Mapping the FDTD Application to Many-Core Chip
Architectures

Daniel Orozco and Guang Gao
School of Electrical and Computer Engineering
University of Delaware
Newark, Delaware, USA
{orozco, ggao} @capsl.udel.edu

Abstract—This paper reports a study of mapping the Finite
Difference Time Domain (FDTD) application to the IBM Cyclops-
64 (C64) many-core chip architecture [1]. C64 is chosen for this
study as it represents the current trend in computer architecture
to develop a class of many-core architectures with distinct
features e.g. software manageable on-chip memory hierarchy (vs.
a hardware-managed data cache), high on-chip bandwidth, fine
grain multithreading and synchronization, among others.

Major results of our study include:

1. A good mapping of FDTD can effectively exploit the on-chip
parallelism of C64-like architectures and show good performance
and scalability.

2. Such performance improvement is derived by employing a
number of code optimization techniques such as time skewing
and split tiling that judiciously exploit the architecture features
described in (1).

3. High performance requires maximum reuse of on-chip
memory, which is obtained by tiling with non conventional tile
shapes.

4. Such code optimization techniques we used in (2) and
tiling such as the one used in (3) should be implementable
within a reasonable compilation framework, opening a new set
of possibilities for compiler optimizations.

Index Terms—Bandwidth Reduction; Stencil Computations;
Parallel Tiling; Code Optimization;

I. INTRODUCTION

The Finite Difference Time Domain (FDTD) method, pro-
posed by Yee[2], and explained in detail by Tavlove [3],
provides a numerical algorithm to solve partial differential
equations using time differences as approximations to partial
derivatives. FDTD algorithms constitute the computational
kernel of many scientific computing applications.

The amount of calculations required in practical FDTD
computations make it infeasible to achieve reasonable running
times if only one processor is used. Efficient parallel execution
is desired when running FDTD and other similar scientific
applications, but porting serial code to a parallel architecture
is not a straightforward task.

Little literature related to mapping applications with data
dependencies common to FDTD to parallel architectures with
many cores has been published. Mainly, we try to extend tradi-
tional parallelization techniques [4], [5], [6], to allow better re-
sults. It is paramount to redesign tiling [7] to take advantage of
the memory behavior, since in the past, tiling techniques were
heavily optimized to handle hardware-managed on-chip cache
memories. If a fully manageable memory is used instead,

we present a clever technique that tiles the iteration space
taking into account the direction of the data dependences.
Tiling shapes are not necessarily square as is common in most
implementations by other authors.

Full control of the memory hierarchies of an architecture can
be exploited to design a tile shape and size that will have an
optimal performance for a given problem. In here, we chose
the Cyclops 64 architecture [1], a revolutionary architecture
developed by IBM, that features fully manageable memory
hierarchies.

We analyze the data dependencies of FDTD and propose
a number of loop transformations that enable efficient tiling.
We show how tiling size and shape affect the performance
of the finished program. Then, a number of incremental
optimizations in the style proposed by [8] are used to boost
the performance of our code. We take advantage of the high
amount of on-chip parallelism and the versatility of the control
flow instructions available in the Cyclops-64 chip to optimize
tiling for our problem.

In our results, we show that on-chip memory reuse, achieved
through tiling, is vital to achieve high performance.

Our proposed techniques follow a sequence of transforma-
tions that only depend on the application’s data dependences
and in the architecture features. For that reason, they are
suitable to be incorporated into many-core compilers.

The paper is organized as follows: Section II presents
background on stencil applications and their optimizations.
Section III defines the problem addressed in this paper. Section
IV shows a first initial implementation of the FDTD algorithm
and presents a number of optimizations that lower the overall
running time of the application when used together. Section
V presents our results and talks about the effectiveness of our
approach. Section VI presents other related work in the field.
Finally, Section VII presents our conclusions and possible
directions for our future work.

II. BACKGROUND

This section introduces previous knowledge in stencil-type
computations such as FDTD and discusses previous results on
stencil optimizations.

A. Stencil Computation Techniques

Stencil Computations represent a set of important scientific
applications. A number of very common applications fall

into the category of stencil computations such as explicit
integration methods for solution of partial differential equa-
tions such as FDTD [3], multimedia and image processing
applications that use neighbor pixels as inputs to filters [9],
particle transport codes [10] and others.

