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Abstract—We address the recently recognizedprivatization
problem in software transactional memory (STM) runtimes,
and introduce the notion of partially visible reads (PVRs) to
heuristically reduce the overhead of transparent privatization.
Specifically, PVRs avoid the need for a “privatization fence”
in the absence of conflict with concurrent readers. We present
several techniques to trade off the cost of enforcing partial
visibility with the precision of conflict detection. We also consider
certain special-case variants of our approach, e.g., for predomi-
nantly read-only workloads. We compare our implementations to
prior techniques on a multicore Niagara1 system using a variety
of artificial workloads. Our results suggest that while no one
technique performs best in all cases, a dynamic hybrid of PVRs
and strict in-order commits is stable and reasonably fast across a
wide range of load parameters. At the same time, the remaining
overheads are high enough to suggest the need for programming
model or architectural support.

I. I NTRODUCTION

Transactional Memory (TM) is a promising technology
for concurrency control in future multicore systems. The
programmer marks regions asatomic and relies on the
underlying system to execute those regions concurrently when-
ever possible. Whether implemented in hardware (HTM),
software (STM), or a combination of the two, TM systems
typically execute optimistically, using rollback to recover from
(hopefully uncommon) conflicts between transactions. While
HTM has the presumed advantage of speed, STM can be more
flexible, and will be needed in any event for legacy systems.

Recent work [1], [2], [14], [15] has revealed several sub-
tleties in STM implementation, among them theprivatization
problem. Informally, privatization is an action taken by a
transaction that modifies program state in such a way that some
previously shared data structure will henceforth be accessed
by only one thread. Privatization is a logically valid operation
under single-lock semantics [7] (an intuitively appealingmodel
in which every transaction executes as if by acquiring a
global lock). Unfortunately, most STM implementations do
not correctly implement single-lock semantics in the face of
privatization, because they allow accesses to privatized data
to race with transactional accesses that are physically but not
logically concurrent.1
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1Abadi et al. [1] and Menon et al. [8] have recently described apublication
problem symmetric to privatization. We do not consider the publication
problem here, but our solutions support the intuitivepublication-by-store
idiom.

List L;
T1: T2:

// privatizer // non-privatizer
1: atomic { 1: atomic {
2: pL.head = L.head; 2: n = L.head;
3: L.head = NULL; 3: while (n.val != x) {
4: } 4: n = n.next; }
5: for (each n in pL) { 5: process(n);
6: process(n); } 6: }

Fig. 1. Privatization Problem Example.

The privatization problem has two manifestations. In the
delayed cleanup problem [7], transactional writes interfere
with nontransactional reads and writes of privatized data,
typically because a committed transaction has yet to “redo”
its writes into the master copy of some object, or because an
aborted transaction has yet to “undo” its writes to that master
copy. In thedoomed transaction problem [17], nontransac-
tional writes to privatized data lead to inconsistent readsand,
consequently, erroneous behavior in some transaction thathas
not yet realized it has to abort.

Figure 1 can be used to illustrate both cases. Thread T1 uses
a transaction to truncate listL, after which it processes entries
nontransactionally. Here,process(n) may modifyn in ar-
bitrary ways. In parallel, thread T2 searches for and processes
a single noden in L transactionally. T2’s transactional accesses
of L are speculative, completely controlled by the state of
transactionalmetadata associated with accessed locations. In
most systems, however, T1’s nontransactional accesses ignore
this metadata.

Delayed cleanup. In anundo log-based STM, transactional
writes are made directly to the target locations, while main-
taining a log for old values that should be restored on abort.
In such a system, T2 may execute up to line 5, after which T1
executes its transaction and starts processing the truncated list
pL. At this point T2 is doomed to abort; however it continues
to modify n, which may be read by T1 nontransactionally,
resulting in a data race. In aredo log-based STM, transactional
writes are made in a local buffer and flushed to target locations
on commit. In this case T2 may execute up to—and through—
its commit point, and be about to flush its speculative updates
to node n, when it gets delayed, say due to preemption.
Meanwhile, T1 may execute its transaction (serializing after
T2) and then read the unmodified version ofn.

