
Direct N-body Kernels for Multicore Platforms
Nitin Arora

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332-0150
n.arora@gatech.edu

Aashay Shringarpure
School of Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332-0765

aashay.shringarpure@gatech.edu

Richard W. Vuduc
Computational Science

and Engineering Division
Georgia Institute of Technology

Atlanta, Georgia 30332-0765
richie@cc.gatech.edu

Abstract—We present an inter-architectural comparison of
single- and double-precision direct n-body implementations on
modern multicore platforms, including those based on the Intel
Nehalem and AMD Barcelona systems, the Sony-Toshiba-IBM
PowerXCell/8i processor, and NVIDIA Tesla C870 and C1060
GPU systems. We compare our implementations across platforms
on a variety of proxy measures, including performance, coding
complexity, and energy efficiency.

I. INTRODUCTION

The goal of this study is to understand the differences in
the implementation techniques required for direct (particle-
particle) n-body simulations to achieve good performance on
a variety of modern multicore CPU and accelerator desktop
platforms. These platforms include an 8-core (dual-socket
quad-core) 2-way/core multithreaded Intel Nehalem processor-
based system (16 effective threads); a 16-core (quad-socket
quad-core) AMD Barcelona-based system; IBM dual-socket
QS22 blade based on the Sony-Toshiba-IBM PowerXCell/8i
processor; and NVIDIA Tesla C870 and C1060 graphics
processing unit (GPU) systems.

We began the study with a focus on direct n-body com-
putations primarily because of our interest in this application
domain. The structure of the computation is a fundamental
building-block in larger applications [1], [2] as well as approx-
imate hierarchical tree-based algorithms for larger systems,
e.g., Barnes-Hut or fast multipole method (FMM) [3]–[5].
Moreover, lessons-learned in implementing these kernels for
physics applications readily extend to new application domains
in statistical data analysis, search, and mining [6].

We initially believed it would be simple to achieve near-
peak performance on these platforms. The key computational
bottleneck is the O(n2) evaluation of pairwise interaction
forces among a system of n particles. This kernel is highly
regular and floating-point (flop) intensive, and therefore well-
suited to accelerators like GPUs or PowerXCell/8i. However,
to our surprise, each implementation required more significant
tuning effort than expected. We describe these implementa-
tions and some “lessons-learned” in this paper. As far as we
know, ours is among the first comprehensive cross-platform
multicore studies for computations in this domain, and in
particular unique in its contrasting of GPU and Cell-based
accelerated systems.

Given that we consider only the O(n2) direct evaluation,
our study will be limited in several ways. First, we achieve

and highlight the best performance at large values of n. Small
values of n, which are of great interest in, for instance,
hierarchical tree-based approximation n-body algorithms, may
require a different emphasis on low-level tuning techniques.
Secondly, the computation is compute intensive with largely
regular access patterns, and so we do not stress the memory
system. Still, we believe this study can make a useful contri-
bution to other computations more generally. In the numerical
domain, hardware reciprocal square root is typically fast for
single precision but not double, making our performance
far from peak even though the computations are relatively
compute-bound. Furthermore, for our accelerator architectures,
we still need to carefully manage the local store to make
effective use of available memory system resources. This
points to non-trivial implementation trade-off considerations
across multicore architectures, in further support of recent
work [7].

II. RELATED WORK

Parallelization of direct n-body problems is well-studied [8],
[9], and has a long history that includes custom hardware (e.g.,
GRAPE systems). Most recently, there has been one thorough
study for x86-based CPU tuning [10], as well as several
studies on GPUs both prior to [11], [12] and following [13],
[14] the introduction of the high-level CUDA model, which
we use in the present study. The post-CUDA direct n-body
GPU applications show particularly impressive performance,
with comparison to existing custom hardware used for n-
body simulations, like the GRAPE-6AF. These prior GPU
studies focus primarily on single-precision kernels, as that
was the only precision available in hardware at the time. To
our knowledge there have not been any published n-body
implementation performance studies for the STI Cell/B.E.
processor family. This work tries to fill these comparison gaps
by including both GPUs and STI Cell/B.E. platforms, as well
as multicore CPU systems.