A characteristic shared by most stencil applications is their
low computation to communication ratio in their naive ver-
sions, forcing application developers and compilers to resort
to techniques such as tiling [7] or loop skewing [11], [12]
and time skewing [13]. Previous approaches that use skewing
show too many redundant memory computations [12] or
produce tiles intended to be executed serially that exhibit little
parallelism. Attempts to use cache oblivious algorithms [14]
in the skewed versions take advantage of the cache behavior
but do not address the interaction between multiple processing
units in a single chip.

More recent approaches [4] try to achieve tile parallelism by
redundantly computing the required dependences for each tile,
or by executing the tiles in a wavefront style. Those approaches
have their drawbacks since many floating point operations are
wasted in redundant computations, and although wavefront
execution of the tiles grants some parallelism, the start and end
of the computation pay a significant cost. Furthermore, to be
able to exploit the parallelism found in a wavefront execution
of tiles, extra program complexity has to be added.

Split tiling [4] alleviates the problem of redundant com-
putations, but its mathematical treatment is obscure, previous
work on it does not present satisfactory performance results,
and it fails to evaluate the impact of tiling shapes on the total
performance of the applications.

B. The Finite Difference Time Domain Algorithm

The Finite Difference Time Domain algorithm (FDTD) is
an iterative solver for the electromagnetic equations widely
known as Maxwell’s equations. The FDTD algorithm is used
in a wide range of applications spanning from medical research
[15] to military development [16].

For simplicity, we have chosen the 1 dimension version of
FDTD. The techniques presented here can be similarly applied
to 2 or 3 dimensions.

The computational kernel of FDTD can be represented by
the pseudo code shown in Figure 1. It consists of the update
of two arrays, E and H using two constants (k1 and k2) that
represent the physical environment. A timestep corresponds
to an update of the E and H arrays and translates to a time
increment in the simulated physical problem.

FDTD problems of interest in real life usually have a large
number of timesteps. The size of the arrays used are only
limited by the computational power and can be larger that 10°
elements.

C. Previous Attempts at Parallel FDTD

A number of previous approaches have been employed to
execute the FDTD algorithm in parallel [17], [6], [18], [5].
This section provides a brief description of the reach of these
approaches.

Sl: for t = 1 to NT

S2: for i =1 to N

S3: E(i) += klxH(i) + k2xH(i-1)
S : end for

S4: for i =1 to N

S5: H(i) += E(i) - E(i+1)

S : end for

S : end for

Fig. 1. Computational kernel for FDTD 1D, Naive version

Commercial implementations known to the authors rely
on the fact that for most practical applications N is a very
large number and focus on parallelizing the inner loops in
the computational kernel while executing the outer time loop
sequentially. This approach, however, suffers from great band-
width requirements since at each time step all the application
data has to be read and written back to main memory.

Some of previous approaches at parallelism focus on pro-
grammability [6] or scalability in cluster systems [5]. It is how-
ever a common issue to see that very little attention has been
paid to bandwidth. Several vendors of hardware accelerated
FDTD algorithms [19] are still limited in their results by the
total bandwidth to main memory. To the authors’ knowledge,
the algorithms used in the supercomputers around the world
do not explicitly employ time skewing or tiling shapes other
than rectangular tiling along the iterator’s dimensions.

D. Challenges in Many-Core Architectures

Bandwidth to main memory is steadily losing ground to
floating point units, which can be built by the thousands on a
chip and can run at multiple gigahertz.

The discussion on how to use on-chip memory remains
open. Compilers and users are continuously struggling to take
full advantage of hardware managed cache memories. On the
other hand, better techniques to fully utilize software managed
on-chip memories have to be developed by leveraging the
high versatility that on chip memories provide. New and
revolutionary techniques have to be developed to address the
increasingly limited amount of off chip memory bandwidth.

Recent developments in computer architecture are exposing
new ways to better use the available memory bandwidth.
Users or compilers can eliminate altogether the coherency
problem by manually managing the on-chip memories and
by introducing synchronization only when it is needed, as
opposed to the traditional philosophy or letting the hardware
execute billions of unnecessary memory operations to maintain
coherency.

New synchronization techniques and better techniques for
tiling and data locality can be developed if the constraints of
cache line sizes or cache line associativity are taken away.
Tiling can be done along any direction and with any size
and shape in architectures where the on-chip memory is fully
manageable.

Further research must be done on synchronization primitives
as there is not a simple way to orchestrate thousands of

threads on a chip. An initial step has been given with the
introduction of hardware barriers in recent multi-core chips
such as Cyclops-64 [1]. However, how to efficiently implement
fine grain synchronization remains an open issue.

