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Abstract—As Chip-Multiprocessor systems (CMP) have be-
come the predominant topology for leading microprocessors,
critical components of the system are now integrated on a
single chip. This enables sharing of computation resources that
was not previously possible. In addition, the virtualization of
these computational resources exposes the system to a mix
of diverse and competing workloads. Cache is a resource of
primary concern as it can be dominant in controlling overall
throughput. In order to prevent destructive interference between
divergent workloads, the last level of cache must be partitioned.
In the past, many solutions have been proposed but most of
them are assuming either simplified cache hierarchies with no
realistic restrictions or complex cache schemes that are difficult
to integrate in a real design. To address this problem, we propose
a dynamic partitioning strategy based on realistic last level cache
designs of CMP processors. We used a cycle accurate, full system
simulator based on Simics and Gems to evaluate our partitioning
scheme on an 8-core DNUCA CMP system. Results for an 8-core
system show that our proposed scheme provides on average a
70% reduction in misses compared to non-partitioned shared
caches, and a 25% misses reduction compared to static equally
partitioned (private) caches.

I. INTRODUCTION

Chip Multiprocessors (CMP) have gradually become an
attractive architecture for leveraging system integration by pro-
viding capabilities on a single die that would have previously
occupied many chips across multiple small systems [1][2].
This integration has brought abundant on-chip resources that
can now be shared in finer granularity among the multiple
cores. Such sharing though has introduced chip-level con-
tention and the need of effective resource management policies
is more important that ever.

To efficiently exploit these resources, systems require mul-
tiple program contexts and virtualization has become a key
player in this arena. Many small and/or low utilization servers
can now be easily consolidated on a single physical machine
[3][4][5], allowing higher utilization of the available resources
with significant energy reductions. Such consolidation presents
both opportunities and pitfalls to computer architects to best
manage these once isolated resources on large CMP designs.

In such virtualization environments, workloads tend to place
dissimilar demands on shared resources and therefore, due
to resource contention, are much more likely to destructively
interfere in an unfair way. Consequently, shared resources’
contention become the key performance bottleneck in CMPs
[6][7][8][9]. Shared resources include, but are not limited
to: main memory bandwidth, main memory capacity, cache
capacity, cache bandwidth, memory subsystem interconnection
bandwidth and system power.

Among these resources, several studies have identified the
shared last-level cache (L2 in our study) of CMPs as a
major source of performance loss and execution inconsistency
[7][10][11][12][13][14][15]. As a solution, most of the pro-
posed techniques control this contention by partitioning the L2
cache capacity and allocating specific portions of it to each
core or execution thread. There are both static [7][13] and
dynamic partitioning [10][15][16] schemes available that use
workload profiling information to make a decision on cache
capacity assignment for each core/thread. All of the above
techniques are usually based on high-level system characteris-
tic monitoring since low-level activity based algorithms such
as LRU replacement fail to provide a strong barrier among
workloads competing for shared resources.

In addition to the cache partitioning need, as wire delays
are gradually becoming the most important design factor in
cache architectures, designers have successfully used banking
techniques [17][18] to mitigate the effects of increasing wire
delays for short distances. Banked architectures are now
the typical design direction for caches in both industry and
academia. Such solutions though are still not efficient enough
since wire delays between banks themselves are still an
important performance bottleneck. An alternative solution to
the wire delay problem, mainly used in academia is the Non-
Uniform Cache Architecture (NUCA) designs [9]. NUCA is
based on assuming non-uniform access latencies to all cache
banks of a large L2 cache. The NUCA model, which was
originally proposed for a single core, was later extended to a
multicore CMP version named CMP-NUCA by Beckmann et
al. [19]. In parallel, industry has also responded to wire delay
dominance of on-chip caches with non-uniform structures.
These structures have been implemented with a small number
of cache levels, rather than large arrays of homogeneous
networks of cache blocks as are assumed in academia. Both
approaches are logically similar and the differences are more
tied to the physical implementation constraints of cache banks
and data networks rather than higher-level policy options. As
new CMP designs include more cores and cache capacity, a
banked L2 cache design is a promising solution that can scale
with the number of cores and is able to alleviate wire delay
problems.