III. DIRECT N-BODY IMPLEMENTATIONS

We implemented various parallel versions of a simple n-
body gravitational simulation, using direct (particle-particle)
O(n2) force evaluation. In particular, we numerically integrate



the equations of motion for each particle i,

~Fi = −Gmi

∑
1≤j≤n
j 6=i

mj
~ri − ~rj
||~ri − ~rj ||3

(1)

where particle i has mass mi, is located at the 3-D position ~ri,
and experiences a force ~Fi from all other particles; G is the
universal gravitational constant, which we normalize to 1. We
use the Verlet algorithm for our numerical integration scheme.

A. Characteristics, costs, and parallelization

The bottleneck is the O(n2) force evaluation, which com-
putes the acceleration for all bodies i (with G = 1):

~ai ≈
∑

1≤j≤n

mj
~ri − ~rj

(||~ri − ~rj ||2 + ε2)
3
2

(2)

Here, we adopt the common convention of a “softening
parameter” term, ε2, in the denominator, to improve the overall
stability of the numerical integration scheme [2]. Computing
the acceleration dominates the overall simulation cost, so
that in this paper we focus on its parallelization and tuning
for accelerators, and may effectively ignore the cost of the
numerical integrator.

The scalar pseudocode for Equ. (2) can be written as follows
(comments prefixed by “//”):

1: for all bodies i do
2: // Load (xi, yi, zi) here
3: ~ai ≡ (ax, ay, az)← (0, 0, 0) // Init acceleration
4: for all bodies j 6= i do
5: // Load (xj , yj , zj) here
6: (∆x,∆y,∆z)← (xi − xj , yi − yj , zi − zj)
7: γ ← (∆x)2 + (∆y)2 + (∆z)2 + ε2

8: s← mj/(γ ·
√
γ) // γ 3

2 = γ
√
γ

9: (ax, ay, az)← (ax + s ·∆x, ay + s ·∆y, az + s ·∆z)
10: end for
11: // Store acceleration
12: ~ai ← (ax, ay, az)
13: end for
Lines 5–9 compute a single pairwise interaction. As written,
there are 18 floating-point operations: 3 subtractions (line 6),
3 multiplies and 3 adds (line 7), 1 multiply, 1 square root,
and 1 divide (line 8), and 3 multiplies and 3 adds (line 9).
For consistency in comparing flop-rates to other papers, we
consider the “cost” of lines 5–8 to be 20 flops, i.e., we count
20 flops per pairwise interaction, or 20n(n− 1) flops total.

There are 4n2+6n loads and stores, with the dominant term
coming from the loads of the 3 coordinates on line 5–6 and
mass on line 8. However, there is a significant amount of reuse,
so that with appropriate cache blocking we can incur close to
the minimum of 4n compulsory misses, so that the overall
computation should be compute-bound with a computational
intensity of ≈ 20n2/4n = 5n flops per word.

For all platforms, we adopt the standard approach to paral-
lelization that exploits both coarse-gained parallelization of the
outermost i loop, followed by finer-grained data-parallelism
across the i and j loops. We may visualize the general
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Fig. 1. Computation and data access pattern for direct force evaluation

computation and data access pattern as shown in Figure 1.
The n 3-D points appear as the n × 3 matrix on the left.
The i loop iterates over these points (rows); for each i, we
stream over the same points j, shown mirrored (transposed)
along the top, and accumulate an acceleration vector ~ai. The
simplest coarse-grained parallelization is an owner-computes
approach that partitions the the i loop into n/p chunks among
p threads. This approach requires no synchronization on writes
to the final acceleration matrix.

B. x86 Implementations

For the general-purpose multicore platforms (2×4-core×2-
threads/core=16 thread Intel Nehalem and 4×4=16-core AMD
Barcelona systems), we consider several “standard” optimiza-
tion techniques. These techniques are well-known but essential
to implement if we wish to fairly evaluate the accelerator-
based GPU and PowerXCell/8i platforms.

First, we exploit coarse-grained owner-computes paralleliza-
tion at the outermost loop of the interaction calculation. Each
thread computes the forces on a subset of n

p particles. In this
decomposition, all writes are independent.

We consider both OpenMP and Pthreads programming
models, though we expect that OpenMP-parallelization will
be sufficient since the kernel is largely compute-bound. In
the case of Pthreads, we create a team of threads at the
beginning of program execution. These threads busy-wait at
a barrier for a signal from the master thread to begin the
interaction calculation. Upon completion, the threads again
meet at a barrier. (Reported performance includes the time
of these barriers.)