Compiler technology has to be advanced to match the
advances in many-core architectures. It is still not very clear
how to use previous knowledge in serial optimizations when
applied to parallel optimizations. Our approach provides a
few steps towards the solution of the problem by presenting
a successful optimization approach that can be integrated
into parallel compilers. Our proposed compiler optimizations
leverage in the compiler’s knowledge and control of the
underlying architecture.

We take advantage of our knowledge in the Cyclops-64 [1]
architecture and the FDTD application to present a full case
study of how bandwidth and synchronization can be done in
a multi-core architecture.

Cyclops-64 is a revolutionary architecture developed by
IBM. It has been designed the name Blue Gene Cyclops
(BG/C) and it targets the petaflop supercomputing market
with a peak performance in excess of 1 PFLOPS. Cyclops-
64 is an architecture that features 80 processing cores in
a chip, with two thread units per core, one 64-bit floating
point unit, a user-manageable on-chip memory of 32KB per
thread unit and a high-bandwidth on-chip crossbar network
with a total bandwidth of 384 GBytes/s. Each Cyclops-64
chip has four memory banks for a total off chip memory
bandwidth of 16GBytes/s. Each core (containing two thread
units and one floating point unit) unit can issue 1 double
precision floating point Multiply Add instruction per cycle,
for a total performance of 80 GFLOPS per chip when running
at S00MHz. The architecture has 64 general purpose, double
precision registers. The chip contains a special signal bus that
allows threads to perform a barrier operation in a few tens
of cycles and features other fast synchronization hardware
operations like thread sleep and thread wakeup.

The Cyclops-64 architecture was selected due to its high
programmability and its lack of on-chip memory cache. All
memory inside the chip is fully manageable by the user.

III. PROBLEM FORMULATION

In the previous sections we have introduced a number of
challenges faced by stencil-type applications such as FDTD.
New architecture features and the growing gap between mem-
ory and processor speed have created a number of open
problems that need to be solved.

The problems that will be addressed by this paper include:

o What is a good mapping of stencil applications such as
FDTD to many-core architectures?

o What are suitable optimizations that will take advantage
of the features of many-core architectures exposed to the
user?

o What is the effect of data reuse on FDTD and what kind
of tiling techniques are required to maximize it?

o What kind of compiler framework would be required to
implement tiling and loop transformations as presented

here into many-core compilers?

The rest of the paper addresses those questions and presents
experimental results that show our findings.

IV. ALGORITHM AND OPTIMIZATIONS

A number of transformations can be applied to the algorithm
to make it suitable for tiling, thus reducing the total bandwidth
required. Such transformations as well as an analysis of the
effects of tiling on data reuse and bandwidth are presented in
this section.

A. Transformations on the Base Algorithm

The performance of a naive execution of FDTD, where all
the instances of statement S3 from Figure 1 are executed in
parallel (followed by a parallel execution of the instances of
S5) will be limited by the requirements of bandwidth to main
memory.

Cache usage or fast on-chip local memories can be used, but
ultimately, they will not solve the bandwidth limitation since
the amount of memory loads per computed array element stays
constant.

Time skewing along with loop tiling can be used to alleviate
the bandwidth problem while finding a good mapping to a par-
allel architecture. We seek to use transformations that would
result in a tiling space that will exhibit enough parallelism as
to use simultaneously all the processing units inside a many-
core chip.

Unfortunately, the data dependences and the structure of the
loops shown in Figure 1 do not allow direct transformations
into efficient forms of tiling. A transformation inspired by the
Single Static Assignment form [20] can be used to relax the
data dependencies found in Figure 1 at the expense of more
memory usage. ¢ is added as a dimension to the data arrays
as shown in Figure 2.

Sl: for t = 1 to NT

S2: for i =1 to N

S3: E(i,t) = E(i,t-1)+

S3: klxH(i,t-1)+k2xH(i-1,t-1)
S : end for

S4: for i =1 to N

S5: H(i,t) = H(i,t-1) +

S5: E(i,t) - E(i+l,t)

S : end for

S :end for

Fig. 2. A Single Assignment transformation

To simplify the following explanations we define the node
EH (1, t) as the pair of values E (i,t) and H(1i,t).