This work highlights the problem of sharing the last level
of cache in CMP systems and motivates the need for low
overhead, workload feedback-based hardware/software mech-
anisms that can scale with the number of cores, for monitoring
and controlling the L2 cache capacity partitioning. The need
to address the dominating effect of wire delays by taking



into consideration the realistic constraints imposed by banking
architectures drove our baseline system structure. Specifically,
we propose a Bank-aware partitioning strategy for the CMP-
DNUCA architecture, consistent with the current industry
trends, that is aware of the banking structure of the L2 cache.
To evaluate our partitioning scheme, we integrated an 8-core
CMP system with a 16-way banked DNUCA L2 cache design,
using Simics [20] combined with Gems [21] full system,
cycle accurate simulation toolset. In summary, the paper’s
contributions are the following:

1) We propose a cache partitioning scheme, named Bank-
aware, for CMP-DNUCA that is aware of the banking
structure of the L2 cache. Our simulations showed a
70% reduction in misses compared to non-partitioned
shared caches, and a 25% misses reduction compared to
static even partitioned (private) caches. Such miss rate
reductions result in 43% and 11% reductions in CPI over
the non-portioned and static even partitioned schemes,
respectively.

2) We demonstrate a detailed implementation of a dynamic
cache partitioning algorithm using a non-invasive, low-
overhead monitoring scheme based on Mattson’s stack
distance algorithm [22]. The overall hardware overhead
for the proposed cache profiling scheme is equal to 0.4%
of our baseline L2 cache design.

The paper is organized as follows. Section 2 summarizes
our CMP-baseline design. In Section 3 we elaborate on our
proposed Bank-aware cache partitioning scheme. Section 4
describes our evaluation methodology and reports our ex-
perimental results. Finally, section 5 contains our conclusion
remarks.

II. CMP-BASELINE

Prior works in industry and academia have proposed quite
varied allocation and migration schemes for the memory cache
hierarchy. A large amount of work in academia has focused on
free form, highly banked, and non-uniform cache structures.
This was in response to the expected wire dominant nature
of future technologies, where the latency of large monolithic
caches would become detrimental to system performance.
These proposed free form caches enable great freedom in
allocation and migration policies. As an example Huh et al. in
[16] proposed a 256 x 64K bank cache. In contrast, industry
has thus far typically implemented more traditional structures
with fewer than eight cache banks that form specific multi-
level caches (compared to more free form NUCA like levels).
For example, the recently announced 45nm Intel Nehalem pro-
cessors has three levels on chip cache (32KB, 256KB, 4-8MB)
[23], compared to two levels in the previous design.SUch
additional cache levels approach a more NUCA-like cache,
formed of homogeneous cache banks.

The industry direction of avoiding highly banked structures
can be also explained by recent upgrades to the CACTI
6.0 tool [24]. In this work they demonstrated using detailed
modeling of the cache and interconnection subsystem results
in generated remarkably different results. As a case study, they

evaluated a 32 MB L2 cache [24]. This gave a mix of ideal
cache block sizes of 4 MB and 8MB. This landscape drove
our baseline system structure. Specifically, we limited the total
bank structures on the chip to 1MB cache banks. This was
chosen as the smallest reasonable bank size.

Fig. 1 shows our 8-core CMP-NUCA baseline system. Our
design uses as the last-level of cache a DNUCA L2 cache
with 16 physical banks that provide a total of 16MB of
cache capacity. Each cache bank is configured as an 8-way
set associative cache. Another way to see the cache is as a
128-way equivalent cache that is separated in 16 cache banks
of 8 ways each. The eight cache banks that are physically
located next to a core are called Local banks and the rest are
characterized as Center banks. Cores located next to Local
banks have the minimum access latency but that delay can
significantly increase when a core needs to access a Local
bank physically located next to another core. Center banks
have, on average, higher access latency than Local banks but
their distance for each core has smaller variation than Local
banks and so does the access latency. The access latency to a
L2 cache bank varies from 10 up to 70 cycles depending on
the physical location of both the core requesting the access
and the L2 bank containing the data. A core physical located
next to a Local cache bank has to wait 10 cycles to access
the bank. The maximum possible latency, without significant
network contention, is equal to 70 cycles (i.e core 0 to access
the Local bank next to core 7 since it requires 7 hops). Table
I includes the basic system parameters that have been selected
for our baseline system.

 

Fig. 1. Baseline CMP system

III. BANK-AWARE CACHE PARTITIONING

In this section we elaborate on our proposed Bank-aware
cache partitioning scheme. We start by providing details about
our application profiling mechanism followed by our partition-
ing algorithm for assigning cache capacity to each core. In the
end, we describe the cache partitions allocation algorithm for
allocating the cache partitions on our CMP-baseline system.

