
SANDIA REPORT
SAND2009-2287
Unlimited Release
PrintedApril 2009

Parallel Phase Model: A Programming
Model for High-end Parallel Machines
with Manycores

Ron Brightwell, Mike Heroux
Sandia National Labs
Albuquerque, NM 87185
Email:{rbbrigh, maherou}@sandia.gov

Zhaofang Wen (supported by NSF grant 0833147)
Sandia National Labs
Albuquerque, NM 87185
Email:zwen@sandia.gov

Junfeng Wu (supported by NSF grant 0833152)
Syracuse University
Syracuse, NY 13244-1150
Email:juwu@syr.edu

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2009-2287XXXX
Unlimited Release

Printed AprilX2009XX. 2009

Parallel Phase Model: A Programming
Model for High-end Parallel Machines

with Manycores

Ron Brightwell ∗

Mike Heroux †

Zhaofang Wen ‡

Junfeng Wu §

Abstract

This paper presents a parallel programming model, Parallel Phase Model
(PPM), for next-generation high-end parallel machines based on a distributed
memory architecture consisting of a networked cluster of nodes with a large
number of cores on each node. PPM has a unified high-level programming ab-
straction that facilitates the design and implementation of parallel algorithms
to exploit both the parallelism of the many cores and the parallelism at the
cluster level. The programming abstraction will be suitable for expressing both
fine-grained and coarse-grained parallelism. It includes a few high-level par-
allel programming language constructs that can be added as an extension to
an existing (sequential or parallel) programming language such as C; and the
implementation of PPM also includes a light-weight runtime library that runs
on top of an existing network communication software layer (e.g. MPI). Design
philosophy of PPM and details of the programming abstraction are also pre-
sented. Several unstructured applications that inherently require high-volume
random fine-grained data accesses have been implemented in PPM with very
promising results.

∗Ron Brightwell, Sandia National Labs, Albuquerque, NM 87185. Email:rbbrigh@sandia.gov
†Mike Heroux, Sandia National Labs, Albuquerque, NM 87185. Email:maherou@sandia.gov
‡Zhaofang Wen, supported by NSF grant 0833147. Sandia National Labs, Albuquerque, NM

87185. Email:zwen@sandia.gov
§Junfeng Wu, supported by NSF grant 0833152. Syracuse University, Syracuse, NY 13244-1150.

Email:juwu@syr.edu

2

Acknowledgement

Zhaofang Wen’s research was partially supported by NSF Grant 0833147, and also
partially sponsored by the Disruptive Technology program of Computer Science Re-
search Institute at Sandia National Labs. Sandia is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energys National Nuclear Security Administration under Contract
DE-AC04-94-AL85000. The work of Junfeng Wu was fully funded by NSF Grant
0833152.

This research used resources of the National Energy Research Scientific Computing
Center at Lawrence Berkeley National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

This research would not have been possible without the encouragements and sup-
ports of Danny M. Rintoul, Neil Pundit, and Almadena Y. Chtchelkanova. In addi-
tion, Junfeng Wu would like to express appreciation to Professor Yuesheng Xu for his
advice.

3

Contents

1 Introduction . 5
2 Parallel Programming Models . 6

2.1 Technical Criteria . 7
2.2 Related Work . 7

3 Parallel Phase Model . 8
3.1 PPM Language Constructs . 9
3.2 Execution Model . 11
3.3 PPM Design Focus . 11
3.4 Implementation of PPM. 13

4 Applications . 13
4.1 Machine Platform . 13
4.2 Application 1: Conjugate Gradient Solver of Linear Systems 13
4.3 Application 2: Sparse Matrix Generation for Multi-scale Collocation

Method . 14
4.4 Application 3: Barnes-Hut Simulation . 14
4.5 Performance Discussions of the Applications . 15
4.6 Application Code Size . 17

5 Code Example . 17
6 Conclusion . 18
Bibliography. 20

Figures

1 Application Performance of the CG Solver . 14
2 Application Performance of the Matrix Generation 14
3 Application Performance of Barnes-Hut Simulation 15

Tables

1 Code Size (Number of Lines) . 17

4

Parallel Phase Model: A
Programming Model for

High-end Parallel Machines
with Manycores

1 Introduction

Large scale high performance computing (HPC) applications often need the comput-
ing power of high-end parallel machines with tens of thousands of the processors [1]
For the past two decades, most of those high-end parallel machines have been based
on a distributed memory cluster architecture consisting of a networked cluster of com-
modity processors, each with its own memory.