A function h operating on nodes can be used to better
represent the data dependencies of the application, as seen
in Figure 3. This representation can be obtained by noting
that E(i,t) and H(i,t) depend on previous values of
EH computed at time t-1. It should be pointed that values
of H(i,t) require two values of E at time t that can be

computed from the arguments of function h. There is a small
amount of redundant computations, since two values of E
have to be computed for each value of EH, but it relaxes
the dependencies between iterations, enabling better tiling
optimizations.

Sl: for t = 1 to NT

S2: for i =1 to N

S3: EH(i,t) = h(EH(i-1,t-1),

S3: EH(i,t-1),EH(i+1,t-1))
Fig. 3. Program written as nodes of values

The representation in Figure 3 can be used to derive parallel
tiling techniques such as the split tiling presented in Figure 4.
Highlighted in black is one of the tiles that each processing
element would have to execute. The tiling presented in Figure
4 represents an improvement over other tiling techniques since
tiles do not require redundant computations as in [4] and tiles
do not have to be executed serially as in [7].

RN
AN
/

44444

Fig. 4. Split tiling on a time-skewed loop

The tiling shape of Figure 4 reduces the bandwidth require-
ments of the program since nodes computed inside the tile
do not require memory load operations from main memory.
However, without further loop transformations the bandwidth
of the application is still prohibitive since all values of
EH (i,t) have to be sent back to main memory.

An in-place computation of EH (i, t) can be done to avoid
sending all values back to memory. To do so, arrays containing
the current nodes being computed and the previous nodes
computed must be kept in on-chip memory.

A detailed description of the resulting code is the subject
of another paper.

B. Maximization of Data Reuse

The main limiting factor of the FDTD algorithm is its
requirements for main memory bandwidth. Increasing data
reuse of on-chip memory can reduce the dependence of the
algorithm on main memory bandwidth.

The dependence requirements for each node show that
maximum data reuse is achieved when the boundaries of the
tile are at an angle that follows the dependence directions,
making the tile narrower as the time iterations advance. To

illustrate this point, consider that the tiles shown in Figure
4 provide good reuse with no redundant computations. If
optimizing the memory reuse is sought, then the tiles can be
extended in both directions to form a diamond-shaped tile,
such as the one shown in Figure 6. Using such tiles will result
in no redundant computations while having a fully parallel tile
iteration space along the ¢ dimension.

Maximizing data reuse by extending tiles is a key optimiza-
tion to achieve optimum bandwidth usage. Diamond tiling
presents key advantages over the tiling presented in [7] in
terms of parallelism, application performance and required
bandwidth to main memory.

Diamond-shaped tiles cause values kept in the working
arrays to belong to different time iterations. This is not a
problem since some startup and finishing code can be added
to compute the half-diamonds required to start and finish the
computation of FDTD. Tiles on the boundaries along the
dimension are also triangular in shape and are handled by
additional code that can run in parallel with other tiles aligned
to the same value of time.

Figure 5 shows the logical positioning of the working arrays
at the start of the tile computation (marked “a” in the figure)
and at the end of the tile computation (marked “b” in the
figure). The boxes shown in the figure represent nodes in the
iteration space. The lightly and darkly shaded boxes represent
the working node arrays. Boxes with dots represent nodes
computed between the moments “a” and “b” shown in the
figure and constitute the nodes that would be computed during
the execution of a tile. As can be seen in the figure, all
elements of the arrays do not share the same position in time.
For that reason, startup and finishing codes are required to
reach a particular time boundary.

oo

. °
) oo .
o(o(o e
o(o(o e
t t
oo
i i
a) b)
Fig. 5. Logical array positioning in tile

If the two arrays shown in Figure 5 are kept in on-chip
memory where bandwidth to the processor is larger than the
bandwidth of main memory to the processor, an increase of
the perceived bandwidth is experienced.

To analyze this, consider the FDTD application tiled as
shown in Figure 6. Let 2c be the size of the array allocated
in on-chip memory and let ¢,,e,, be the number of memory
operations that would be required, per node, if no time skewing
is used. Also, consider that for most real problems, both N

and NT are large.

i |2c|

Fig. 6. Diamond Tiling

Figure 6 shows the tile shape that can produce the most
useful computation without communicating with main mem-
ory given a region of memory already loaded into on-chip
memory. The black highlighted areas represent the memory
locations that need to be loaded. A total of two arrays of size
2c¢ (previous and current time iteration) must be loaded to
compute the diamond region.

The diamond tile with the dimensions shown in Figure 6 has
a total of 2(c®> — 2c¢) nodes. The reuse of the working array
after it has been loaded into on-chip memory results in less
main memory operations per node — if diamond tiling is used.
Equation 1 shows the total number of memory operations to
main memory, per node, if diamond tiling is used.