A. Cache Profiling of Applications

In order to dynamically profile the cache requirements of
each core, we implemented a cache miss prediction model



TABLE I. Baseline DNUCA-CMP parameters
Memory Subsystem Core Characteristics

L1 Data &
Inst.

Cache

64 KB, 2-way set
associative, 3 cycles

access time, 64 Bytes
cache block size

Clock
Frequency 4 GHz

L2 Cache

16 MB (16 x 1MB
banks), 8 ways set
associative, 10-70

cycles bank access, 64
Bytes cache block size

Pipeline

30 stages /
4-wide
fetch /
decode

Memory
Latency 260 cycles

Reorder
Buffer /

Scheduler

128/64
Entries

Memory
Bandwidth 64 GB/s Branch

Predictor

Direct
YAGS /
indirect

256 entries

Memory
Size 4 GB of DRAM

Outstanding
Requests 16 requests / core

based on Mattson’s stack distance algorithm. Mattson’s stack
algorithm (MSA) was initially proposed by Mattson et al.
in [22] for reducing the simulation time of trace-driven caches
by determining the miss ratios of all possible cache sizes
with a single pass through the trace. The basic idea of the
algorithm was later used for efficient trace-driven simulations
of a set associative cache [25]. More recently, hardware-based
MSA algorithms have been proposed for CMP system resource
management [15][26].

MSA is based on the inclusion property of the commonly
used Least Recently Used (LRU) cache replacement policy.
Specifically, during any sequence of memory accesses, the
content of an N-sized cache is a subset of the content of
any cache larger than N. To create a profile for a K-way set
associative cache we need K+1 counters, named Counter1 to
CounterK+1. Every time there is an access to the monitored
cache we increment only the counter that corresponds to the
LRU stack distance where the access took place. Counters
from Counter1 up to CounterK correspond to the Most
Recently Used (MRU) up to the LRU position in the stack
distance, respectively. If an access touches an address in a
cache block that was in the i-th position of the LRU stack
distance, we increment Counteri counter. Finally, if the access
ends up being a miss, we increment CounterK+1. Efficient
directories have been implemented exclusively in hardware
using set sampling [28] and partial tags [27] in previous work
[15].

Fig. 2 demonstrates such a MSA profile for an application
running on an 8-way associative cache. The application in the
example shows a good temporal reuse of stored data in the
cache since the MRU positions have a significant percentage of
the hits over the LRU one. Based on the application spatial and
temporal locality, the graph of Fig. 2 can change accordingly.
Using the inclusion property of the LRU replacement policy
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Fig. 2. LRU histograms based on Mattson’s stack algorithm

and having a MSA profile of an N-sized cache, allow us to
make a straight-forward prediction of the misses for every L2
cache with size smaller than N. For example, the number of
misses that will occur if we make the cache of Fig. 2 half
the size, that is using 4 ways instead of 8 ways, would be
the previously measured misses plus the hits of the positions
5 up to 8 of the previous case LRU stack distance. For those
positions, the LRU replacement policy will replace the stored
data to make room for the one in the MRU positions before
they are accessed again. Therefore the accesses that were
previously recorded as hits would be misses in the 4-way cache
case.
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Fig. 3. LRU histograms examples of SPEC CPU2000 benchmarks

Fig. 3 shows the projected cumulative miss ratio of three
benchmarks of SPEC CPU2000 benchmark suit [33]. We
selected three examples, out of the 26 SPEC CPU2000
workloads that we simulated, as examples of varied behavior
within the whole suit. To create the figure, we collected the
stack distance profiles of bzip2, sixtrack and applu with each
application executing stand-alone on our baseline CMP using
just a single core. To collect the profiles we captured the L2
cache accesses of each core and fed it to the MSA histogram
profiler described above. The x-axis represents the number of
cache ways that are dedicated to each application and the y-
axis shows the MSA-based projected cumulative miss rate of
each application. Sixtrack features a lot of misses with less
than six cache ways dedicated to it but after that point, by
giving more ways, its misses are close to zero. Therefore, we



can have a good fit of sixtrack’s cache requirements using only
one bank (8 ways). In the same way, applu shows a reduction
of misses when more than ten ways are dedicated to it, but in
this case the miss rate remains flat after more than 10 ways.
Therefore, assigning more ways is not beneficial for applu.
Lastly, bzip2 shows a behavior somewhere between the two
previous cases since additional assigned ways improve miss
ratio up to the point where dedicating 45 ways that finally
flattens out. Consequently, MSA-based profiling allows us to
monitor each core’s cache capacity requirements during the
execution of an application and based on which we can find
the points of cache allocation that can benefit the miss ratio
the most.

