We add a read timestamgnt transactions executes a privatization fence at cortmnt
(rts) field to the orec, as shown in Figure 2(b). Naively(aborted transactions do not execute the fence since tHey wi
we could update this field to the current time whenever wee re-executed anyway). A transaction always removed itsel
read!. Unfortunately, this would significantly increase cach&om the central list before waiting on the fence. The fence
contention. Instead, we observe that a writer doesn'tyealte is a simple loop that waits for all transactions to begin on or
exactly when a read occurred in reader transadlioanly that after the time at which the writer committed. Optimizatidos
it happened wheik was active. In effect, any timestamp valugeduce this waiting time are a subject of future work.
greater thanR.begin_ts constitutes an adequate indication of BecauselV waits only if some concurrent transaction has
R's interest inl. We therefore arrange, wheR reads/, to read a datum that was modified bl (or that shares an orec
update O.rts only if O.rts < R.begin_ts—that is, only if with such a datum), our scheme should avoid privatization
no location corresponding t@ is known to have been readfences in most cases of data access parallelism. The davnsid
since R began execution. Intuitively, this design choice shouldf the approximate nature of partially visible reads is tHat
significantly reduce cache contention on hotspot locationsay have to wait for several (in some casal$) concurrent
(e.g., the root of a shared tree structure) that are accesseaters to finish if it has conflicted witiny concurrent reader.
in read-only mode most of the time. ] o

E. Write-after-Read Condition
C. Identifying When to Wait If only one concurrent reader were to modify ths, a

Because writers “sail past” readers in our system, a priveiansaction that reads and then modifiesould see itself as a
tizing writer transaction/’/’ must wait for the completion of conflicting reader, and would be forced to incur a privatorat
reader transactions that conflict with” and (a) are doomed fence, waiting for all concurrent readers even when it was th
or aborted but have not yet “undone” changes that migbhly one that read. To avoid this condition we augment the
be read nontransactionally, or (b) are doomed and mightec structure with @d field, shown in Figure 2(c). This field
perform erroneous actions if they were to see the resuiiglicates the ID of the last reader transaction that modified
of nontransactional private writes. In any program that i9.rts. A reader must update both fieldgs( tid) together to
data race free under single-lock semantics, for any coimiijict avoid the write-after-read false positive. In addition, wse
transactionR there will exist a datumi that has been readthe least significant bit ofid to indicate multiple concurrent
by R and modified byl (d need not necessarily have beemeaders ofD. This convention complicates the partial visibility
privatized itself). process: A reader must determine whether it needs to set the

In principle, W could find the transactions for which to waitmultiple readers bit in the target oredi field. It does so
by perusing the read sets of all not-yet-completed traiwst in the case where the ored's indicates that its last reader
whosebegin_ts is less than or equal t@.rts. In practice, we may still be live. Similarly a writer must detect if there are
approximate this policy by waiting faall readersk such that multiple concurrent readers of the target orec in case tlitemr
R.begin_ts < ¢, wheret is the maximum, over all owned itself was the last reader. To avoid races between readers,
orecs O, of O.rts. To support this tactic, we must be ableour basic scheme uses an atomignpare-and-swap (CAS)



instruction to update the partial visibility fields (we relthis fields changed in the interim, indicating that there was & rac
in Section 111-B). with a concurrent reader. If the values changRdotes that it
needs to set the least significant bit of titefield (indicating
existence of multiple concurrent readers@¥ and retries the

In this section we describe refinements to our basic implehole process. If the values did not chande,overwrites
mentation that help reduce latency and cache pressure.sd/e &loth fields, together, using a singdere instruction. It then
present an optimization for read-only transactions. re-examineg)’s curr_reader field to see if it containg?’s ID.

] If so, R zerosO'’s curr_reader field. If not, a data race occurred
A. Grace Periods with a concurrent reader ad. R notes that it must setd’s

In the basic scheme of Section Il, a reader transactitemst significant bit and retries the entire process.
updates ore@ by writing the current timet to O.rts. Our Note that all loads and stores in this process must perform
first optimization is based on the observation that it is alsn the specified order. The process works because (a) if there
correct to writet + G for any non-negative constant. The exists a data race amony readers, at leasv — 1 of them
effect will be to reduce the frequency with which concurrentill detect the race and repair any stale updates made to the
readers must also update. The potential downsides areorec, and (b) a temporarily stale timestamp is harmlessuseca
(a) false positives—cases in which a privatizing writéf the thread that wrote it remains in the central list of active
believes there is a conflict, but all reads actually occurredhnsactions until the update is corrected, so any comijcti
before W.begin_ts—and (b) extended delays—cases in whiclvriter will still incur a privatization fence. Given limitespace,

W waits for a readeR that started after the most recent readie do not present a detailed correctness argument.
actually occurred.