Doomed transactions. In both undo log and redo log STM
systems, suppose T2 locates noden and starts processing it. In
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the mean time, T1 completes its transaction (thus ensuring that
T2 will eventually abort) and starts modifyingn nontransac-
tionally. If T2 does not immediately notice that its transaction
is doomed to fail, it may access mutually inconsistent partsof
n. This may lead to arbitrary program behavior in unmanaged
languages like C and C++.

Many previous systems have either explicitly [1] or im-
plicitly assumed that sharable data is always accessed within
transactions. Others [15] have made privatization an explicit
operation, in which case one can consider implementations
that incur costs only when privatization is required. In the
current paper we explore the possibility ofsafe, transparent
privatization—that is, true realization of single-lock semantics.
Prior work with similar goals has tended to pursue one of two
approaches: (1) By waiting at the end of a transaction until
all potentially competing transactions have completed, one can
ensure that subsequent nontransactional accesses do not race
with those transactions. If privatization is to be transparent,
such a fence operation must appear, conservatively, at the
end of each transaction. (2) By instrumenting nontransactional
accesses, one can arrange for them to respect transactional
metadata, thereby avoiding both races and end-of-transaction
blocking. This is the approach typically required forstrong
isolation [2], [7], [14], a stricter semantics that guarantees
isolation of transactions with respect to nontransactional loads
and stores even in the absence of privatization.

In a previous technical report [15] we compared instru-
mentation based privatization to several implementationsof
fences. In general, we found that fences were faster at modest
thread counts, but that instrumentation of nontransactional
accesses led to greater scalability for workloads dominated
by transactions. Note, however, that privatization is attractive
mainly as a way to avoid instrumentation overhead on non-
transactional accesses. In one locally developed computational
geometry benchmark [13], over 95% of run-time is devoted
to manipulation of privatized data; in this case zero-overhead
access is critical to acceptable performance.

Ideally, a transaction would wait at commit time for “clean
point” in all and only those concurrent transactions with which
it has a conflict. The principal difficulty in implementing such
a fence is the typical asymmetry of conflict detection. To avoid
the overhead of metadata updates in reader transactions (and
the cache misses those updates impose on other transactions),
most STM systems make readersinvisible to writers [12]. A
committing writer has no way to identify the readers with
which it conflicts. Our previous fence-based work therefore
waited for a clean point inall concurrent transactions.

In this paper we explore an alternative approach based on
partially visible reads (PVRs). Rather than a precise indication
of reader status, we regard metadata updates ashints about the
possibility of conflict. When used for privatization, occasional
false positives are harmless (false negatives are of course
not permitted). After detecting a possible conflict with a
concurrent reader, the writer executes aprivatization fence
in its commit phase; this forces it to wait for a subset of

wts / txn rtswts / txn

(a) Simple orec (b) With read timestamp

wts / txn rts,tid

(c) For multiple readers

gracerts,tidwts / txn

(d) With grace periods

curr_readergracerts,tidwts / txn

(e) With current reader lock

Fig. 2. Ownership Record structures to support partial visibility of reads.

concurrent transactions to reach a safe point. Reader hint
frequency can be tuned to balance the rate of false positives
against the latency of transactional reads and the overhead
of cache contention. Since the balance may be different in
different applications, we consider a scheme that adapts tothe
offered workload.

We present our basic scheme of partially visible reads in
Section II. Extensions that reduce metadata updates and cache
pressure appear in Section III. In Section IV we contrast
with approaches based on serialization of both transaction
commit and cleanup [3], [9], [16]. We also present a hybrid
approach that combines strict ordering and partial visibility
to give reasonably good performance for a variety of work-
loads. Empirical evaluation appears in Section V, followedby
conclusions in Section VI.

II. BASIC SCHEME FORPARTIAL V ISIBILITY

We say that a transactional read ispartially visible if
a writer can tell that readersexist (or are likely to exist),
without necessarily being able to tell who they are. If multiple
transactions read a location more or less concurrently, most
of them can skip the metadata updates, letting the other(s)
“cover” for them.2

We have implemented partially visible reads in aword-
based STM, where conflict detection occurs at the granularity
of small, contiguous, fixed-size blocks of memory [4], [11].
This section describes our implementation for an undo log-
based version of the system. A redo log variant (with commit-
time locking [4]) is discussed in Section IV. We believe that
our techniques can also be applied in an object-based STM.