The hardware overhead of the profiling structure is primarily
defined by the implementation of the necessary cache directory
tag shadow copy. These cache block tags are necessary for
identifying which cache block is assigned at each one of the
hit counters of Fig. 2 and allow a detailed monitoring of
resource requirements on a cache block granularity on our
LLC. Additional overhead is introduced by the implementation
of the hit counters themselves for each cache way, but since
those counters are shared over all the available cache-ways,
their overhead is significantly lower than the cache block tag
information for every set.

A simple with no restrictions implementation would require
a complete copy of the cache block tags for each cache set
in each one of MSA profilers, which is prohibitively high.
The overhead can be greatly reduced using: a) partial tags
[27] b) set sampling [28] and c) maximum assignable capacity
reduction techniques. With partial tags one can use less than
full tags to identify the cache blocks assigned at each counter
thus reducing the storage overhead. Set sampling involves the
profiling of a fraction of the available cache sets and therefore
it also reduces the number of stored cache tags in the circuit. In
addition, the maximum assignable capacity approach assumes
that the number of cache-ways that can be assigned to each
core is less than the overall number of available cache-ways. In
that case, the number of counters are reduced to the maximum
number of assignable cache ways per core. The first two
reduction techniques are subject to aliasing, which introduces
errors and affects the overall accuracy of our profiling circuit.
In addition, the maximum assignable capacity can potentially
restrict the effectiveness of our partitioning scheme by not
dedicating bigger portions of a cache to a specific core.

TABLE II. Overhead of the proposed MSA profiler

Structure Name Overhead Equation Overhead

Partial Tags tag width∗ways∗cache sets 54 kbits

LRU Stack
Distance Implem.

((lru pointer size ∗ ways) +
head/tail) ∗ cache sets

27 kbits

Hit Counters cache ways ∗
hit counter size

2.25 kbits

In this paper we propose an implementation based on all
of the above methods. Our overhead analysis showed that

the use of 12 bit partial tags combined with 1-in-32 set
sampling produced error rates within 5% of the profiling
accuracy obtained using a full tag implementation. In addition,
our Bank-aware partitioning assignment algorithm limits each
core to a maximum of 9/16 of the total cache capacity.
The hardware overhead of the proposed implementation for
every necessary structure is included in Table II. Overall, the
implementation overhead is estimated to be 83.25 kbits per
cache profiler, which is approximately 0.4% of our 16MB LLC
cache design for all the profilers.

B. Bank-aware Assignment of Cache Capacity

Prior work in MSA-based cache partitioning was analyzed
on fully configurable caches shared among a small number of
CPUs [8][15]. We refer to this type of partitioning algorithm
as Unrestricted. On the other hand, while Huh et al. in [16]
proposed a method for partitioning a CMP-NUCA cache, this
relied on a highly banked structure that, as we explained in
Section II, features an unrealistic physical implementation.
As a solution, we propose a method to partition cache bank
structures using a MSA-based profiling mechanism aligned
with current industry directions, that is, using a smaller number
of higher capacity cache banks. Such configuration limits
the granularity of possible partitions and imposes a set of
restrictions over the Unrestricted techniques proposed in the
past. This is rooted in the need to aggregate multiple cache
banks into a single partition. In the following we discuss
several potential aggregation methods that are shown in Fig. 4.
Aggregation possibilities:

 
Fig. 4. Cache banks aggregation schemes

1) Cascade: In this approach, all cache banks that contain
portions assigned to a given core are connected head
to tail. To match the MSA LRU strategy (Fig. 4.a), all
allocations are placed as MRU at the head of the chain.
Each allocation causes a shift down of the LRU. Evictions
are passed down the chain from LRU out to MRU position
in the next bank until a free spot is located (potentially
formed from the cache hit that was moved to the top).
This structure is show in Fig. 4.b. This method provides
for an LRU policy (assuming the banks are also LRU).
The advantage of this method is that one can stitch
together arbitrary fractions of banks which will emulate



the MSA very closely. The primary disadvantage is the
high migration rate between cache banks.