We call G the grace period. Figure 2(d) shows the structure
of an orec that supports grace periods on a location-bytitota For read-only transactions, the delayed cleanup problem
basis. In our basic systend; = 0. In the extreme case, if does not arise. Partial visibility serves to avoid the dodme
G = oo, there will be no partial visibility updates, but almostransaction problem, but it is an expensive solution. Read-
every writer will suffer a privatization fence. In betweehere only transactions can skip becoming partially visible iéyh
is a gradual tradeoff between the frequency of partial iligib validate their read sets whenever a writer transaction dtsnm
updates and the precision of conflict detection. This design choice is similar in spirit to thalidation fence

The ideal grace period value would appear to be a funaf our earlier technical report [15]. Whenever a transacison
tion of workload characteristics. There is a natural alponi about to make its first write, its makes all its reads pastiall
to chose an appropriate value dynamically. Specifically, wisible before proceeding. This way a read-write transacti
increase the grace period exponentially (up to a maximumprotected from both halves of the privatization problem.
limit—256 time steps in our experiments) with each succéssfu
partial visibility update, and decrease it exponentiafiycase
of a detected conflict. We experimented with other stragegie An alternative approach to privatization safety is to easur
such as linear increase and decrease of grace periods,med ghat transactions complete their cleanup in serializatiafer.
hybrids. However, the exponential increase and decreeste stWorking independently, Detlefs et al. [3], Olszewski et[8l,
egy delivered the best performance for our microbenchmarksd Spear et al. [16] have developed STM systems which,

o ) ) while differing in many ways, all share a pair of design
B. Eliminating the Atomic Operation choices that together solve the delayed cleanup problem: (1

On many machines, atomic operations are significantly mateey buffer updates in a redo log; (2) they ensure that the
expensive than ordinary loads and stores. It is unfortunatemmit and cleanup order of transactions is the same as their
that in addition to the cache pressure due to partial vigibil serialization order.
atomic operations in orec updates increase the latency ofThe intuition behind these choices is quite simple: In redo
transactional reads. Fortunately, there are several waysldg STMs, an aborting transaction never interferes witteasc
implement partial visibility updates without atomic optimas. to privatized data. Moreover committing transactions can d

We take an approach reminiscent of Lamport’s fast mutusd only when the commit and serialization orderings of two
exclusion lock [6]. We add a new field to the orec calledr more transactions are inverted. Consider the exampie fro
curr_reader, shown in Figure 2(e). This field serves as a “semkigure 1.72 will interfere with T'1’s private access te iff
mutual exclusion” lock for the partial visibility updateqaess. 72 commits. This however, is possible onlyIf2 serializes
A readerR of orecO first reads thets andtid fields, together before7'1, and7'2's post-commit updates te are delayed.
in a singleload, to determine whether it needs to update thEnsuring thatl’2’s post-commit cleanup happens befdre
orec. If so, it checks to see whethé's curr_reader field completes will eliminate the delayed update problem.
contains a non-zero value. If so, it spin-waits for the value  Agreement in the order of serialization, commit, and
become zero. It then stores its ID in@s curr_reader field, cleanup can be achieved in several ways. In our experiments,
indicating to the system thak is in the process of making awe use (roughly) the technique employed by Detlefs et al. [3]
partial visibility update toO. R then checks if ther(s, tid) at Microsoft: A committing writer first acquires ownership

IIl. OPTIMIZATIONS

C. Read-only Transaction Optimization

IV. STRICT ORDERING OFWRITERS



of locations it intends to update (this can happen at commui$ a trivial upper bound on the throughput one might ideally

time or at the time the writer does its speculative writet). hope to combine with privatization safety.

then requests a global ticket/bakery lock (i.e., takes let)¢ We conducted experiments on microbenchmarks covering

validates its read set, writes back its speculative updateiss a wide range of workload characteristics. Specifically, we

for its ticket to be “served”, and then increments the tidket present throughput results for three data structures: (iagh

its successor. (A queue-based lock could be used to simitable fashtable) with 64 buckets and 256 keys. This bench-

effect. In our experiments both approaches performed Bquahark represents workloads containing very short transasti

well. We report results of the ticket-lock approach.) (2) A binary search treebét) containing up to a million nodes.
The JudoSTM of Olszewski et al. [9] dispenses with orecdghis benchmark represents workloads with moderately large

and the notion of acquisition. A committing writer simplytransactions. (3) A collection of (64) small to relativebrge

acquires a global lock, validates its read set, writes bé&ek linked lists fnulti-list). This benchmark represents workloads

redo log, and releases the global lock. In the RingSTM afith moderate (accessing several dozen locations) to large