A. The Word-based STM

Like several state-of-the-art STMs [4], [10], [17], our word-
based STM leverages a globally synchronized clock to ef-
ficiently guarantee transaction consistency. Like Harris and
Fraser [5], we hash each memory location into a table of
ownership record (orec) structures. An orec consists of a 32-
bit field that contains either a write timestamp (wts), which
indicates the time at which the orec was modified, or a pointer
to the transaction descriptor (txn) of the transaction that
“owns” the orec, as shown in Figure 2(a). A transaction records

2In general,two readers must make updates, so a writer can tell whether
there any readers other than itself. We return to this issue in Section II-E.



the global clock value (implemented as a 32-bit integer) during
its initialization in a privatebegin ts field.

A transactional read of locationl by a transactionR

verifies that the corresponding orec,O, is unowned (contains
a timestamp, not a descriptor pointer) and also thatO was
last modified beforeR began execution (by comparingO’s
wts with R’s begin ts). If the verification succeeds,R logs l

andO’s wts in its private read set; otherwise,R aborts.
A transactional write ofl by a transactionW requires

ownership of l. This is achieved by first confirming thatl
is consistent (as in the case of reads) and then atomically
modifying O to indicate ownership. (IfO is already owned,
W aborts.) Transactional writes are made directly to the data’s
“real” location; old values are stored in a privateundo log. At
commit time,W atomically advances the global clock to the
next time step. The above rules imply a contention manage-
ment policy in which both readers and writers defer to prior
concurrent writers, but writers “sail past” prior concurrent
readers, dooming them to eventually abort.

B. Reader Timestamps

Our implementation of partial visibility, like our consistency
checks, relies on the global clock. We add a read timestamp
(rts) field to the orec, as shown in Figure 2(b). Naively,
we could update this field to the current time whenever we
read l. Unfortunately, this would significantly increase cache
contention. Instead, we observe that a writer doesn’t really care
exactly when a read occurred in reader transactionR: only that
it happened whenR was active. In effect, any timestamp value
greater thanR.begin ts constitutes an adequate indication of
R’s interest in l. We therefore arrange, whenR readsl, to
updateO.rts only if O.rts < R.begin ts—that is, only if
no location corresponding toO is known to have been read
sinceR began execution. Intuitively, this design choice should
significantly reduce cache contention on hotspot locations
(e.g., the root of a shared tree structure) that are accessed
in read-only mode most of the time.

C. Identifying When to Wait

Because writers “sail past” readers in our system, a priva-
tizing writer transactionW must wait for the completion of
reader transactions that conflict withW and (a) are doomed
or aborted but have not yet “undone” changes that might
be read nontransactionally, or (b) are doomed and might
perform erroneous actions if they were to see the results
of nontransactional private writes. In any program that is
data race free under single-lock semantics, for any conflicting
transactionR there will exist a datumd that has been read
by R and modified byW (d need not necessarily have been
privatized itself).

In principle,W could find the transactions for which to wait
by perusing the read sets of all not-yet-completed transactions
whosebegin ts is less than or equal toO.rts. In practice, we
approximate this policy by waiting forall readersR such that
R.begin ts ≤ t, where t is the maximum, over all owned
orecsO, of O.rts. To support this tactic, we must be able

to quickly identify the oldest transaction that has not yet
completed cleanup.

Our current implementation maintains a linked list con-
taining all active transactions and all those that have aborted
but not yet completed cleanup. The list is sorted bybegin ts
values, and is protected by a simple spin lock. A transaction
inserts (enqueues) itself in the list during initialization and
removes itself after completing its commit/abort protocol. The
head node corresponds to the oldest incomplete transaction.
Since list nodes are statically allocated on a per-thread basis,
andbegin ts values are monotonically increasing, we can ob-
tain a lower bound on the timestamp of the oldest transaction
without acquiring the lock, provided that we double-check the
head pointer after reading the contents of the head node. If the
transaction doing the lookup is itself the head of the list, the
next node in the list is inspected to assess a potential conflict.
As we shall see in Section V, the list can become a bottleneck,
but only when transactions are very short. We are currently
exploring lighter weight implementations of the central list.