2) Address Hash: A common approach to cache bank
aggregation is the use of an address hash. Typically this
method is used with a power of two number of cache
banks, such that lower order address bits can directly
select the bank. While systems have also been built with
non-power of two hashes, these require complex modulo
operations in the hardware hash function. An example
would be the IBM POWER4 and POWER5 processors,
which hash across three banks [29]. In addition, Gao et
al. [30] and Seznec et al. [31] proposed non-power of two
hashing functions with increased complexity over simple
hashing functions. Irrespective of the number of cache
banks aggregated, this method requires symmetry in that
each hashed bank must have the same cache capacity. As
such this method has some restrictions. Lastly, address
hash features low migration rates.

3) Parallel: This method is very much like Address Hash,
except that a line can be stored in any of the cache banks.
Allocation is controlled by round robin/random selection.
As such, any given line can be stored in any of the
cache banks. This forces additional look-up operations
in the directory structure (which we implement as partial
tags). This is less restrictive than Address hash in bank
configuration, in that, non-power of 2 aggregations of
banks are possible without complex modulo address
computations. The migration rate is equivalent to Address
Hash, however, power is higher due to wider directory
look-ups.

Even though Cascade provides the greatest flexibility, the
migration rates observed in simulation are prohibitively high.
Both Address hash and Parallel provide reasonable solutions to
aggregating cache banks. The only restriction is that multiple
banks must have the same capacity. We demonstrate in our
analysis that the degradation can be mitigated using the
structure shown in Fig. 4.c. In this structure we limit the
level of cascading to two. The allocation policy can be either
Address Hash or Parallel. In our analysis we use Parallel.

These issues present problems in direct application of
currently proposed Unrestricted cache partitioning schemes
[15] and as a solution we propose a Bank-aware assignment
algorithm. This algorithm is based on progressive control
of bank granularity. Essentially, as the capacity assignment
increases, small deviations from the ideal assignment are
tolerable with respect to overall miss reduction. Based on
this observation and the bank aggregation requirements, we
propose the following policies:

1) Center cache banks are completely assigned to a specific
core. This prevents situations where aggregated banks are
of different capacities.

2) Any core that is allocated Center banks, will receive a
full Local bank.

3) Local cache banks can only be shared with an adjacent
core. We only allow per assignment control at Local

cache banks. In addition, requiring adjacent sharing pro-
vides for low latency and minimal network loads for data
transfers.

A typical allocation is shown in Fig. 5. From the figure, most
of the cores have multiple L2 cache banks allocated to them
except core 2 and core 5. Those cores share the capacity of a
single L2 bank with core 3 and 4, respectively.

To enforce the selected cache partitions, we modified the
typical design of a cache bank to support a vertical, fine-
grain, cache-way partitioning scheme, as was proposed in [8].
According to this scheme, each cache-way of a set associative
cache can belong to one or more specific cores. When a
specific core suffers a cache miss, a modified LRU policy
is used to select the least recently used cache block among
the ones that belong to that specific core, for replacement.
Therefore, only cache-ways that belong to a specific core or
set of cores can be accessed and the rest of the cache-ways
that belong to other cores are not affected, eliminating the
destructive interference between different workloads running
on different cores. To reduce the design complexity, all of
the sets in a cache bank are vertically partitioned with the
same cache-ways assignment and therefore the granularity of
assigning a different cache-way partition is a single cache
bank.
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Fig. 5. An example of typical CMP cache partitioning

C. Allocation Algorithm on CMP

In this section we describe in details our Bank-aware
assignment algorithm. We based the assignment policy on
the concept of Marginal Utility [32]. This concept originates
from economic theory, where a given amount of resources
(in our case cache capacity), provides a certain amount of
utility (reduced misses). The amount of utility relative to
the resource is defined as the Marginal Utility. Specifically,
Marginal Utility is defined as:

MarginalUtility(n) = MissRate(c + n)−MissRate(c)/n

The MSA histogram provides a direct way to compute
the Marginal Utility for a given workload across a range of



 
Fig. 6. Cache allocation algorithm flow chart

possible cache allocations. We use this capability to make the
best use of the limited cache resources. We follow an iterative
approach, where at any point we can compare the Marginal
Utility of all possible allocations of unused capacity. Of these
possible allocations, the maximum Marginal Utility represents
the best use of an increment in the assigned capacity.