2C -+ Cmem
c? —2c

(1

The important conclusion about Equation 1 is that it mul-
tiplies the required memory bandwidth to main memory by
2¢/(c? — 2¢), which is a number smaller than 1 for ¢ > 4.
This result holds as long as there is enough on-chip memory
bandwidth to support the desired computation rate plus a one-
time load of the arrays (with size 2c) and their respective store
to memory.

The value c can be chosen to reduce the required bandwidth
to a value that can be provided by the main memory. To
illustrate this point, if diamond tiling with ¢ = 128 is used,
the required memory bandwidth is reduced to only 1.58%
of the originally required bandwidth to main memory. On-
chip memory still has to support the full bandwidth of the
application.

C. Farallelization of FDTD on a Many-Core Chip

After the transformations proposed, the algorithm can be
executed in a many-core chip. The application data can be
partitioned into chunks so that each chunk occupies all on-chip
memory. A chunk is formally defined as the largest consecutive
partition of application data that will fit in on-chip memory.
The chunk size will be denoted by M.

To simplify our discussion, consider that M is a multiple
of 2P, where P is the number of processing elements in the
chip.

When the application executes, each processor in the chip
will load, compute and offload a full diamond tile. The size
of the arrays that need to be transferred from and to main
memory are, per processor, 2¢ = M /P.

A phase is the computation of all tiles that are aligned at
a particular time value. A phase is composed of the load of
one or more chunks, the computation of the tiles inside the
chunks, and the offloading of the chunks to main memory.

A barrier synchronization is used at the end of each phase
to ensure that all processor elements have finished. Once this
is done, time is increased and the process repeats with another
phase.

Odd phases load their chunks aligned with the boundary
of the problem while even phases load their chunks with a
displacement of ¢ to match the diamond positions with the
previous phase.

Special code is required at the boundaries of the iteration
space since the first triangle tiles instead of diamond tiles are
found there, as can be seen in Figure 6.

This algorithm keeps all processing elements working all
the time.

D. Analysis of Tile Shape

Given the nature of the dependences between nodes, the
iteration space can be also partitioned as shown in Figure 7.

Tiles can have several shapes that can be described using a
parameter p. p is defined as the reduction factor in tile height
and is computed as the ratio of the tile height to the maximum
possible tile height (which is c¢). Figure 8 shows various tile
shapes and their corresponding p value.

1 |2c|

Fig. 7. Tiling with varying tile shape

Tiles aligned at a particular time value can start concur-
rently, and they require the load of 2 node arrays of size 2c,
their logical location indicated by the thick dark line at the
bottom of the shaded tile shown in Figure 7.

To simplify our analysis, we will assume that the array
sizes are continuous. The discretization error introduced by

p=0.16 p=0.5

Fig. 8. Tile with parametric shape

this assumption is negligible for problem sizes found in real
life.

Given the original fact that the FDTD application is bounded
by memory bandwidth, we claim that the best tile shape will
be the one that has the best reuse of on-chip memory.

We define the reuse r of on-chip memory as the ratio of
nodes computed to the number of nodes loaded in a tile.
For large values of ¢, the number of nodes computed can be
approximated by 2¢?(2p — p?) and the total number of nodes
loaded is equal to 4c since both present and past values for
the nodes have to be loaded. The reuse is approximated by
Equation 2.

Intuitively, the reuse is given by the area of the tile divided
by its width. In particular, a tile with a particular width value
will maximize its reuse if its area is maximized (when p = 1).
Due to space constraints, we present the derivation of Equation
2 in a separate publication [21].

2
- C(2p2 p?))

Large values of r result in the best application performance.
Equation 2 has the implication that the required bandwidth to
main memory is scaled by 1/r, and consequently, the best
results are obtained if large values of ¢ are used and a value
of p = 1 is selected. In other words, the diamond shape is the
best tiling shape in terms of performance and bandwidth
for the data dependencies in FDTD.

The width of the tile, 2¢, is important in the sense that it
both reduces the memory bandwidth required and distributes
the cost of loading and storing array values to main memory.
For that reason, the tile width should be chosen as large as
the on-chip memory would allow.

The analysis presented here confirms that diamond shape
tiling along with a tile as big as possible will provide greater
data reuse that is reflected as better performance in FDTD and
other applications with similar dependencies.

