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Abstract

Torus networks are prevalent on leadership-class petas-

cale systems. While many systems use a single shared

torus for a full system, Blue Gene/P systems provide the

ability to partition the system torus into a series of inde-

pendent, isolated tori for individual jobs. While this ap-

proach provides substantially improved network behavior

for those jobs, the additional allocation constraints im-

posed by this scheme dramatically limits the possibilities

for system scheduling. In this paper, we assess the rela-

tive performance of discrete per-job tori compared with

per-job mesh networks using a series of synthetic bench-

marks and several leadership class applications from the

DOE INCITE program. We then simulate the scheduling

impact of using dedicated meshes using job traces from

the 556 TF Intrepid system at Argonne National Labora-

tory. This simulation shows up to a 40% improvement in

job response time when using mesh partitions over torus

partitions.

1 Introduction

Building efficient and high-performance interconnection

networks is a key challenge in building leadership class

computing systems. Due to the large number of nodes re-

quired in such systems, network costs must grow only lin-

early with additional node count. For this reason, torus

networks have long been a popular choice for scalable

computing systems. Traditional torus systems use a sin-

gle shared torus for all jobs. Much work has been done to

determine how to minimize job fragmentation (and hence

maximize network performance) on such systems.

The IBM Blue Gene family of systems use a torus-

based network, however, a unique facility for partitioning

is provided. Partitioning of the system allows for discrete

reservation of resources on a per-job basis. Each job has

a set of nodes, a portion of the torus network and a set of

I/O-related resources. When the system network is parti-

tioned, the resulting meshes can often be “wrapped” into

torus partitions, depending on the availability of a lim-

ited number of hardware resources needed to wrap the

mesh. Due to the limited availability of these resources,

the system torus can only be partitioned into smaller tori

in a limited number of ways, resulting in partitions that

cannot be wrapped into tori. In the default operational

model used on BG/L and BG/P systems, such partitions

are not used (except in the case of small partitions of less

than 512 nodes, which can only be meshes). This limita-

tion of using only torus partitions for jobs above a certain

size imposes constraints on resource allocation, which in

turn, can have appreciable impact on scheduling perfor-

mance. While meshes have substantially diminished com-

munication capacity compared with similarly-sized tori,

their lack of the partitioning restrictions allow more mesh

partitions to be scheduled concurrently, making them a

tempting alternative to tori; provided that application per-

formance is not impacted too severely.

In this paper, we explore the impact of network topol-

ogy on application and scheduling performance, specifi-

cally, job turn-around time. We have quantified the abso-

lute difference in network performance between dedicated

torus and mesh partitions. We have also benchmarked a

series of applications from the Department of Energy IN-

CITE program, which awards time on the Intrepid sys-

tem at Argonne National Laboratory. Finally, using this

measured application slowdown, we simulate the results

of using mesh partitions with the workload observed from

Intrepid itself.

In Sections 2 and 3 we present relevant background in-

formation, including information about Blue Gene parti-

tioning, the expected differences in performance between

mesh and torus partitions, and the Intrepid system. In Sec-
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tion 4 we show the impact of using mesh versus torus net-

works on several microbenchmarks and applications. In

Section 5 we present related work. In Section 6 we discuss

our conclusions and make recommendations for operators

of such systems.

2 Overview of Blue Gene/P

IBM Blue Gene systems [7, 11] are highly scalable mas-

sively parallel processing (MPP) systems. BG/P is the

second generation in the BG family. BG/P systems are

comprised of individual racks which can be connected to-

gether; each rack contains 1024 four-core nodes, for a to-

tal of 4096 cores per rack. Blue Gene systems have a

hierarchical structure. Nodes are grouped into midplanes,

which contain 512 nodes in an 8x8x8 structure. Each rack

contains 2 such midplanes. For the remainder of the pa-

per, we will refer to partitions and jobs by node count; for

example a 2K partition is comprised of four midplanes.

BG/P uses five different networks for different commu-

nication operations. The 3-D torus network is used for

MPI point-to-point operations as well as for collective op-

erations using irregular communication or large message

sizes. Each node has six nearest-neighbors. Each link pro-

vides a bandwidth of 425 MB/s per direction, for a total

bi-directional bandwidth of 5.1 GB/s. Though each node

has six bidirectional links on each node, there is only one

shared DMA engine. All discussion in this paper will fo-

cus on the 3D torus network. The 3D torus network is also

usable as a 3D mesh.