Our algorithm arrives at a capacity assignment via succes-
sive steps determining the maximum Marginal Utility for a
subset of processors and assignment restrictions. The overall
flow is shown in Fig. 6. The first step of the algorithm is to
assign the cache-ways in Center cache banks. Following that,
in Box 1, the maximum Marginal Utility is calculated and
cache banks are assigned accordingly. For the calculations,
we assume that each Local bank is assigned to the associated
processor. In Box 2, we check if all the banks are assigned,
if not, step 1 is repeated. Following Rules 1 and 2, we mark
all processors with Center banks complete (Box 3). The next
steps are used to solve the Local cache bank partitions. In
Box 4, we once again find the maximum Marginal Utility,
but assignments are limited to possible pairs of processors
(in keeping with Rule 3). In Box 5, we check if the new
assignment has caused any processor to overflow into another
processors Local region. If so, we find the ideal pair with
respect to minimal misses. Essentially we defer the pairing
as many steps as possible, and make the best pairing choice
once it is decided a processor should receive a fraction of an
adjacent Local bank. Once the pair is assigned, both processors
are marked complete. This step is repeated until all the cache
ways are assigned.

IV. EVALUATION

To evaluate our proposed scheme we utilized a full sys-
tem simulator, modeling an 8-core SPARCv9 CMP under

Solaris 10 OS. Specifically, we used Simics [20] as the full
system functional simulator extended with the Gems toolset
[21] to simulate an out-of-order processor and memory sub-
system. The CMP-NUCA design was implemented in Gems’
memory timing model (Ruby) extended with the support
of the fine-grain L2 cache partitioning scheme described in
Section III. The memory system timing model includes a
detailed message-based model of the inter-chip network using
a MOESI cache coherence protocol. Throughout the paper,
the frequency of evaluating and reallocating the L2 cache
partitions was set to a 100M cycle epoch.

We use SPEC CPU2000 [33] scientific benchmark suite,
compiled to SPARC ISA with peak configurations, as the
workload of our proposed scheme. We fast forward all the
benchmarks for 1 billion instructions, and use the next 100M
instructions to warm up the CMP-NUCA L2 cache. Each
benchmark was simulated in our CMP-NUCA using Gems
for a slice of 200M instructions after cache warm up. Table I
includes the basic system parameters that were used.

A. Bank-aware vs. Unrestricted Partitioning

The analysis of computer systems in virtualization environ-
ments is an open problem. In these systems an arbitrary mix
of work may share a server at any given time. The general
problem of performance analysis using benchmarks is greatly
compounded by the possible combinations of workloads. In
order to limit the state space, we base our evaluation on
the workloads of the SPEC CPU2000 integer and floating
point benchmark suites. Even with this limitation the possible
combinations of the 26 workloads on our eight core target
machine is very large and equal to:

C(num workloads + num cores - 1, num cores)
= C(26 + 8 - 1, 8)

This is ∼14 million possible workload combinations. Based
on this very large state space, we employ a comparative Monte
Carlo approach to the evaluation of our assignment algorithm.

Total system miss rates are estimated from projecting miss
rates based on MSA data collected from our detailed system
simulations. To accurately cover the workload state space
would require far too many simulations points than are possi-
ble assuming a full simulation of all the cases. Instead, we used
the estimated method here, combined with detailed simulations
of a more manageable number of workload mixes as a second
form of validation. Our comparison methodology is as follows:

1) Collect MSA histograms for a mix of workloads. In our
case these are the 26 components from SPEC CPU2000.

2) From these 26 components, we randomly select (with
repetition) 8 workloads.

3) Execute both the Unrestricted and Bank-aware partition
algorithms.

4) Compare the MSA predicted miss rates between the two
partition algorithms and the case of fixed partitions of
2MB per core.

The above process was executed for 1000 random workload
assignments. For each workload set, we compared the MSA



Fig. 7. Relative miss ratio to fixed-share for Unrestricted

miss rate based on a fixed even share per core (16 ways for
each core), the Unrestricted algorithm, and the Bank Aware
algorithm.