Secondly, we apply cache-level blocking of both loops.
Since the memory footprint scales like O(n) while flops
scale as O(n2), we do not expect this technique to provide
much benefit until n becomes very large, since (a) typical
L1 latencies for data that resides in L2 are relatively small,
and (b) 2 MB or larger L2 and L3 caches today can easily
accommodate n ≈ 100, 000 points.

Thirdly, we manually combine data alignment, unroll-and-
jam, and SIMD vectorization transformations, to improve
register usage and exploit fine-grained data parallelism. In
particular, we store the x, y, z coordinates and mass values



in separate arrays aligned on a SIMD-friendly boundary. To
enable SIMD vectorization, we then perform unroll-and-jam
the outer loop and unroll the inner loop. In the single-precision
code, the reciprocal and combined reciprocal square-root in-
struction (_mm_rcp_ps and _mm_rsqrt_ps). We also use
SSE3-based reductions (e.g., _mm_hadd_ps) for some parts
of the computation. Although the most aggressive compiler
considered in this study, the Intel C v11.0, does perform
vectorization, we observe significant benefits from manual
vectorization (≈ 2×).

C. PowerXCell/8i Implementation

The STI PowerXCell/8i processor architecture consists of
a single general-purpose core, the PowerPC Element (PPE),
coupled to eight Synergistic Processing Elements (SPEs), each
of which has short-vector (SIMD) processors (SPUs) and small
256 KB software-managed local store. The primary purpose
of the PPE is to run the operating system and supervise the
working of the SPEs by dispatching jobs, and facilitating
synchronization. The bulk of achievable performance for the
direct n-body kernel comes from fully utilizing the SPEs, and
a naı̈ve implementation, properly vectorized by the compiler,
gives reasonable baseline performance. However, we find that
additional optimization, some very trivial, enable an increase
of almost ten times over the naı̈ve code. In this section, we
discuss the most significant of these optimizations.

1) Parallelization strategy: We rely on the SPEs for accel-
eration, using the PPE only for dispatching the SPE threads,
performing a single synchronization barrier, and coordinating
the overall integrator. We follow the general owner-computes
parallelization strategy outlined above. However, since the
local-store on each SPE is purely software-managed, we must
explicitly coordinate sending and receiving of all other bodies.
Since the SPEs themselves update the contents in PPE’s main
storage (to return the computed accelerations, velocities, and
positions), a single synchronization barrier is necessary to
enforce consistency. The barrier synchronization is done using
mailboxes and is non-blocking in the SPEs. The SPEs may
thereby overlap any potential delay with useful computation.

2) Data organization and vectorization: To best exploit
the SIMD capabilities of the SPUs, we use the same storage
scheme discussed in the CPU case, in which each coordinate
of the positions is stored in its own SIMD-aligned array.
Where possible, we manually coalesce squaring and addition
operations into fused multiply-add (spu madd) instructions,
which execute with half the latency of separate multiply and
add (6 vs. 12 cycles). Finally, we write our code to enable all
combinations of coordinate data alignments between source
and target points (16 combinations in single-precision, 4 in
double-precision). We can do this compactly using the SPU
hardware rotate instructions to align the outer vector with
all possible configurations of the inner vector. These rotate
instructions do not execute in the same pipelines as the floating
point arithmetic instructions and thus incur virtually no cost.

3) Double buffering the DMA: As already mentioned, data
for all the bodies has to be transferred from the PPU to all

other SPUs before they can process the information. The STI
PowerXCell/8i allows up to 16KB of data to be transferred
using the available direct-memory access (DMA) engine be-
tween the various local stores. An SPE initiated DMA was
preferred here as the DMA would start only when (and as soon
as) the SPE needed the data. DMA requests are asynchronous,
which allows us to fetch data in small chunks and overlap data
transfer with processing. This technique is well-known among
STI PowerXCell/8i developers as “double buffering.”

Data organization plays a vital role in how the DMA is
organized. Our choice of separately stroring the x, y, and z
coordinates (and mass) in their own arrays (4 in all) makes
them easy to prefetch in a unit-stride streaming fashion. A
single DMA can be dispatched to bring a chunk of bodies
from the PPU to the SPU (and vice versa). Every DMA is
now split into four smaller DMAs, to fetch the chunks from
four different arrays. We use the scatter-gather DMA support
to fetch from each of the four elements in the lists in 16
KB chunks, bringing the total data transferred by a single list
operation to 64KB, allowing us to bring in four times as many
bodies as before.