Spear et al. [16], the writer reads the head of an ordered l{gccessing hundreds of locations) transactions. A traiosac

of committed transactions, verifies that its read set do¢s r@ither inserts, deletes, or looks up a node in these stes:tur

conflict with the write sets of prior transactions on that (is We vary the distribution of these operations and reportltesu

need only check those that started after it did), and thels addr 80% and 20% lookups.

its own write set to the list with a single CAS instruction. Throughput experiments were conducted on a Sun T1000
The three systems also take different approaches to tfagara” chip multiprocessor with 8 cores and 4 threads per

doomed transaction problem. The Microsoft system usegincgore. All STMs were implemented in C with an AP providing

mental validation. JudoSTMandboxes dangerous operations.stm_begin, stm_read, stm_write, andstm_commit methods. All

RingSTM uses lightweight polling of a global commit countetthe libraries were compiled usingcc v4.2.0 at the- G8
Strict ordering promises to deliver better performancenth@ptimization level. Threading levels were varied from 1 fo 3

partially visible reads in workloads consisting of shomiming  Throughput was averaged over 3 test runs. In each test run,

transactions—particularly if most transactions are realg;o €ach thread executed® transactions.

since such transactions do not have to perform operationdn single thread runs we found that partial visibility in

on the central data structure. Our empirical results confirpyrBase led to 30-80% slowdown relative to (privatization-

this intuition. In response, we developed a dynamic hybrinsafe) TL2. pvrCAS improved overpvrBase by a margin

of strict ordering and partially visible reads in the hop®f 10-30%, andpvrStore improved overpvrCAS by about

of adapting to the offered workload. Unlike the basic and0%. TheVal andOrd approaches had practically no runtime

optimized schemes described above, the hybrid uses redo I&yerhead in the contention-free case.

At first a transaction performs invisible reads. Once theirea N hashtable, partial visibility performed the worst with

set size crosses a specified threshold (16 in our experijnen®s high read-only transaction rate (Figure 3(a)). This is due

and the transaction observes that another concurrentr\eige 0 central list operations, even for read-only transastion

committed (by monitoring the global clock at each read arfPminating the runtime. ThevrWriterOnly variant scales a bit

write), it makes its reads partially visible. This entailstiing ~ Petter, but flattens at higher thread counts due to conteotio

itself in the central data structure for partial visibilit¥riters, —the central list. When the percentage of read-write trafwat

for their part, must check for possible conflicts with pdlyia is high (Figure 3(b)), onlyOrd and pvrHybrid scale well.

visible readers, and wait on the privatization fence if msegy. ~ Ord continues to outperform PVRs bst with a high read-

A writer must also respect the strict ordering of commits. Only transaction rate (Figure 3(c)). HowevevrWriterOnly ap-
proaches the performance ©fd. Since transactions are larger

V. PERFORMANCEEVALUATION in bst, pvrHybrid executes most of them in partial visibility
mode, and hence performs comparably vpitfBase, pvrCAS,
We implemented several variants of partial visibility irandpvrStore. Again the central list becomes a bottlenehl
the word based STM described in Section 1I-A. Throughp@xperiences the most delay at the validation fence at the end
results appear in Figure 3. CurperBase employs the basic of each writer transaction, and hence scales worst.
scheme without the grace periods heuristic. CypweCAS is When the percentage of read-only transactions is low (Fig-
the version augmented with a 256-time-step grace period, e 3(d)),Ord performs a little better than other approaches at
described in Section Ill-A. CurvevrStore replaces CAS-based low thread counts. However, with increasing thread coun, t
commit of pvrCAS with the CAS-free commit of Section 111-B; frequency of validation increases significantly. Everjyall
pvrwriterOnly adds the read-only transaction optimization gbartial visibility curves catch up witlord. Val does not scale
Section III-C. We also implemented an every-transactidi vain this case either.
dation fence [15]V¥al) and, from Section IV, the strict ordering We see a distinct cross-over betwegim and the PVR algo-
approach of Detlefs et alogd), and the strict ordering/partial rithms (other tharpvrwriterOnly) in multilist. Partial visibility
visibility hybrid (pvrHybrid). As a baseline for comparison, wescales the best in all variants of this benchmark (Figure$ 3(
used a system modeled o02 [4], a state-of-the-art STM that through 3(h)). Note thapvrStore outperformspvrCAS by a
does not guarantee privatization safety. This compari$asg noticeable margin in the largeaulti-list variant (Figures 3(g)
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Fig. 4. Effect of grace periods on various STMs.