V. RESULTS

We have found that our optimization techniques have
produced excellent performance results when applied to the
FDTD computation.

The following algorithms were tested in Cyclops-64. The
compiler used was gcc version 3.4 for Cyclops-64, with
compilation flags —03. Timing was done using the hardware
counters present in the Cyclops-64 chip, and it only measures

the execution of the computational loops. No timing informa-
tion was gathered for the initialization of the required arrays
or for memory allocation steps. Synchronization to enforce
dependencies between tiles was done using the Cyclops-64
on-chip hardware barriers.

o Naive DRAM: FDTD was computed exactly as described
in Figure 1. All arrays resided in off chip memory
(DRAM).

o Triangle: The iteration space was divided into triangles.
The execution proceeds in “steps” where each step cal-
culates a constant number of time iterations. Each “step”
is tiled in triangles so that each triangle can be computed
entirely after loading its base. Intuitively, a triangle tile
is equivalent to only calculating half of a diamond tile.

o Diamond: The iteration space was split into diamonds.
Diamonds aligned along a particular time value are mu-
tually independent and they were executed in parallel.
Figure 6 shows an example of diamond tiling. The
highlighted black boundaries show the memory needed
to start the computation.

e Varying Shape: Although the Diamond tile represents
the best reuse of on-chip memory, the control flow
instructions are more abundant in the regions close to
the top and bottom of the diamond. The varying shape
tiling does not use complete diamond tiles. Instead, the
tiles have an hexagonal shape that resembles a diamond
without a tip. In this sense, less control flow instructions
are used at the expense of less memory reuse.

The performance results are shown in Figures 9 and 10.

As expected, the Naive version has a very low perfor-
mance. Off-Chip bandwidth is not enough to load the required
operands from main memory fast enough.

16

14

| I I
0-. I

Triangle 16 Triangle 64 Diamond 16 Diamond 64

o~

N

Naive

Fig. 9. Relative speedup of several tiling approaches in Cyclops-64
The triangle version is the first approach at data reuse. Fig-
ure 9 shows that reuse of memory is of paramount importance
to achieve better performance. Two tile sizes are shown for
triangle tiling. It can be seen that as the tile size increases,
the overall performance of the application is increased greatly.

Those first results suggest that full reuse of the memory loaded
plays a key role in the execution of the application.

The Diamond version results, also shown in Figure 9,
confirm our predictions about how data reuse is fundamental to
achieve greater performance. Using diamond tiling produces
twice as much data reuse when compared to triangle tiling,
and is reflected in an overall increase of performance that
closely follows the amount of data reuse. The results regarding
better reuse have been confirmed by information on memory
usage gathered using Cyclops-64 performance counters. This
information shows evidence that Diamond tiling for a tile
height of 64 elements has 11 times better overall data reuse
when compared with the traditional rectangular tiling. Our
conclusion is supported by the fact that our application uses
almost the same amount of memory bandwidth before and
after the tiling transformation but the FLOP rate was increased
by 11 times.

To verify our hypothesis about the performance of tiles as
a function of their shape, we have produced the varying shape
version, where tiling shape was parameterized as shown in
Figures 7 and 8. Speedup results confirming our analysis are
presented in Figure 10.

It should be noted that at the bottom and top of each
diamond tile, there are more control flow instructions per node
executed. To test the effects of this relative increase in instruc-
tions to floating point operations, we ran the FDTD application
with several tile shapes. The results of our experiments, shown
in Figure 10, show that for larger tile sizes, the extra amount
of control flow instructions does not play a key role in the
performance of the application. Instead, the amount of data
reuse keeps dominating the performance.

5
4-2c = 16 W 2c = 32
4,5 /
4
35 /./
3 /./ /0\‘\‘
% 2 -
8 2 / /
& s e
A
05
0
0 0.2 0.4 0.6 0.8 1

p: Parametric tile shape

Fig. 10. Performance speedup as a function of the tile shape
Performance speedup of FDTD for several tile shapes. Param-
eter p determines the shape of the tile, as shown in Figure 8.
The performance reference is a tile with an absolute height of
2.

The results presented here have been obtained by applying
previously known compiler optimizations to the FDTD appli-

cation. However, there is a significant difference with previous
approaches since optimizations such as tiling or loop skewing,
when applied in many core architectures, have different results
than when they are used in traditional multi core architectures.
The evidence provided by the results of our optimizations
shows that loop transformations and new tiling shapes such
as diamonds can be integrated into many-core compilers to
produce good performance improvements. To do so, each
transformation needs to be associated with new cost functions
that would reflect the characteristics of each optimization as
shown here.