Blue Gene systems are partitioned for the purpose of

job execution; this approach isolates jobs from one an-

other. Individual midplanes can be used as 512 node

partitions or built into larger partitions. Inter-midplane

connectivity is implemented using cables and link chips.

Each link chip connects to a single midplane and to four

unidirectional cables that connect midplanes. These ca-

bles can only be used by a single partition at once. Link

chips have two major types of configurations; either the

link chips connect the local midplane with a pair of cables

(one in each direction), or they wrap the midplane mesh

back into itself. When the midplane is wrapped, the cables

connected to the link chip and the path through the link

chip are remain available for use. This situation, referred

to as passthrough, occurs frequently during partitioning.

In this case, the local midplane is unable to connect to

any other midplanes in this mesh dimension.

Blue Gene partitions can either be connected with a

torus or mesh network. In general, Blue Gene systems

use torus networks for partitions larger than a single mid-

plane. In order to build a torus network, each midplane
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Figure 1: Blue Gene Cabling

needs to be connected to six adjacent midplanes. Mesh

networks are not wrapped; only interior connections are

required. Hence, mesh networks cost less in terms of

shared resources.

Large Blue Gene systems are constructed in rows of

racks. While the torus building mechanism provided on

Blue Gene systems are quite flexible, large systems are

typically cabled in a similar fashion, described here. The

X dimension of the torus connects the rows of the machine

together. The Y dimension connects each midplane with

a midplane in the same position two racks in either direc-

tion. The Z dimension connects the four midplanes in two

adjacent racks. This scheme is described in Figure 1.

If a torus partition spans more than one midplane in

a dimension, it monopolizes all of the cables in that di-

mension, so that the mesh can be properly wrapped into a

torus. Mesh partitions have no such limitation, hencemul-

tiple mesh partitions can be active on a single dimension

simultaneously without interfering with each other.

3 The Intrepid System

Intrepid is a 556 TF Blue Gene/P system operated by

Argonne National Laboratory for the Department of En-

ergy INCITE program[8]. The system is comprised of 40

racks, 80 midplanes, containing a total of 163,840 cores.

It was the entered the Top500[12] list as the number three

system on the June 2008 list, and dropped to number

five in the November 2008 list. Intrepid is a capability

system, with single jobs frequently occupying substantial

fractions of the system. 8K and 16K jobs are common

on the system. Larger jobs occur often on the system as

well. Jobs up to 32K nodes run without administrator as-

sistance.

About a dozen application groups have INCITE appli-

cations on Intrepid. Each of these applications has com-

pleted a computational readiness review which measures
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their ability to run at large scale. Each application has dif-

ferent scalability; while some applications can effectively

run at 40K, many can only scale to 4K or 8K before effi-

ciency begins to drop off. Most users want to run most of

their jobs on partitions between 1K and 4K. Moreover, be-

cause users are actively scaling their codes to larger sizes,

job response times strongly affect user productivity.

Intrepid is a 40 rack, or 80 midplane system. The di-

mensions of the full system torus are 5x4x4. As described

above, each row is a slice out of the X dimension. A full

row (8K, 16 midplane) torus is 1x4x4. A limited number

of torus configurations are possible, due to the constraints

described above. A single 8K partition is possible, as are

four 2K partitions. 1K and 4K partitions consume cabling

resource that impact their neighbors, hence neither only

a single 4K partition, or four 1K partitions can be run at

the same time. The balance of the midplanes can be wired

together using the remaining dimensions, so the combina-

tion of a 4K partition and two 2K partitions is valid. The

combination of 4K and 1K rack partitions is particularly

wasteful; the use of a single 4 rack partition and two 1K

partitions requires that all four remaining midplanes are

only usable individually. Use of the X dimension cables

would allow connection of these midplanes, at the cost of

preventing multi-row jobs from working. For operational

reasons, this option is unavailable for small partitions on

Intrepid.