As expected, the code is compute-bound and highly tolerant
of the relatively small DMA latencies. In principle, it might
seem that double buffering could be eliminated altogether.
However, the small 256KB local store on each SPU cannot
store all the data at once, making double buffering necessary.

4) SPU pipelines: The STI PowerXCell/8i SPUs have two
pipelines, with each pipeline executing a different subset of the
possible instructions. As a result, achieving peak performance
is only possible if the instruction mix is such that the pipelines
can be perfectly balanced. The n-body kernel has a particularly
bad instruction mix, as it is made up mostly of floating point
arithmetic instructions that can only execute in pipeline 0. The
remaining and relatively fewer number of integer instructions
are relegated to pipeline 1. In our case, these include the
rotate instruction already mentioned along with floating point
reciprocal and reciprocal square root estimate instructions.

D. NVIDIA GPU Implementation

1) GPU architecture overview: The NVIDIA Tesla GPU
architecture is designed for applications with abundant fine-
grain parallelism [15]. The latest G200 architecture consists
of 30 multiprocessor “cores” that each support 8 simulta-
neous hardware threads (240 simultaneous threads in all).
Synchronization is allowed within a multiprocessor via a
low latency 16 KB local store—called “shared memory” in
NVIDIA/CUDA parlance—as well as local register storage.
In addition, each multiprocessor also has two automatically
cached read-only memories, referred to as constant and texture
memory. Finally, the GPU has a relatively high latency device
memory, which is read/write addressable by all multiproces-
sors. The C1060 has device memory capacity of 4 GB.

The CUDA computing architecture consists of a C-like pro-
gramming language with extensions that provide the program-
mer with a fine-grained multithreaded local-store machine
abstraction. The CUDA model encourages a large number of



threads (on the order of thousands) in parallel, grouped in units
known as thread blocks. Each thread block can have at most
512 threads, which can be synchronized via shared memory
(16kb).

The GPU architecture can sustain extremely high bandwidth
and numbers of threads compared to conventional CPU-based
architectures. However, exploiting these capabilities requires
that the number of independent thread blocks be large. The
existence of many thread blocks helps to hide the memory
operations that may decrease the performance of the program.

Another important utilization factor on the GPU is register
usage. Very high register usage decreases the occupancy
(utilization) of each multiprocessor, as it limits the number of
threads that can be active simultaneously on the multiproces-
sor. This may affect the performance of the kernel, especially
if the algorithm is not compute-bound. Optimizations like loop
unrolling can also affect the performance by increasing or
decreasing register usage.

Device-to-shared memory transfers can be a limiting factor.
To achieve the highest possible bandwidth from device mem-
ory, memory accesses should be coalesced, i.e., consecutively
numbered threads should access consecutive word-aligned
memory locations.

2) Parallelization strategy: We follow the general owner-
computes parallelization strategy outlined at the top of Sec-
tion III, with some refinements.

Our overall strategy follows the one used in the
“Gpugems3” example.1 In particular, we first partition the
bodies in chunks of size q. Since we use an owner-computes
strategy, this partitions the O(n2) total work into chunks of
size O(q × n) each, each of which we assign to a thread
block. Within the thread block, we will assign 1 thread to
each of the q points, and make it responsible for computing
the acceleration (force) due to the other n− 1 points. We will
iterate over the other interaction points q at a time, so that
at each step the entire thread block is simultaneously com-
puting q2 interactions. We synchronize these threads (using
_syncthreads()) every q2 interactions.

There are several constraints on q. First, we need q to be
a positive integer multiple of the so-called half-warp size (on
current NVIDIA GPUs, 16). The warp-size is, effectively, a
vector length unit. Secondly, we need the 2q points to fit
in the thread block’s shared memory (local store). In single-
precision, that means 3 coordinates + 1 mass at 4 bytes each,
or 2 · q · 4 · 4 bytes ≤ shared memory capacity (e.g., a current
typical value is 16 KB). Thirdly, we must satisfy the register
capacity constraint. For our n-body gravity kernel, each thread
has a register working set of approximately 31, so that q×31 ≤
number of registers (on C870, ≤ 8192, and on the C1070,
≤ 16384). Finally, we cannot have more than a certain number
of warps per thread block. With current warp sizes of 32
and the max number of warps at 8, there can be at most
q ≤ 32 · 8 = 256. Within these constraints, we did a limited

1http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/
nbody/doc/nbody gems3 ch31.pdf

Fig. 2. Compute kernel for pairwise interaction

search to find a good value for q on a given platform.
Finally, we design the kernel to expose as many explicit

fused multiply-add (fma) instructions as possible, and to
expose opportunities to use the hardware reciprocal square-
root function, rsqrtf(). We show such a kernel in Figure 2.