For distributed memory parallel machines, parallel programming has mostly been
done using the message-passing programming model, such as MPI [21], which has
been very successful in providing good application performance for structured (or
regular) scientific applications. An important reason for this success is that the
message-passing model closely matches the characteristics of the underlying dis-
tributed memory architecture, and allows the application programmers to exploit
the parallel capabilities of the hardware; traditionally, programmers usually need to
handle certain low-level tasks including explicit managements of data distribution,
data locality management, communication preparation and scheduling, synchroniza-
tion, and load-balancing in order to achieve good application performance. To many
application developers who are trained physical scientists, these low-level tasks are not
related to their domain expertise, and represent additional programming difficulties,
which we refer to as parallel programming difficulties. For structured applica-
tions, domain decomposition methods can be applied, and the low-level programming
tasks generally do not pose a real problem for achieving good performance for struc-
tured (or regular) scientific applications, such as dense matrix algorithms. However,
for unstructured (irregular) applications that inherently require high-volume random
fine-grained communication, those low-level tasks can be challenging to application
developers. Unstructured applications represent a very significant percentage of sci-
entific applications, including graph algorithms, handling large-meshes, sparse-matrix
algorithms, iterative solution methods, multi-grid, and material physics simulations.
Some of the unstructured applications are so difficult to implement efficiently that
they are considered unsuitable for MPI parallel programming, for example, [20].

With the recent introduction of multicore technology, commodity processors in
cluster architecture are being replaced by multicore processors. This trend indicates

5

that the next-generation high-end parallel machine architecture will include a net-
worked cluster of nodes, each having a large number (hundreds) of processor cores.
Developing applications for these machines will be much more difficult than it is to-
day, because programmers will need to simultaneously exploit node-level parallelism
(many cores and shared memory) and cluster-level parallelism (distributed memory)
in order to achieve good application performance; and the above-listed low-level par-
allel programming tasks on the new architecture can become overwhelmingly difficult
for most application developers. Therefore, a high-level programming model is needed
in order to support programmer productivity and more importantly good application
performance.

In this paper, we present a programming model, Parallel Phase Model (PPM),
for the next-generation high-end parallel machines, to address the parallel program-
ming difficulties listed above in order to help programmers achieve good application
performance and programming productivity. PPM has a high-level and unified pro-
gramming abstraction for both node-level (for the cores) and cluster level parallelisms,
to make it easy for parallel application algorithms to exploit and express such layered
parallelisms that can be efficiently mapped to the parallel capabilities of the next-
generation architecture. The programming abstraction will be suitable for expressing
both fine-grained and coarse-grained parallelism. It includes a few high-level parallel
programming language constructs that can be added as an extension to an existing
(sequential or parallel) programming language such as C; and the implementation
of PPM also includes a light-weight runtime library that runs on top of an existing
network communication software layer (e.g. MPI). Consequently, PPM will be com-
patible with existing programming environments such as MPI + C (or Fortran). This
compatibility can help the transitions of legacy code base and their programmers;
and smooth transitions are vitally important to the success of a new parallel pro-
gramming environment, because legacy code base represents huge past investments
and mission-critical applications that can not be abandoned; and developers of those
applications represent the dominant majority of expert programmers in HPC today.

2 Parallel Programming Models

A parallel programming model provides an abstraction for programmers to express the
parallelism in their applications while simultaneously exploiting the capabilities of the
underlying hardware architecture. A programming model is typically implemented
in a programming language, or a runtime library, or both; and the implementation is
also referred to as a programming environment.

6

2.1 Technical Criteria

A practical programming model must balance the often conflicting technical factors
including application performance, ease of use, performance scalability to increasing
number of processors, and portability to a wide range of platforms. Application
performance is arguably the most important factor, and therefore has received the
most attention in the past. Ease of use, without sacrificing application performance,
is also an important factor in order to get good programming productivity. With the
architectural complexities of the next-generation high-end parallel machines, ease of
use of the programming environment is becoming essential in order to achieve good
application performance.

2.2 Related Work

Over past few decades, many parallel computation and programming models (lan-
guage extensions and libraries) have been explored. Proposed in the 1970s, PRAM
was a shared-memory SIMD model on which a huge volume of parallel algorithms
were generated for two decades by the theoretical computation science community
[15]. PRAM is a good tool for studying and expressing the inherent parallelism in the
mathematical problems because of it simplistic assumptions, which on the other hand
have made most (if not all) PRAM algorithms impractical on real-world distributed
memory machine platforms where programming is mostly done using a message-
passing model (e.g. MPI). In 1989 Valiant [26] proposed the Bulk-Synchronous Paral-
lel (BSP) style for writing efficient parallel programs on distributed memory machines
and message-passing environments such as MPI and BSP-specific environments ([13]).
So far, MPI has been the most successful. PVM [10] and SHMEM [19] have made
an impact on a subset of platforms and applications. On physical shared memory
machines, models such as POSIX [25] Threads and OpenMP [24] are also very useful;
but in reality, high-end parallel machines tend to be distributed memory machines.