D. The Privatization Fence

A writer W that identifies a possible conflict with concur-
rent transactions executes a privatization fence at committime
(aborted transactions do not execute the fence since they will
be re-executed anyway). A transaction always removes itself
from the central list before waiting on the fence. The fence
is a simple loop that waits for all transactions to begin on or
after the time at which the writer committed. Optimizationsto
reduce this waiting time are a subject of future work.

BecauseW waits only if some concurrent transaction has
read a datum that was modified byW (or that shares an orec
with such a datum), our scheme should avoid privatization
fences in most cases of data access parallelism. The downside
of the approximate nature of partially visible reads is thatW

may have to wait for several (in some cases,all) concurrent
readers to finish if it has conflicted withany concurrent reader.

E. Write-after-Read Condition

If only one concurrent reader were to modify therts, a
transaction that reads and then modifiesd would see itself as a
conflicting reader, and would be forced to incur a privatization
fence, waiting for all concurrent readers even when it was the
only one that readd. To avoid this condition we augment the
orec structure with atid field, shown in Figure 2(c). This field
indicates the ID of the last reader transaction that modified
O.rts. A reader must update both fields (rts, tid) together to
avoid the write-after-read false positive. In addition, weuse
the least significant bit oftid to indicate multiple concurrent
readers ofO. This convention complicates the partial visibility
process: A reader must determine whether it needs to set the
multiple readers bit in the target orec’stid field. It does so
in the case where the orec’srts indicates that its last reader
may still be live. Similarly a writer must detect if there are
multiple concurrent readers of the target orec in case the writer
itself was the last reader. To avoid races between readers,
our basic scheme uses an atomiccompare-and-swap (CAS)



instruction to update the partial visibility fields (we relax this
in Section III-B).

III. O PTIMIZATIONS

In this section we describe refinements to our basic imple-
mentation that help reduce latency and cache pressure. We also
present an optimization for read-only transactions.

A. Grace Periods

In the basic scheme of Section II, a reader transaction
updates orecO by writing the current timet to O.rts. Our
first optimization is based on the observation that it is also
correct to writet + G for any non-negative constantG. The
effect will be to reduce the frequency with which concurrent
readers must also updateO. The potential downsides are
(a) false positives—cases in which a privatizing writerW

believes there is a conflict, but all reads actually occurred
beforeW.begin ts—and (b) extended delays—cases in which
W waits for a readerR that started after the most recent read
actually occurred.

We callG thegrace period. Figure 2(d) shows the structure
of an orec that supports grace periods on a location-by-location
basis. In our basic system,G = 0. In the extreme case, if
G = ∞, there will be no partial visibility updates, but almost
every writer will suffer a privatization fence. In between,there
is a gradual tradeoff between the frequency of partial visibility
updates and the precision of conflict detection.

The ideal grace period value would appear to be a func-
tion of workload characteristics. There is a natural algorithm
to chose an appropriate value dynamically. Specifically, we
increase the grace period exponentially (up to a maximum
limit—256 time steps in our experiments) with each successful
partial visibility update, and decrease it exponentially in case
of a detected conflict. We experimented with other strategies
such as linear increase and decrease of grace periods, and some
hybrids. However, the exponential increase and decrease strat-
egy delivered the best performance for our microbenchmarks.

B. Eliminating the Atomic Operation

On many machines, atomic operations are significantly more
expensive than ordinary loads and stores. It is unfortunate
that in addition to the cache pressure due to partial visibility,
atomic operations in orec updates increase the latency of
transactional reads. Fortunately, there are several ways to
implement partial visibility updates without atomic operations.