VI. RELATED WORK

Directly related applications of FDTD that share common
properties with the work published here were described in
detail in Section II. We have extended their techniques by
combining several optimization approaches and by proposing
new tiling shapes.

There are a number of other FDTD implementations that
use other approaches such as multiple chips or other kind of
parallelization technique. In particular, MPI implementations
of FDTD are common [17], [18] among the high performance
computing community. Such works are outside of the scope
of this paper since they use multiple chips and do not report
tiling with sufficient details as to be compared fairly with our
results.

Recent research on iteration space representation such as the
polyhedron model [22] can be used to describe code transfor-
mations as convex polyhedrons in a multidimensional iteration
space. The work on the polyhedron model is orthogonal to the
technique presented here. The polyhedron model can be used
to represent our proposed transformations in compilers and
other optimization frameworks.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an efficient mapping of a common stencil
application to Cyclops-64, a revolutionary many-core architec-
ture. We have employed a number of loop transformations on
the original problem to enable parallel tiling. By examining the
data dependencies across iterations of the main computational
loop we have proposed a tiling shape that optimizes the reuse
of on-chip memory and lowers the bandwidth requirements of
the application.

The main memory bandwidth required by the processor chip
has been reduced by a factor O(c) of the on-chip memory
size. We have explored other tiling shapes and have concluded
that on the limit, maximum reuse of on-chip memory yields
the best effects in terms of performance. Our results apply
to situations where each location in on-chip memory is fully
manageable by the user. We believe that architectures with
hardware caches can also benefit from our diamond tiling
technique. Further research is required to find a suitable way
to implement diamond tiling for architectures with automatic
cache memories.

Investigations conducted through our tests show that for
architectures such as Cyclops-64, with simple control flow

behavior, the added program complexity introduced by tiling
shapes that are not square is negligible when compared to the
performance gains brought by on-chip memory reuse.

Our results show that our tiling technique along with our
loop transformations can be applied to existing implementa-
tions of FDTD and stencil computations to further increase
their performance. In the future, we will continue our research
by upgrading state of the art implementations of FDTD to
demonstrate the usefulness of our contributions. We will
apply other optimizations such as loop unrolling, instruction
scheduling and register tiling in the style of [8] to get a fully
optimized algorithm.

In the future, we will investigate the possibility to improve
our tiling technique by reusing the on-chip memory across
phases. Such an implementation is likely to require dataflow
techniques that would have to be developed.

We are conducting ongoing research on a mathematical
formulation that would be able to extend the results presented
here using a one dimensional array to multidimensional arrays.
Preliminary results up to three dimensions indicate that this
line of work will provide good results in the near future.

Research on synchronization techniques for parallel tiling
has to be further pursued. In the results presented here,
synchronization was done using global barriers. It is known
[23] that the use of global barriers is inefficient since all
threads are forced to wait for termination of the slowest
thread. The design of producer-consumer techniques for stencil
applications will eliminate the wasted cycles where some
threads wait for all the threads’ dependencies to be ready,
and would require several new contributions in the dataflow
field, including a good understanding of how to automatically
percolate the data [24] so that threads do not waste computing
cycles waiting for memory loads to complete. The authors
will continue working to solve those issues so that better
alternatives to global barriers become available to application
developers and computer architects.

ACKNOWLEDGMENT

This work was supported by NSF (CNS-0509332, CSR-
0720531, CCF-0833166, CCF-0702244), and other govern-
ment sponsors. We thank all the members of CAPSL group
at University of Delaware. We thank Ge Gan, Robert Pavel
and Aaron Landwehr for their comments and their valuable
feedback. We acknowledge the nice survey on the recent work
on split tiling by Huimin Cui, it has been a good reference for
our initial stage of study on this subject. We thank the efforts
of our reviewers for their disinterested work and their helpful
suggestions that have led to several important improvements
of our work.

REFERENCES

[11 W. Zhu, “Synchronization state buffer: Supporting efficient fine-grain
synchronization on many-core architectures,” in In The 34th Interna-
tional Symposium on Computer Architecture, 2007.

[2] K. Yee, “Numerical solution of inital boundary value problems involving
maxwell’s equations in isotropic media,” Antennas and Propagation,
IEEE Transactions on, vol. 14, no. 3, pp. 302-307, May 1966.

[3] A. Tavlove, Computational Electrodynamics, 1995.