In recent years, a lot of research efforts have been placed on improving parallel
programming productivity, including languages and libraries of the global address
space models (e.g. [7, 22, 8, 27, 18]) for distributed memory (commodity processor)
machines as well as languages supported by the DARPA HPCS program, such as IBMs
X10 ([14]) and Crays Chapel ([23]). There are many active research efforts to develop
ways to address multi-core programming challenge. These include developing new
programming languages and extensions, compilers, runtime libraries, domain-specific
application libraries (See [3], [2], [16], [17] and [5] for a partial list of such research
efforts). For example, there are attempts to combine MPI with OpenMP or multi-
threads as the programming model for the next-generation high-end parallel machines.
Since this is still in an early stage, so far, we are not aware of any satisfactory solutions
yet.

One thing seems to be clear: the hardware architecture, a cluster of many-cores

7

with both distributed and shared memory, is much more complex than before. Any
programming model that require users to deal with the traditional parallel program-
ming difficulties directly at the low-level will make it not only harder to write ap-
plications, but also harder to get good application performance. In other words, a
high-level programming model is needed not only for better usability, but also for
good application performance.

3 Parallel Phase Model

In this section, we formally present a high-level and unified programming abstraction
for cluster-level parallelism (distributed memory) and core-level parallelism (shared
memory). The programming abstraction enables those low-level parallel programming
tasks (as stated in the Introduction Section) to be handled by the compiler and the
runtime systems; therefore application developers are relieved from most of those
traditional parallel coding difficulties and can focus more of their attentions on the
parallel algorithms according to mathematical formulations of their domain problems
rather than low-level machine architecture details. Specifically, the PPM abstraction
includes the following principles.

• Virtualization of processors: Programs are written with unbounded number
of virtual processors rather than a fixed number of physical processors. (This
concept can be found in the theoretical PRAM model [15] and in programming
models such as Charm++ [16] and PRAM C [4].) Virtualization of processors
allows for maximal expression of inherent parallelism that exists in the appli-
cation algorithms, and therefore provides opportunities for the compiler and
runtime system to do optimizations such as load balancing.

• Virtualization of memory: In this model, virtual processors “communicate”
through shared variables. There are two types of shared variables: globally-
shared (through virtual shared memory) at the cluster level, and physically
shared memory at the node level. Shared memory provides a global view of
data structures that make it easier to exploit and express both fine-grained and
coarse-grained parallelisms in applications.

• Implicit communication: shared variables make communication between
processors implicit rather than explicit (as in message-passing model), and allow
programs to be high-level and less cryptic, because array syntax can be used in
computation code as they are in the mathematical algorithms.

• Implicit synchronization: the programming language constructs have build-
in, well-defined, and implicit synchronization in the semantics. This avoids the
need for explicit barriers as in some other parallel programming models. The
benefit is a simple memory model and data synchronization mechanism.

8

• Automatic data distribution and locality management: They are auto-
matically managed by the runtime system.

• Layered parallelisms: The PPM programming abstraction allows node level
parallelism and global level parallelism to be separately expressed, with a uni-
fied syntax. This facilitates design and expression of algorithms to exploit the
parallel capabilities of the cluster of many cores. (Note: PPM supports par-
allelism in two levels, but it does not mean that both levels must be used in
one program. In fact, programmers can just use only one of the levels, say the
global level, when they see fit. When an algorithm step fits naturally, using
the node-level can save overhead in global communication and synchronization;
this is because the node-level involves fewer processor cores than the global
level, and also because data exchange at the node level is done through physical
shared memory rather than the network for communication.)

3.1 PPM Language Constructs

The programming abstraction of PPM has several new language constructs, which
can be added to an existing programming language such as C. We assume that SPMD
model (Single Program Multiple Data) is used. The new constructs are as follows.

1. Declaration: PPM supports two kinds of the shared variables, those shared
globally across the networked cluster and those shared at the node-level. They
can be declared by putting keywords PPM global shared and PPM node shared
in front of the variable declarations (as in the C language).

Note: When keyword PPM global shared is used to declare a variable, only one
globally shared variable is declared; however, When keyword PPM node shared
is used to declare a variable, multiple variables of the same name are declared,
one for each physical node on the networked cluster (because PPM is a SPMD
model). Shared variables provide a convenient way for virtual processors to
work on the same data.