Intrepid uses the Cobalt[2] resource manager. Cobalt

is a component-based resource management suite that is

popular on Blue Gene systems. Its architecture makes

simulation of both scheduling behavior and system behav-

ior accurate and simple. This simulation is described in

detail elsewhere[3].

4 Experimental Analysis

Our approach has three major components. First, we will

validate our expectations for performance differences be-

tween wrapped and unwrapped mesh partitions. Next,

we will benchmark several applications from the INCITE

program. Finally, we will simulate the scheduling effect

of substituting mesh partitions for torus partitions using

the workload from Intrepid.

4.1 Synthetic Benchmarks

In this section, we evaluate different synthetic bench-

marks on torus and mesh connected topologies. These

benchmarks give us an indication of the specific cases

where large performance differences are expected.
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Figure 2: Latency slowdown

4.1.1 Point-to-point Latency

Figure 2 illustrates the slowdown in the maximum inter-

process latency when using a mesh partition instead of a

torus, with increasing system size. Specifically, the test

measures the latency between the two farthest processes

(maximum number of network hops) in the system for

both topologies and presents the percentage difference be-

tween the two. For a message size of 0-bytes, we notice

around 35% slowdown, while for a message size of 1K

bytes, we notice about 20% slowdown. This difference

is because of the increased number of hops that messages

have to traverse when using a mesh instead of a torus.

With increasing message sizes, the slowdown keeps de-

creasing due to pipelining of data (i.e., the absolute differ-

ence remains constant, causing the percentage difference

to reduce).

4.1.2 Effective Bisectional Bandwidth

Figure 3 illustrates the slowdown in the aggregate band-

width reported by the B eff benchmark (that is a part of

the HPCC benchmark suite). Specifically, this benchmark

presents the effective bisectional bandiwidth that is avail-

able on the system. The figure illustrates a slowdown of

close to 35% for large system sizes. This is expected as

the effective bisectional bandwidth would reduce when

moving from a torus partition to a mesh partition due to

the lesser number of communication links.

4.1.3 Collective Communication

Figures 4 and 5 illustrate the performance of collec-

tive communication operations for the two topologies.

Figure 4 shows the performance of MPI Allgather,
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Figure 3: Slowdown in aggregate bandwidth reported by

b eff benchmark
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Figure 4: Allgather, Allgatherv and Scatterv slowdown

8192 cores

MPI Allgatherv, and MPI Scatterv. Fig-

ure 5 shows the performance of the different all-to-all

variants (MPI Alltoall, MPI Alltoallv and

MPI Alltoallw). As shown in the figures, for non-

all-to-all collectives, there is very little slowdown, while

for all-to-all collectives, there is a large slowdown (we

verified this for other non-all-to-all collectives as well,

but the results are not shown in this paper due to space

constraints). This is because all-to-all collectives perform

the most amount of per-process communication; thus

reducing the number of communication links causes the

largest degradation for their performance.
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4.2 Application Results

In this section we describe three INCITE program appli-

cations, NEK5000, GFMC and FLASH. Each of these has

been executed on partitions ranging from 1K to 8K us-

ing both mesh and torus networks. Likewise, we will de-

scribe P3DFFT, a 3D fast Fourier transformation library,

and compare its relative performance on both networks.

NEK5000 [5] is a spectral element CFD code devel-

oped at Argonne National Laboratory, which features

spectral element multigrid solvers coupled to a highly

scalable parallel coarse grid solver. It was recognized in

1999 with a Gordon Bell prize and is used by more than

two dozen research institutions worldwide for projects in-

cluding ocean current modeling, thermal hydraulics of re-

actor cores and spatiotemporal chaos. Because the com-

munication pattern is nearest-neighbor on an unstructured

grid NEK5000 is highly scalable. This communication

pattern also indicates that we should not see a significant

performance drop when running on a mesh versus a torus.

The second application, Green’s Function Monte Carlo

(GFMC) [10] is an ab-initio light-nuclei computation

code, which models nuclear structures and reactions from

bare nuclear forces. This application uses the Automatic

Dynamic Load Balancing (ADLB) library, developed us-

ing MPI specifically for this code, to distribute work in

a master-worker pattern. In GFMC, the ADLB servers,

which serve as master processes, are arranged in a plane

on one side of the partition. The communication pattern

of this application is directed between master processes

and worker processes to request and deliver work and so-

lutions, as well as between master processes themselves

to distribute pending work requests and solutions.
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Figure 6: Slowdown of application runtimes due to using

a mesh versus a torus configuration.