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]
[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Effective automatic parallelization of
stencil computations,” SIGPLAN Not., vol. 42, no. 6, pp. 235-244, 2007.
G. Schiavone, I. Codreanu, R. Palaniappan, and P. Wahid, “Fdtd
speedups obtained in distributed computing on a linux workstation
cluster,” Antennas and Propagation Society International Symposium,
2000. IEEE, vol. 3, pp. 1336-1339 vol.3, 2000.

C. Guiffaut and K. Mahdjoubi, “A parallel fdtd algorithm using the mpi
library,” Antennas and Propagation Magazine, IEEE, vol. 43, no. 2, pp.
94-103, Apr 2001.

M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,”
SIGPLAN Not., vol. 26, no. 6, pp. 3044, 1991.

I. Venetis and G. Gao, “Mapping the lu decomposition on a many-core
architecture: Challenges and solutions,” Proceedings of the 2009 ACM
International Conference on Computing Frontiers, 2009.

J. Proakis and D. Manolakis, Digital Signal Processing, 2006.

K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the first-
order form of the 3d discrete ordinates equation on a massively parallel
processor.” Transactions of the American Nuclear Society, pp. 65:198—
199, 1992.

Y. Song and Z. Li, “New tiling techniques to improve cache temporal
locality,” SIGPLAN Not., vol. 34, no. 5, pp. 215-228, 1999.

D. Wonnacott, “Using time skewing to eliminate idle time due to
memory bandwidth and network limitations,” Parallel and Distributed
Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th Interna-
tional, pp. 171-180, 2000.

M. Wolfe, “More iteration space tiling,” in Supercomputing ’89: Pro-
ceedings of the 1989 ACM/IEEE conference on Supercomputing. New
York, NY, USA: ACM, 1989, pp. 655-664.

M. Frigo and V. Strumpen, “The memory behavior of cache oblivious
stencil computations,” J. Supercomput., vol. 39, no. 2, pp. 93—112, 2007.
S. Hagness, A. Taflove, and J. Bridges, “Two-dimensional fdtd analysis
of a pulsed microwave confocal system for breast cancer detection:
fixed-focus and antenna-array sensors,” Biomedical Engineering, IEEE
Transactions on, vol. 45, no. 12, pp. 1470-1479, Dec. 1998.

J. Bourgeois and G. Smith, “A complete electromagnetic simulation of
the separated-aperture sensor for detecting buried land mines,” Antennas
and Propagation, IEEE Transactions on, vol. 46, no. 10, pp. 1419-1426,
Oct 1998.

Z. Yu, D. Wei, and L. Changhong, “Analysis of parallel performance
of mpi based parallel fdtd on pc clusters,” Microwave Conference
Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings,
vol. 4, pp. 3 pp.—, Dec. 2005.

W. Yu, X. Yang, Y. Liu, L. ching Ma, T. Sul, N.-T. Huang, R. Mittral,
R. Maaskane, Y. Lu, Q. Che, R. Lu, and Z. Su, “A new direction
in computational electromagnetics: Solving large problems using the
parallel fdtd on the bluegene/l supercomputer providing teraflop-level
performance,” Antennas and Propagation Magazine, IEEE, vol. 50,
no. 2, pp. 26-44, April 2008.

J. Durbano and F. Ortiz, “Fpga-based acceleration of the 3d finite-
difference time-domain method,” Field-Programmable Custom Comput-
ing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on,
pp. 156-163, April 2004.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“An efficient method of computing static single assignment form,” in
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM,
1989, pp. 25-35.

D. Orozco and G. Gao, “Tiling techniques to map applications
to multi-core systems,” CAPSL Technical Memo Number 87, 2009.
[Online]. Available: http://www.capsl.udel.edu/publications.shtml

N. Vasilache, C. Bastoul, and A. Cohen, “Polyhedral code generation in
the real world,” International Journal in Parallel Processing, 2000.

F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing su-
percomputer performance: Achieving optimal performance on the 8,192
processors of asci q,” Supercomputing, 2003 ACM/IEEE Conference, pp.
55-55, Nov. 2003.

A. Jacquet, V. Janot, C. Leung, G. R. Gao, R. Govindarajan, and T. L.
Sterling, “An executable analytical performance evaluation approach
for early performance prediction,” in IPDPS ’03: Proceedings of the
17th International Symposium on Parallel and Distributed Processing.
Washington, DC, USA: IEEE Computer Society, 2003, p. 268.1.