In addition to shared variables, PPM supports variables that are local to a node
in the networked cluster (similar to variables in MPI programs). Both PPM
local variables and node-level shared variables are stored in the physical shared
memory of the node; but they are used differently. Shared variables can be
directly accessed by PPM virtual processors (in PPM functions to be described
later), but PPM local variables cannot be. Virtual processors can also have
their own private variables (as declared inside the PPM functions).

2. Control Construct to Start Virtual Processors:

PPM do(K) func (arguments) ;

9

This parallel control construct creates K instances of the function “func”, on
the current machine node, to be executed in parallel, each by a virtual parallel
processor with a unique rank in the range between 0 and K−1. This unique rank
is algorithmically useful in the function instance to determine which portion of
a shared data structure to operate on, among other things. Here PPM do is a
key word. K is an expression; and its runtime value will be used. It may also
be helpful to think that K represents the degree of parallelism that needs to be
expressed in an algorithmic step. The function invoked in this control construct
is referred to as the PPM function.

3. PPM Functions: A PPM function is different from a regular C function in
that the PPM function declaration must be preceded with the PPM function
keyword. Variables declared inside a PPM function are private to the function;
and they become private variables of the virtual processors (started by the
PPM do construct). A PPM function can also include PPM phase constructs
(to be presented next).

4. Parallel Phase Construct:

PPM global phase compound statement ;
PPM node phase compound statement ;

The parallel phase construct is used inside a PPM function, to provide a mech-
anism for implicit synchronizations of parallel execution and shared variable
updates, across multiple instances of the PPM function (as created by the
PPM do). The construct has an implicit barrier at the end of the compound
statement, meaning that the parallel executions of the compound statement are
not synchronized until the end. Also, any read access to a shared variable will
get the value of the variable at the beginning of the phase; and any write access
to a shared variable will only take effect after the end of the phase. There are
two versions of the parallel phase construct, one for synchronization at the node
level, the other for synchronization at the global (cluster) level.

5. System variables: The PPM programming environment has several system
level variables, PPM node count, PPM cores per node, PPM node id. Their
meanings are self-explanatory, and therefore not discussed here.

6. Utility functions: The PPM programming environment also has some util-
ity functions, some of which are common in other programming environments,
such as reduction, parallel prefix etc. There is also a function to dynamically
allocate space for shared variables. There are utility functions related to the
relative ranks of the virutal processors started by a PPM do construct. They
are PPM VP node rank and PPM VP global rank. There are a few utility
functions for mapping (casting) between node-level physical space and globally
shared variables.

10

3.2 Execution Model

PPM is a SPMD model, which means that there is one copy of the same program
on each physical node of the cluster. All these copies run in parallel. In addition,
the PPM do construct can be used to start many virtual processors (image them as
threads if it helps) for parallel execution of the PPM function. These virtual proces-
sors are synchronized according to the phases contained in PPM function. Within
every phase, any read access to a shared variable always gets the value as it was
the beginning of the current execution of the phase; and updates made to a shared
variable become effective only after the end of the current execution of the phase.

3.3 PPM Design Focus

Besides providing the general capabilities of a parallel programming model, PPM
focuses on the following areas.

Algorithm parallelism expressiveness: PPM encourages parallel algorithm
design based on the inherent parallelism of the application problems rather than low-
level hardware architecture details. The PPM do construct allows for maximal expres-
sion of parallelism and computation is decomposed for unbounded number of virtual
processors rather than a fixed number of physical processors (or cores). Maximal
expression of parallelism using virtual processors leaves more room for the compiler
and runtime library to do optimizations (such as load balancing).

Layered parallelisms: The cluster of many-core architecture features high-
degree of parallelism both at the cluster level (thousands of nodes) and at the node
level (hundreds of cores). This is reflected in PPM through the concepts and con-
structs of global-level and node-level shared variables and synchronization phases.
Such high-level programming concept and constructs facilitate the design and ex-
pression of parallel application algorithms that can exploit the parallel capabilities of
the underlying hardware, without the needs for the application developers to directly
handle the low-level machine architectural details.

Guidance for good programming style: It is well-known in the message-
passing programming community that, on distributed memory machines, programs
written in the Bulk-Synchronous Parallel ([26]) style tend to run more efficiently than
programs that require frequent fine-grained communication. This is also true for
virtual shared memory programming on the distributed memory machines, as shown
in the BEC programming model that seamlessly combines the convenience of the
share-memory programming with the efficiency of the BSP style ([27, 12]). The key
concept of the BSP style is the super-step. This concept along with the experiences
from the BEC virtual shared memory programming have led to the (high-level) phase
construct in PPM, in order to capture the essence of efficient high-level programming
style involving virtual shared memory on cluster of many-core architecture with a

11

hybrid of physical distributed memory and shared memory.