Note, that because the servers are arranged on one side

of the partition, in a torus configuration, because of wrap-

around, the servers have connectivity on both sides of the

plane. However, in a mesh configuration, only one of the

sides is connected to the rest of the mesh. We expect that

mesh performance would be improved by relocating the

server processes.

FLASH 3.1.1 [4] is the latest FLASH release from the

ASC Center at the University of Chicago. The FLASH

code [6] is an astrophysical MPI simulation code writ-

ten in FORTRAN90 and C. We choose the Sedov 3D

setup with adaptive mesh refinement module, Paramesh

4.0, with high refinement level (up to lreine max = 12)

in our test runs. The Sedov 3D explosion problem (Se-

dov 1959) is a purely hydrodynamic setup that simulates

the self-similar evolution of a spherical blast wave from

a delta-function initial pressure perturbation in a homoge-

neous medium.

We ran these codes on various partition sizes, ranging

from 2 K cores to 32 K cores, using mesh and torus con-

figurations. Figure 6 shows the slowdown of the applica-

tions when using a mesh versus torus configuration for the

various job sizes. We see that the largest slowdown was

just over 6%for FLASH at 32 K cores. Notice that for 2 K

and 4 K jobs, GFMC performs better in the mesh config-

uration than the torus, however, we believe that this is due

to random variation in the execution times. These results

indicate that using a mesh configuration has only a small

effect on the application’s execution time.

We believe that the high scalability of these applica-

tion is a major reason for the relatively small impact. The

communication patterns of these applications are either
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Figure 7: Slowdown of P3DFFT performance due to us-

ing a mesh versus a torus configuration.

relatively localized, such as NEK5000, or are more bursty

but staggered, which reduces congestion, such as GFMC.

P3DFFT[9] is a 3D fast Fourier transform library devel-

oped at SDSC. It uses a 2D pencil decomposition, which

allows for good scalability on relatively large (32768) pro-

cessor counts. MPI traces show that P3DFFT depends

heavily on MPI Alltoallv for communication. This ex-

plains the substantial difference in performance between

mesh partitions and torus partitions. The relative perfor-

mance is shown in Figure 7. While P3DFFT is not an

application per se, it does demonstrate sensitivity to bi-

section bandwidth exhibited by one class of large-scale

application.

4.3 Scheduling Simulation

In the previous section, we demonstrated the reduced ap-

plication performance caused by the use of mesh parti-

tions. However, using mesh partitions should provide a

substantial boost to scheduler performance, because re-

sources can be more freely allocated. In order to evaluate

whether this approach is effective, we simulate the effects

of making mesh partitions available to the scheduler. Due

to the cabling of Intrepid, it only makes sense to use 1K

and 4Kmesh partitions; if enough hardware is available to

run 2K or 8K partitions, sufficient cabling exists to build

a torus.

For each simulation, we establish a per-run slowdown.

Each job runs for the time included in the input trace, ex-

cept for jobs run on mesh partitions. These jobs are ex-

panded by the configured slowdown.

We have used a workload trace taken from Intrepid.

This workload contains 3890 jobs, and reflects 2 weeks
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of activity. The INCITE program awards allocations on

a January to January basis; hence, many new projects are

just getting underway at the time of this writing. This bi-

ases this workload towards small jobs more than we typ-

ically see after the startup period for projects. Also, less

jobs are queued during this period in the year; job submis-

sion accelerates as groups become more experienced with

the machine and improve their application scaling.

These simulations were performed using FCFS and

the production scheduling policy used on Intrepid, WFP.

WFP seeks to minimize unitless job wait times; that is, the

time a job as waited compared with the time requested. It

also favors large nodecount jobs.