In Fig. 7 we show the miss rate relative to the even partitions
for the Unrestricted and Bank-aware algorithms. A ratio of
one represents no reduction in misses compared to static
fixed partitioning, while zero indicates all misses are removed
with the MSA-based partitioning scheme. We have sorted the
1000 results with respect to the miss rate reduction of the
Unrestricted scheme. The even partitions and Unrestricted
essentially form a performance envelope. Ideally, all of the
Bank-aware assignments would fall on the Unrestricted line,
which is in general true except some outliners that achieved
smaller miss rate reductions than Unrestricted. Both figures
give an indication of the range of miss rate reductions possible.
On average, the miss rate reduction from the Unrestricted
and Bank-aware algorithms are quite comparable. The Unre-
stricted averages a 30% reduction in misses compared to 27%
for the Bank-aware over the case of even partitions. This result
shows that the restrictions placed on the allocation algorithm
due to the more realistic implementation of L2 cache do not
adversely affect the benefits of our MSA-based dynamic cache
partitioning scheme.

TABLE III. Set of 8-core experiments

Exp. Set Benchmarks & “cache-ways” assignments from
core0 to core7 [benchmark(#ways)]

1 apsi(12), galgel(4), gcc(2), mgrid(16), applu(16),
mesa(8), facerec(56), gzip(8)

2 crafty(12), gap(4), mcf(24), art(16), equake(8),
equake(8), bzip2(48), equake(8)

3 applu(12), galgel(4), art(16), art(16), sixtrack(16),
gcc(6), mgrid(40), lucas(16)

4 mgrid(40), mcf(24), art(16), equake(16), gcc(6),
equake(10), sixtrack(6), crafty(10)

5 facerec(56), fma3d(8), sixtrack(16), apsi(16),
fma3d(6), ammp(10), lucas(6), swim(10)

6 bzip2(48), gcc(8), twolf(16), mesa(24), wupwise(6),
applu(10), fma3d(6), ammp(10)

7 swim(8), parser(16), mgrid(40), twolf(16), fma3d(2),
parser(14), swim(8), mcf(24)

8 ammp(13), eon(3), swim(11), gap(5), gcc(8), art(16),
twolf(56), art(16)

B. Detailed Simulation Results

We randomly chose eight workload sets from the previous
simulations to evaluate the proposed partitioning scheme on
the 8-core full system shown in Fig. 1. Table III shows
the selected workloads along with the cache-ways that were
assigned to each core by the Bank-aware partitioning scheme.
Fig. 8 and Fig. 9 shows the relative miss rate and CPI
of Equal-partitions and Bank-aware partitioning over the
simple case of No-partitions. Equal-partitions is equivalent
to assigning private cache partitions of equal size to each
core. From the figures, both partitioning schemes show a
significant reduction in misses and CPI over the simple No-
partitions one, which is a strong indication of the need for
partitioning the last level of cache. On average, Bank-aware
shows a 70% and 43% reduction in misses and CPI over
No-partitions, respectively. Moreover, from Fig. 8, our Bank-
aware partitioning scheme shows on average a 25% reduction
over simple Equal-partitions. This reduction is inline with the
reduction estimated in our Monte Carlo experiment of the
previous section. In addition, Fig. 9 shows that Bank-aware
partitioning can achieve an 11% reduction in CPI over the
Equal-partitions scheme. Comparing Fig. 8 and 9, some sets of
workloads demonstrate a much higher performance sensitivity
to misses than others since a reduction on L2 misses does not
always result in an equal size reduction in CPI. For example, in
Set 1 even though we significantly reduced the overall fraction
of misses, that reduction in not translated in CPI gain due
to the overall small number of misses in that set and the
performance characteristics of the applications that feature the
highest miss reduction.
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Fig. 8. Relative miss rate of 8-core sets over the no-partitioning
scheme

V. CONCLUSIONS

Shared resource contention in CMP platforms has been
identified as a key performance bottleneck that is expected
to become worse as the number of cores on a chip contin-
ues to scale to higher numbers. Many solutions have been
proposed, but most assume either simplified cache hierarchies
with no realistic restrictions or complex cache schemes that
are difficult to integrate in a real design. Therefore, both
approaches could lead to conclusions that are unrealistic when
implemented in a real system. In this paper we highlight the
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Fig. 9. Relative CPI of 8-core sets over the no-partitioning scheme

problem of sharing the last level of cache in CMP platforms
and motivate the need for a low-overhead cache partitioning
scheme that is aware of the banking structure of the L2 cache
design. Our proposed Bank-aware partitioning scheme demon-
strates a 70% reduction in misses compared to non-partitioned
shared caches, and a 25% miss rate reduction compared to
even partitioned (private) caches. Lastly, our proposed scheme
managed, on average, the same miss reduction achieved with
less realistic proposed Unrestricted schemes that are unaware
of implementation restrictions.
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