Simple and implicit synchronization: PPM programs need synchronization
just like parallel programs in other programming models. But PPM programs syn-
chronize due to logical needs of the application algorithms rather than low-level hard-
ware constraints in the program implementations. Specifically, synchronizations of
both program execution and shared data updates always happen at the end of a PPM
phase; there is no need for explicit barrier and locking (as in many other programming
models).

Simple memory model and data coherence: Within a PPM phase, reading
of a shared variable always gets the value of the variable at the beginning of the phase
execution; and writing to a shared variable only takes effect at the end of the phase
execution. Such a data coherence scheme avoids the potential unexpected updates to
shared variables (race condition) in many other parallel programming models.

No need for explicit communication: In PPM, data exchange is done by
accessing shared variables; and the same array syntax is used for both off-node and
on-node shared array accesses.

Shared data coherence does not reply on hardware cache coherence
capability: In PPM, coherence of shared data is guided by PPM phase and managed
by the runtime library. It does not rely on hardware data coherence capabilities.

Supporting both synchronous and asynchronous modes on different
nodes: At a PPM do(K)func() construct, the PPM function that is invoked can be
different on different nodes. (This can easily been done by using function pointers.)
Also, expression K can evaluate to different values on different nodes. Furthermore,
it is possible that only node-level phase is used in the PPM function for each node.
Therefore, a PPM program can make different nodes work on completely different
tasks asynchronously using different number of virtual processors. On the other
hand, PPM can also have all the nodes work on a common task synchronously using
the same number of virtual processors.

Automatic scheduling of computation and communication needs, cores,
and network resources: PPM enables the runtime system to dynamically sched-
ule the computation needs (of the virtual processors) and the communication needs
based on the available processor cores and network resources. For example, the PPM
runtime library is capable of bundling up fine-grained remote shared data ac-
cesses into coarse-grained packages in order to reduce overall communication
over head; the runtime library is also capable of scheduling communication needs and
computation tasks to enable (automatic) overlap of computation and communi-
cation; and the runtime is able to schedule network communication needs to reduce
contention of multiple cores competing for network resources.

12

3.4 Implementation of PPM

There can be various ways to implementing PPM, depending on the technical and
non-technical constraints. We have a preliminary implementation based on a com-
bination of a source-to-source compiler and a light-weight runtime library. A PPM
program is converted into C source code with function calls to the PPM runtime
library, which does most of the optimizations in computation work scheduling, re-
mote communication management, and shared data management, among many other
things. The virtual processors in PPM can potentially be thought of as threads and
also implemented as such. In the absence of hardware support for heavy threading,
overheads of context switching and thread scheduling can be a serious performance
issue. In our implementation, the PPM compiler converts the work of multiple virtual
processors into loops (for a general approach, see [11]), so that there will be fewer
threads (each doing the work of multiple virtual processors by looping), which can
then assigned to the processors cores.

4 Applications

In our experiments, we intentionally select applications that inherently require high-
volume random fine-grained data accesses (communication), which are the most com-
mon sources of programming difficulties in writing efficient parallel application pro-
grams using existing programming models on distributed memory machines.

4.1 Machine Platform

The applications presented here were run on a multicore cluster supercomputer named
as Franklin (URL: franklin.nersc.gov). It is a Cray XT4 machine with a total of 9660
compute nodes, each node having 4 cores (AMD Opteron 2.3GHz Quad Core) and
8G of physical shared memory.

4.2 Application 1: Conjugate Gradient Solver of Linear Sys-
tems

The application is a parallel linear system solver for Ax = b using the Conjugate
Gradient (CG) method. The linear system solved in this program is from the diffusion
problem on 3D chimney domain by a 27 point implicit finite difference scheme with
unstructured data formats and communication patterns. In the test, A is a sparse
matrix of size 16777216 X 16777216 with about 400 million nonzero entries.

13

Figure 1. Application Performance of the CG Solver

4.3 Application 2: Sparse Matrix Generation for Multi-scale
Collocation Method

This application is a sparse matrix generator in a multi-scale collocation method for
integral equations [6]. Every non-zero entry of the generated matrix is a linear com-
bination of multiple functions’ values at multiple collocation points. The evaluation
of these function values involves numerical integrations of very high computational
complexity. To reduce the computational cost, the algorithm iterates through multi-
ple levels of computation, on each of which the intermediate results of the numerical
integrations are stored as global data, and then very randomly accessed in the pat-
terns determined by the linear combinations as well as the non-zero pattern of the
sparse matrix. In this test, the generated sparse matrix has 1 million rows, 1 million
columns and over 200 million nonzero entries.