and 3(h)). This shows that eliminating the atomic operation In the end, despite improvements in run time techniques,
does help significantly in workloads with long running transhe overhead of transparent privatization in STMs remains
actions.pvrHybrid cannot match the performance of the othetaunting. Moreover, transparent privatization (and pabion)
PVR implementations because its transactions incur doulpieecludes several efficient STM runtime implementatioris [4
overhead—a privatization fence in the presence of conflic{s], [10], [11], indicating that production-quality systs may
and strict ordering related waiting. require architectural or programming model innovations to
In all benchmarks, except the largeulti-list variant, the support such programming idioms.
grace period optimization does not improve scalabilityrove
pvrBase. Grace periods did reduce the number of atomic
Operations for par“a”y visible readS, ranging from abb0% [1] M Abadi, A. Birrell, T. Harri§, and M. Israd. _Semantics ofansac-
reduct_ion in_bst to up to 90% in the largenulti-list bench_mark gloengll_m\le_ gg}ﬁcﬁgﬁlgogqnatgim%g ng%zfﬁhnﬁ?%u’:gg
(see right side of Figure 4). However, as noted earlier,@rac  san Francisco, CA, Jan. 2008.
periods also increase false positives for conflict detactiol2] C. Blundell, E. C. Lewis, and M. Martin. Deconstructingahsactions:
between Writgrs and.already completed readers. All gra}phs E*;ﬁoﬁgﬁ’jﬁf'r%f 2,2;\ E)e”;f,l%,ﬁg‘?K‘}Qd’?é'é‘ﬁf"'w\?f)ﬁ'ﬁgpz%régup"Ca"ng’
on the left side of Figure 4 show the percentage of write[3] D. Detlefs, T. Harris, M. Magruder, and J. Duffy. Unpuied Internal
transactions that detect a conflict with a possibly conattrre ” Communication, 2007.

. L . ] D. Dice, N. Shavit, and O. Shalev. Transactional Lockihg20th Intl.
reader and wait at the privatization fence. Grace periceisisi Symp. on Distributed Computing, Stockholm, Sweden, Sept. 2006.

lead to a significant number of false positives. As a result, g T. Harris and K. Fraser. Language Support for LightwéiGitansactions.
greater number of writer transactions end up waiting, aed th 13?;1 A”ntlal ACM S‘G;'AA’\‘I_C;T“‘- OlOer]e‘?t'Ofc'i“eg tpfgg[%m'”gr
. . . . ems, Languages, an pplications, Ananeim, , Oct. .
Performance advantage of grace peHOdS 1S qUICkly lost WIJ['[’%S] L. Lamport. A Fast Mutual Exclusion AlgorithmACM Transactions
increasing numbers of concurrent threads. on Computer Systems, 5(1):1-11, 1987.
At the same time, grace periods show significant improve/] J. R. Larus and R. Rajwarlransactional Memory. Morgan-Claypool

! L i Publishers, 2006.
ment overpvrBase in the large multi-list benchmark: The ] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-TabaiaR. Hud-

number of reads per transaction is significantly higher ia th ~~ son, B. Saha, and A. Welc. Single Global Lock Semantics in a

case. As a result, grace periods lead to significantly fewer Weakly Atomic STM.3rd ACM SIGPLAN Workshop on Transactional

CAses per transaction. This savings suffices to offset thg Corpuling, Salt Lake Oy, U e, 2, o udoSTM: A Byric

overhead of superfluous privatization fences. Binary-Rewriting Approach to Software Transactional Meynof6th
The pvrHybrid approach showed good performance for 'E?t'- Coan{- on Pafg“e' Azfggi;ec'ﬂ”% and Compilation Techniques,
. . . . rasov, Romania, Sept. .
workloads with short running transactionisaghtable). With 1 1 Riegel, C. Fetzer, and T. Hohnstein. Time-based Tetimnal
a little longer transactions ibst, its performance deteriorates ~ Memory with Scalable Time Base&9th ACM Symp. on Parallelism in
due to an increasing number of transactions running inglarti ] élgosf’ltums 6/1_\r10|RArC/Tctjtlec;u:)asi %an DFleegoL, CHA,dJune 2@07(.: it
f . . . ana, R - labatabal, . . uason, . . Inmaa
V|S|b'|'ty_m0d_e anc_l Iaccessmg the (?en_tral list. With evengéa B. Hertzberg. McRT-STM: A High Performance Software Tratismal
transactions immultilist, the central list is less of a bottleneck; Memory System for a Multi-Core Runtim&ith ACM SIGPLAN Symp.
however, the performance deteriorates even further becaus ©on Principles and Practice of Parallel Programming, New York, NY,

of the two-fold overhead: (i) superfluous privatizationdea ,, Mar. 2006.
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