We take an approach reminiscent of Lamport’s fast mutual
exclusion lock [6]. We add a new field to the orec called
curr reader, shown in Figure 2(e). This field serves as a “semi-
mutual exclusion” lock for the partial visibility update process.
A readerR of orecO first reads therts andtid fields, together
in a singleload, to determine whether it needs to update the
orec. If so, it checks to see whetherO’s curr reader field
contains a non-zero value. If so, it spin-waits for the valueto
become zero. It then stores its ID intoO’s curr reader field,
indicating to the system thatR is in the process of making a
partial visibility update toO. R then checks if the (rts, tid)

fields changed in the interim, indicating that there was a race
with a concurrent reader. If the values changed,R notes that it
needs to set the least significant bit of thetid field (indicating
existence of multiple concurrent readers ofO) and retries the
whole process. If the values did not change,R overwrites
both fields, together, using a singlestore instruction. It then
re-examinesO’s curr reader field to see if it containsR’s ID.
If so, R zerosO’s curr reader field. If not, a data race occurred
with a concurrent reader ofO. R notes that it must settid’s
least significant bit and retries the entire process.

Note that all loads and stores in this process must perform
in the specified order. The process works because (a) if there
exists a data race amongN readers, at leastN − 1 of them
will detect the race and repair any stale updates made to the
orec, and (b) a temporarily stale timestamp is harmless because
the thread that wrote it remains in the central list of active
transactions until the update is corrected, so any conflicting
writer will still incur a privatization fence. Given limited space,
we do not present a detailed correctness argument.

C. Read-only Transaction Optimization

For read-only transactions, the delayed cleanup problem
does not arise. Partial visibility serves to avoid the doomed
transaction problem, but it is an expensive solution. Read-
only transactions can skip becoming partially visible if they
validate their read sets whenever a writer transaction commits.
This design choice is similar in spirit to thevalidation fence
of our earlier technical report [15]. Whenever a transactionis
about to make its first write, its makes all its reads partially
visible before proceeding. This way a read-write transaction
is protected from both halves of the privatization problem.

IV. STRICT ORDERING OFWRITERS

An alternative approach to privatization safety is to ensure
that transactions complete their cleanup in serializationorder.
Working independently, Detlefs et al. [3], Olszewski et al.[9],
and Spear et al. [16] have developed STM systems which,
while differing in many ways, all share a pair of design
choices that together solve the delayed cleanup problem: (1)
they buffer updates in a redo log; (2) they ensure that the
commit and cleanup order of transactions is the same as their
serialization order.

The intuition behind these choices is quite simple: In redo
log STMs, an aborting transaction never interferes with access
to privatized data. Moreover committing transactions can do
so only when the commit and serialization orderings of two
or more transactions are inverted. Consider the example from
Figure 1.T2 will interfere with T1’s private access ton iff
T2 commits. This however, is possible only ifT2 serializes
beforeT1, and T2’s post-commit updates ton are delayed.
Ensuring thatT2’s post-commit cleanup happens beforeT1

completes will eliminate the delayed update problem.
Agreement in the order of serialization, commit, and

cleanup can be achieved in several ways. In our experiments,
we use (roughly) the technique employed by Detlefs et al. [3]
at Microsoft: A committing writer first acquires ownership



of locations it intends to update (this can happen at commit
time or at the time the writer does its speculative writes). It
then requests a global ticket/bakery lock (i.e., takes a ticket),
validates its read set, writes back its speculative updates, waits
for its ticket to be “served”, and then increments the ticketfor
its successor. (A queue-based lock could be used to similar
effect. In our experiments both approaches performed equally
well. We report results of the ticket-lock approach.)

The JudoSTM of Olszewski et al. [9] dispenses with orecs
and the notion of acquisition. A committing writer simply
acquires a global lock, validates its read set, writes back its
redo log, and releases the global lock. In the RingSTM of
Spear et al. [16], the writer reads the head of an ordered list
of committed transactions, verifies that its read set does not
conflict with the write sets of prior transactions on that list (it
need only check those that started after it did), and then adds
its own write set to the list with a single CAS instruction.

The three systems also take different approaches to the
doomed transaction problem. The Microsoft system uses incre-
mental validation. JudoSTMsandboxes dangerous operations.
RingSTM uses lightweight polling of a global commit counter.