Figure 2. Application Performance of the Matrix Genera-
tion

4.4 Application 3: Barnes-Hut Simulation

This application is a simple hierarchical algorithm for N-body simulation. In every
time step, the algorithm creates a tree from the particles according to the distribution
of their coordinates, then updates the coordinates by computing the particles’ forces
using the tree. The advantage is the reduced O(n logn) computation complexity
(originally O(n2)), but the drawback is the totally data-driven random access to the

14

tree and the particles. In this test, the number of the particles simulated is 2 million.

Figure 3. Application Performance of Barnes-Hut Simula-
tion

4.5 Performance Discussions of the Applications

Before discussing the performance, it should be pointed out that in the test machine
platform, the MPI processes running on the cores of the same node still try to com-
municate by message-passing; even though such message-passing does not need to go
through the network, it can still incur much overhead. 1

On PPM model, virtual processors on the same node exchange data by accessing
the physical shared memory (without any communication overhead). But unlike ac-
cesses to variables in standard C language, accesses to the PPM shared variables go
through the PPM runtime library, which will bring in some overhead. Such runtime
library overhead can weigh on the overall performance using node-level shared vari-
ables, but this overhead will weigh much less when the number of nodes and the total
network communication cost increase.

Now lets look at the runtime of performances of the PPM version and the MPI
version of the Conjugate Gradient Solver. The MPI version is a highly-tuned imple-
mentation by a top MPI programmer. PPM version started out much slower than
the MPI version when there is only one node (4 cores) but catches up quickly as the
number of nodes increases. There can be multiple reasons. We are still trying to con-
duct in-depth analysis to understand the exact reasons. When there is only one node,
the performance results suggest that the MPI intra-node communication overhead is
not as significant as the overhead of in PPM shared variable accesses. As the number
of nodes increases, the amount of computation per node decreases while inter-node

1This intra-node communication overhead can potentially be reduced if the SmartMap mecha-
nism [3] is added to the multicore implementation of MPI runtime library, as demonstrated by the
enhanced version of MPI on Catamount at Sandia National Labs. But SmartMap is currently not
supported on Linux.

15

communication increases; in other words, the overhead of the PPM shared variable
accesses becomes less of an issue. On the other hand, the PPM runtime library is
capable of communication optimizations for reducing network resource contention by
multiple cores, for better scheduling communication and computation tasks to allow
overlap. These further help the PPM version to catch up in performance relative to
the MPI version.

In the sparse matrix generation in multi-scale collocation method for integral equa-
tions, the amount of data is not significant, but the computation algorithm is rather
complex. The PPM program consistently performs better than the MPI implemen-
tation, because the PPM runtime library overhead associated with shared variable
accesses is not a significant factor in the total execution time. The PPM program
scales better as the number of nodes increases, because the PPM runtime library
has many built-in optimizations (as discussed above) that do not exist in the MPI
program.

The Barnes-Hut simulation inherently involves high-volume, random, and fine-
grained data accesses. Furthermore, the data access locations are data-driven; that
is, they cannot be anticipated and prepared in advance; and therefore, it is virtually
impossible to prepare and bundle up such data access requests before computation.
Such applications are generally unsuitable for MPI implementation (extremely dif-
ficult to code to get good application performance). For example, there is an MPI
implementation method [9] for the Barnes-Hut simulation; in that method, a hierar-
chical representation of the force field data is implemented a tree data structure on
each MPI node, then in every round of computation, each node needs to receive copies
of the trees from all other nodes. This requires extremely high-volume of data ex-
change and therefore communication costs. On the other hand, PPM is very suitable
this type of applications because there is built-in message bundling capability that
efficiently handle fine-grained remote shared data accesses; and this capability avoids
the need to copy the entire tree structures from other nodes. The PPM program
scales well as the number of nodes increases.

In summary, the PPM model provides good performance for unstructured appli-
cations on current multicore clusters. Some of the features optimizations have yet to
be fully utilized. These features include separation of global and node phases and
shared variables; the optimizations include intelligent communication scheduling to
allow overlap of communication and computation and reducing network resource bot-
tleneck caused by contention of many cores. We believe that when the number
of cores per node increases, the benefits of the PPM mode by exposing
multiple levels of parallelism will be more obvious and significant.