For each scheduling policy, we have compared the cur-

rent production system (all torus) configuration used on

Intrepid, with a configuration that uses mesh networks for

all 1K and 4K partitions. In the mesh configuration, we

have added a performance penalty for jobs run on mesh

partitions. We have simulated a uniform 5% and 20% job

slowdown for these jobs. Considering the performance

results for applications measured in the previous section,

these seem like a realistic values for application slow-

downs.

For the workload tests, utilization was effected substan-

tially; it improved 3-5% for the cases simulated. This

change had a more striking effect on job wait times. Fig-

ure 8 shows this impact. These results have several in-

teresting characteristics. First, response times of 512 and

2K partitions were negatively impacted. This is to be ex-

pected; jobs of these sizes benefited from the resource

contention experienced by 1K and 4K partitions. Re-

sponse times for 1K and 4K partitions are greatly im-

proved. Likewise, this is to be expected, because the

switch from torus to mesh at these sizes reduces the re-

sources needed to run these partitions. Finally, we note

that WFP demonstrates diminished response times when

applications have substantial (20%) degradation.

5 Related Work and Discussion

Mesh and torus networks have long been used on HPC

platforms. Hence, much performance evaluation has been

done[?]. More recently, the rivalry between Cray and

Blue Gene systems has resulted in many comparisons

(such as this[1] between the partitioned tori on Blue Gene

systems and the shared torus available on Cray systems.

While the benefits of wrapping meshes into tori have pre-

viously been studied, comparisons of meshes and tori in a

partitioned environment have not been performed.

Likewise, mesh scheduling issues have also been stud-

ied. Many efforts[13] focus on efficient placement of

jobs on shared tori to minimize latency and inter-job con-

tention. However, no direct comparison of the scheduling

impact of different configurations of partitioned torus net-

works has previously been performed.

6 Conclusions and Future Work

In this paper, we compare the costs and benefits of the

use of mesh networks on Blue Gene/P systems. Using

synthetic benchmarks, we demonstrated the performance

penalty caused by the switch from torus to mesh networks.

We were surprised by the limited impact of this change

on MPI collective performance; with the exception of the

alltoall collectives, most collectives were minimally im-

pacted by the change.

When evaluating actual applications, we observed a

similarly small performance penalty for three applica-

tions. The applications tested were slowed down by

less than 7% at 32, 768 processes. Our benchmarks of

P3DFFT showed a more substantial performance degra-

dation, starting at 50%; we would expect this to be rep-

resentative of some large scale applications. However, it

is clear that a substantial fraction of applications are not

substantially effected by the reduction in network perfor-

mance caused by the switch from torus to mesh.

In our scheduling simulations, we found that substitut-

ing mesh partitions selectively for 1K and 4K torus par-

titions substantially improved scheduling performance,

particularly as it relates to job wait times. Wait times im-

proved as expected, with availability of 1K and 4K parti-

tion greatly improved. Until now, 512 node partitions and

2K partitions had benefited from the artificial scarcity of

1K and 4K partitions, so wait times for those partitions

were slightly reduced.

In light of this information, we propose a hybrid

scheme for production Blue Gene/P systems like Intrepid.

By default, jobs running at problematic sizes (like 1K and

4K) would be routed to mesh partitions. Jobs demonstrat-

ing nontrivial slowdowns could be explicitly submitted to

torus partitions of these sizes. This would allow the ma-

jority of jobs to run with a smaller resource footprint while

still allowing users requiring the full torus to request it.

We expect this approach to greatly improve scheduling

performance in workloads where 1K and 4K jobs were

common, such as the Intrepid workload.

Another factor to be considered is the sensitivity of ap-

plications to network degradation. If applications show

nominal slowdown, as the applications we benchmarked

did, this approach is clearly worthwhile. However, if ap-

plications with characteristics closer to P3DFFT, the ben-

efit is less obvious. It is clear that any site considering de-
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ploying such a scheduling policy should benchmark local

applications, particularly those that consume large quan-

tities of system resources.

While this work shows potential to greatly improve

scheduler behavior on large Blue Gene systems, much

work remains to be done. More application analysis

should be done, to characterize other target applications

in terms of their relative performance. Some of the per-

formance degradation that we are seeing might be caused

by collectives that are not tuned for mesh partitions, so

it is possible that mesh-tuned collectives could yield less

slowdown on mesh partitions.
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