Strict ordering promises to deliver better performance than
partially visible reads in workloads consisting of short running
transactions—particularly if most transactions are read-only,
since such transactions do not have to perform operations
on the central data structure. Our empirical results confirm
this intuition. In response, we developed a dynamic hybrid
of strict ordering and partially visible reads in the hope
of adapting to the offered workload. Unlike the basic and
optimized schemes described above, the hybrid uses redo logs.
At first a transaction performs invisible reads. Once the read
set size crosses a specified threshold (16 in our experiments),
and the transaction observes that another concurrent writer has
committed (by monitoring the global clock at each read and
write), it makes its reads partially visible. This entails putting
itself in the central data structure for partial visibility. Writers,
for their part, must check for possible conflicts with partially
visible readers, and wait on the privatization fence if necessary.
A writer must also respect the strict ordering of commits.

V. PERFORMANCEEVALUATION

We implemented several variants of partial visibility in
the word based STM described in Section II-A. Throughput
results appear in Figure 3. CurvepvrBase employs the basic
scheme without the grace periods heuristic. CurvepvrCAS is
the version augmented with a 256-time-step grace period, as
described in Section III-A. CurvepvrStore replaces CAS-based
commit ofpvrCAS with the CAS-free commit of Section III-B;
pvrWriterOnly adds the read-only transaction optimization of
Section III-C. We also implemented an every-transaction vali-
dation fence [15] (Val) and, from Section IV, the strict ordering
approach of Detlefs et al. (Ord), and the strict ordering/partial
visibility hybrid (pvrHybrid). As a baseline for comparison, we
used a system modeled onTL2 [4], a state-of-the-art STM that
does not guarantee privatization safety. This comparison gives

us a trivial upper bound on the throughput one might ideally
hope to combine with privatization safety.

We conducted experiments on microbenchmarks covering
a wide range of workload characteristics. Specifically, we
present throughput results for three data structures: (1) Ahash
table (hashtable) with 64 buckets and 256 keys. This bench-
mark represents workloads containing very short transactions.
(2) A binary search tree (bst) containing up to a million nodes.
This benchmark represents workloads with moderately large
transactions. (3) A collection of (64) small to relatively large
linked lists (multi-list). This benchmark represents workloads
with moderate (accessing several dozen locations) to large
(accessing hundreds of locations) transactions. A transaction
either inserts, deletes, or looks up a node in these structures.
We vary the distribution of these operations and report results
for 80% and 20% lookups.

Throughput experiments were conducted on a Sun T1000
“Niagara” chip multiprocessor with 8 cores and 4 threads per
core. All STMs were implemented in C with an API providing
stm begin, stm read, stm write, andstm commit methods. All
the libraries were compiled usinggcc v4.2.0 at the-O3
optimization level. Threading levels were varied from 1 to 32.
Throughput was averaged over 3 test runs. In each test run,
each thread executed105 transactions.

In single thread runs we found that partial visibility in
pvrBase led to 30–80% slowdown relative to (privatization-
unsafe) TL2. pvrCAS improved overpvrBase by a margin
of 10–30%, andpvrStore improved overpvrCAS by about
20%. TheVal andOrd approaches had practically no runtime
overhead in the contention-free case.

In hashtable, partial visibility performed the worst with
a high read-only transaction rate (Figure 3(a)). This is due
to central list operations, even for read-only transactions,
dominating the runtime. ThepvrWriterOnly variant scales a bit
better, but flattens at higher thread counts due to contention on
the central list. When the percentage of read-write transactions
is high (Figure 3(b)), onlyOrd andpvrHybrid scale well.

Ord continues to outperform PVRs inbst with a high read-
only transaction rate (Figure 3(c)). However,pvrWriterOnly ap-
proaches the performance ofOrd. Since transactions are larger
in bst, pvrHybrid executes most of them in partial visibility
mode, and hence performs comparably withpvrBase, pvrCAS,
andpvrStore. Again the central list becomes a bottleneck.Val
experiences the most delay at the validation fence at the end
of each writer transaction, and hence scales worst.

When the percentage of read-only transactions is low (Fig-
ure 3(d)),Ord performs a little better than other approaches at
low thread counts. However, with increasing thread count, the
frequency of validation increases significantly. Eventually, all
partial visibility curves catch up withOrd. Val does not scale
in this case either.