16

Table 1. Code Size (Number of Lines)

Application PPM Program MPI Program
Conjugate Gradient 161 733
Matrix Generation 424 744
Barnes Hut 499 N/A

4.6 Application Code Size

The PPM implementations are much smaller (and simpler) than the MPI imple-
mentations of the same applications. The MPI programs and the PPM programs
have similar sizes in their computation codes because they are based on the same
mathematical formulas and algorithms. However, the MPI programs include very
significant codes in bundling and unbundling fine-grained communication messages
in order to achieve good performance; and there is also a fair amount synchronization
related code in each of the MPI programs. Such communication and synchroniza-
tion codes are what make parallel programming difficult. On the other hand, both
communication and synchronization are implicit in PPM, so there is no need to write
any communication and synchronization code; and PPM has built-in communica-
tion bundling/unbundling capabilities and other optimizations; therefore the PPM
programs are much smaller and simpler, while achieving comparable (and better)
performances.

5 Code Example

Given a sorted array A and another array B, the problem is to find the location in A
for each and every element of B. The following is a piece of PPM code to solve this
problem. In this code, we assume that both arrays A and B are already initialized.
We only show the part of the code to do the parallel binary search of each element of
B inside array A. Note: This is not an optimal parallel algorithm for the problem.
It is used just for its simplicity for a PPM code example.

/∗ In the f o l l ow i n g code , the binary search o f B elements
in array A are carr i ed out in p a r a l l e l ; s p e c i f i c a l l y , the
search o f each element i s performed by a v i r t u a l proces sor .
Here assume B i s a node− l e v e l shared array and A i s a g l o b a l
shared array . ∗/
PPM function b ina ry s e a r ch (int n ,

PPM global shared double A[] ,
PPM node shared double B[] ,
PPM node shared int rank in A [])

{
PPM global phase {

int l e f t , middle , r i gh t ;
l e f t = 0 ;
r i gh t = n ;
while (l e f t + 1 < r i gh t) {

middle = (l e f t + r i gh t) / 2 ;
i f (A[middle] < B[PPM VP node rank ()])

17

l e f t = middle ;
else

r i gh t = middle ;
}
rank in A [PPM VP node rank ()] = r i gh t ;

}
}

int main (int argc , char∗∗ argv)
{

/∗ Other code , i n c l ud ing i n i t i a l i z a t i o n o f arrays
A[0 . .N−1] and B [0 . .K−1]∗/

. . .

PPM do(K) b ina ry s e a r ch (N, A, B, rank in A) ;

. . .
}

6 Conclusion

We have presented a parallel programming model, Parallel Phase Model (PPM), for
the next-generation high-end parallel machines, which has a cluster of nodes with
a large number of cores on each node. We have implemented several unstructured
applications that inherently require high-volume random fine-grained data accesses.
Such applications are generally very difficult to implement in existing models such
as MPI in order to get good application performance. Using MPI implementations
as references, the PPM implementations of these applications show favorable results
(good performance and scaling) and easy programmability in term code simplicity
and sizes. Although the performance advantage is rather limited on cur-
rent machines, we believe the benefits of the PPM model will be more
significant when the number of cores per node increases (far beyond the
current 4 cores per node).

18

References

[1] TOP500 Supercomputing Sites. URL http://www.top500.org/.

[2] Ayon Basumallik, Seung jai Min, and Rudolf Eigenmann. Towards openmp
execution on software distributed shared memory systems. In Proc. WOMPEI02,
LNCS 2327, pages 457–468. Springer Verlag, 2002.

[3] Ron Brightwell, Trammell Hudso, and Kevin Pedretti. Smartmap: Operating
system support for efficient data sharing among processes on a multi-core proces-
sor. In International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’08), Austin, TX, 2008.

[4] Jonathan Brown and Zhaofang Wen. PRAM C: A new parallel programming
environment for fine-grained and coarse-grained parallelism. Technical Report
SAND2004-6171, Sandia National Laboratories, 2004.

[5] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek,
and Stanimire Tomov. The impact of multicore on math software. In the Proceed-
ings of workshop on state-of-the-art in scientific and parallel computing (Para06).
Springer’s Lecture Notes in Computer Science 4699, pages 1–10, Ume̊a, Sweden,
2007.

[6] Zhongying Chen, Bin Wu, and Yuesheng Xu. Fast collocation methods for high-
dimensional weakly singular integral equations. Integral Equations Appl., 2007.

[7] UPC Consortium. UPC language specification (v 1.2). http://www.gwu.edu/ up-
c/documentation.html.

[8] K. Yelick et. al. Titanium, a high-performance Java dialect. Concurrency: Prac-
tice and Experience, 10:825–836, 1998.

[9] David Garmire and Emil Ong. Object-oriented parallel barnes-hut. URL
http://www.cs.berkeley.edu/ emilong/research/oopbh.pdf.

[10] A. Geist et al. PVM home page. www.csm.ornl.gov/pvm/pvm home.html, 2005.

[11] Sue Goudy, Shan Shan Huang, and Zhaofang Wen. Translating a high level PGAS
program into the intermediate language BEC. Technical Report SAND2006-0422,
Sandia National Laboratories, 2006.

[12] Mike Heroux, Zhaofang Wen, and Junfeng Wu. Initial experiences with the
BEC parallel programming environment. In the 7th International Symposium on
Parallel and Distributed Computing, 2008.

[13] Jonathan Hill. The Oxford BSP Toolset (url). www.bsp-
worldwide.org/implmnts/oxtool/.

[14] IBM. The X10 Programming Language. http://x10-lang.org/.

19

[15] J. JaJa. An Introduction to Parallel Algorithms. Addison Wesley, 1992.

[16] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: A portable concurrent
object oriented system based on c. In In Proceedings of the Conference on Ob-
ject Oriented Programming Systems, Languages and Applications, pages 91–108.
ACM Press, 1993.

[17] Milind Vidyadhar Kulkarni. The Galois System: Optimistic Parallelization of
Irregular Programs. http://hdl.handle.net/1813/11139.

[18] J. Neplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuni-
form memory access programming model for high-performance computers. The
Journal of Supercomputing, 10:197–220, 1996.

[19] NPACI. SHMEM tutorial page. www.npaci.edu/T3E/shmem.html, 2005.

[20] E. Rothberg and A. Gupta. Parallel ICCG on a hierarchical memory multipro-
cessor addressing the triangular solve bottleneck. Parallel Computing, 18(7):719–
741, July 1992.

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The
Complete Reference, Volume 1, The MPI core. The MIT Press, 1998.

[22] Co-Array FORTRAN Working Group (url). Co-Array FORTRAN home page.
www.co-array.org, 2005.

[23] Cray (url). Chapel — The Cascade High-Productivity Language.
http://chapel.cs.washington.edu/.

[24] OpenMP Architecture Review Board. (url). OpenMP fortran application inter-
face version 1.1. www.openmp.org.

[25] The Open Group (url). POSIX home page.
www.opengroup.org/certification/posix-home.html, 2005.

[26] Leslie G. Valiant. A bridging model for parallel computation. Comm. ACM,
August 1990.

[27] Junfeng Wu Zhaofang Wen. BEC specification and programming reference. Tech-
nical Report SAND2007-7617, Sandia National Laboratories, Albuquerque, NM,
2007.

20

DISTRIBUTION:

1 MS 0817
James Ang, 1422

1 MS 0817
Bob Benner, 1422

1 MS 0376
Ted Blacker, 1421

1 MS 1319
Ron Brightwell, 1423

1 MS 0382
Kevin Brown, 1543

1 MS 1319
S. Scott Collis, 1414

1 MS 0318
George Davidson, 1412

1 MS 1319
Erik DeBenedictis, 1423

1 MS 0817
Doug Doerfler, 1422

1 MS 0316
Sudip Dosanjh, 1420

1 MS 0382
Mike Glass, 1541

1 MS 8960
James Handrock, 9151

1 MS 1319
William Hart, 1415

1 MS 0822
Rena Haynes, 1424

1 MS 1319
Bruce Hendrickson, 1414

1 MS 1319
Michael Heroux, 1414

1 MS 0316
Scott Hutchinson, 1437

1 MS 0817
Sue Kelly, 1422

1 MS 0378
Marlin Kipp, 1431

1 MS 1111
Patrick Knupp, 1411

1 MS 0801
Rob Leland, 4300

1 MS 0370
Scott Mitchell, 1411

1 MS 1319
Steve Plimpton, 1412

1 MS 0807
Mahesh Rajan, 4328

1 MS 1319
Rolf Riesen, 1423

1 MS 0318
Elebeorba May, 1412

1 MS 0321
Jennifer Nelson, 1430

1 MS 0321
James Peery, 1400

1 MS 1319
Cynthia Phillips, 1415

1 MS 1319
Neil Pundit, 1423

21

1 MS 1316
Mark D. Rintoul, 1412

1 MS 1319
Suzanne Rountree, 1415

1 MS 1111
Andrew Salinger, 1416

1 MS 0378
Stewart Silling, 1431

1 MS 0378
James Strickland, 1433

1 MS 0378
Randall Summers, 1431

1 MS 0370
Tim Trucano, 1411

1 MS 0817
John VanDyke, 1423

1 MS 0817
Courtenay Vaughan, 1422

1 MS 1319
Zhaofang Wen, 1423

1 MS 0822
David White, 1424

1 MS 1319
David Womble, 1410

1 MS 0823
John Zepper, 4320

2 MS 9018
Central Technical Files, 8945-1

1 MS 0899
Technical Library, 9536

22