We see a distinct cross-over betweenOrd and the PVR algo-
rithms (other thanpvrWriterOnly) in multilist. Partial visibility
scales the best in all variants of this benchmark (Figures 3(e)
through 3(h)). Note thatpvrStore outperformspvrCAS by a
noticeable margin in the largemulti-list variant (Figures 3(g)
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(b) hashtable 64 buckets, 256 keys (40/40/20 distribution)
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(c) bst 1M keys (10/10/80 distribution)
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(d) bst 1M keys (40/40/20 distribution)
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(e) multi-list 64 lists, 64 entries per list (10/10/80 distribution)
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(f) multi-list 64 lists, 64 entries per list (40/40/20 distribution)
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Fig. 3. Performance of various STMs on our microbenchmarks.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30  35

Pe
rc

en
t W

rit
er

s 
Fe

nc
ed

Thread #

(a) hashtable 64 buckets, 256 keys: Percent fences hit

pvrBase (80% lookups)
pvrCAS (80% lookups)
pvrBase (20% lookups)
pvrCAS (20% lookups)

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25  30  35

Pe
rc

en
t V

is
ib

le
 R

ea
ds

 S
ki

pp
ed

Thread #

(b) hashtable 64 buckets, 256 keys: Percent Visible Reads Skipped
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(d) bst 1M keys: Percent Visible Reads Skipped
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(e) multi-list 64 lists, 64 entries per list: Percent fences hit
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(f) multi-list 64 lists, 64 entries per list: Percent Visible Reads Skipped
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Fig. 4. Effect of grace periods on various STMs.



and 3(h)). This shows that eliminating the atomic operation
does help significantly in workloads with long running trans-
actions.pvrHybrid cannot match the performance of the other
PVR implementations because its transactions incur double
overhead—a privatization fence in the presence of conflicts,
and strict ordering related waiting.

In all benchmarks, except the largemulti-list variant, the
grace period optimization does not improve scalability over
pvrBase. Grace periods did reduce the number of atomic
operations for partially visible reads, ranging from about50%
reduction inbst to up to 90% in the largemulti-list benchmark
(see right side of Figure 4). However, as noted earlier, grace
periods also increase false positives for conflict detection
between writers and already completed readers. All graphs
on the left side of Figure 4 show the percentage of writer
transactions that detect a conflict with a possibly concurrent
reader and wait at the privatization fence. Grace periods clearly
lead to a significant number of false positives. As a result, a
greater number of writer transactions end up waiting, and the
performance advantage of grace periods is quickly lost with
increasing numbers of concurrent threads.

At the same time, grace periods show significant improve-
ment over pvrBase in the large multi-list benchmark: The
number of reads per transaction is significantly higher in this
case. As a result, grace periods lead to significantly fewer
CASes per transaction. This savings suffices to offset the
overhead of superfluous privatization fences.

The pvrHybrid approach showed good performance for
workloads with short running transactions (hashtable). With
a little longer transactions inbst, its performance deteriorates
due to an increasing number of transactions running in partial
visibility mode and accessing the central list. With even larger
transactions inmultilist, the central list is less of a bottleneck;
however, the performance deteriorates even further because
of the two-fold overhead: (i) superfluous privatization fences
due to grace periods, and (ii) strict ordering related waiting.
Clearly, more adaptive policies, either to avoid partial visibility
related updates altogether, or to more effectively switch grace
periods, are needed for more robust performance. This is a
subject for future work.

VI. CONCLUSION

Transparently ensuring privatization safety in STMs at low
overhead is a non-trivial problem. This paper presented several
new solutions to the problem based on the notion ofpartially
visible reads. These solutions explore a fundamental tradeoff
between the frequency of metadata updates and the precision
of conflict detection. Our techniques improve significantly
upon prior published solutions for systems without strict
ordering of commits. We also compare to strict ordering, and
show that relative performance depends strongly on workload
characteristics.

In the end, despite improvements in run time techniques,
the overhead of transparent privatization in STMs remains
daunting. Moreover, transparent privatization (and publication)
precludes several efficient STM runtime implementations [4],
[5], [10], [11], indicating that production-quality systems may
require architectural or programming model innovations to
support such programming idioms.
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