The unoptimized implementation of the GPU above algo-
rithm was able to reach approximately 65% of the final Gflop/s
performance.

3) Optimizing the implementation: We tried a number of
optimization techniques, which we enumerate below roughly
in decreasing order of effectiveness.

Tuning the optimal block size (number of threads per block):
We tried to choose the block size so that n/q ≥ 100,
to ensure enough independent thread blocks were ready for
scheduling. On the Tesla C1060, the number of independent
blocks that worked well was 120, suggesting that each of the
30 multiprocessors context switches among 4 thread blocks.
The number of threads in each block varied from 64 to 512
depending upon the number of bodies being simulated.

Coalescing memory accesses via padding: We aligned float4
data types and C type struct consisting of 4 double variables to
achieve padding for the single precision and the double preci-
sion implementation respectively. Doing so ensured coalesced
shared memory loads from device memory and also coalesced
shared memory access within each thread block. The CUDA
profiler tool verified this fact.

Loop unrolling: We used the #pragma unroll to per-
form loop unrolling of the compute kernel. This pragma
accepts an unrolling depth, which we tuned manually. This
technique was particularly effective when the total number of
bodies was small. The unrolling factor was a multiple of q
and had to be tuned manually.

Encouraging FMAs explicitly: Rather than long expression
sequences consisting of multiplies and adds, we broke up
these expressions as shown in Figure 2. This technique worked
well in single precision. However, for double precision, this
technique had the opposite effect.

Register latency tuning: We found that there was actually
some benefit to manually reordering statements in our code.
We ordered the statements heuristically keeping in mind
instruction latencies. For the double-precision computations,
we only have one double-precision execution unit per mul-
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Fig. 3. Optimization breakdown: Single-precision Intel Nehalem

tiprocessor, which effectively serializes threads and reduces
overall performance compared to single precision.

IV. RESULTS AND DISCUSSION

A. Performance

We evaluate the implementations described in Section III on
the hardware platforms given in Table I. We consider single-
precision and, where possible, double-precision implementa-
tions. When reporting “Gflop/s,” recall that we use 20 flops per
iteration, counting 1 divide (reciprocal) and 1 square-root as
single flops each. Since these operations normally have much
higher latencies, we should not expect to get close to peak
on any platform. Note that we time the force evaluation in
context of the integrator, which executes on the host CPU
(x86 on GPU, PowerPC on PowerXCell/8i) but which accounts
for a negligible number of flops. Therefore, the Gflop/s rates
includes the time to transfer data between host and accelerator.

1) CPU performance: We begin with the “baseline” CPU
performance, to have a reference for comparing the subsequent
GPU and PowerXCell/8i performance.

First, we consider the effect of parallelization, cache-level
blocking, and manual vectorization on the Intel Nehalem and
AMD Barcelona platforms, for single-precision and double-
precision in Figures 3 - 6. The least useful optimization was
blocking, which never helped. The presence of large caches
on both systems helps to explain these results. As expected,
the most effective optimization was parallelization.

With regard to manual SIMD vectorization, the results
are qualitatively similar across the two platforms, but differ
markedly between single- and double-precision. For single-
precision, manual SIMD vectorization pays off significantly,
boosting sequential performance by 2× (compare gray and
yellow bars) and boosting parallel performance by 2× as well
(compare blue and red bars).

However, in double-precision, SIMD vectorization made no
difference, and overall double-precision performance is a much
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IBM Intel AMD
NVIDIA NVIDIA Cell/B.E. Xeon X5550 4-core Opteron 8350 4-core

Criteria Tesla C870 Tesla C1060 QS22 blade “Nehalem” “Barcelona”
SP Gflops 512 993 409.6 170 256
DP Gflops NA 78 204.8 85 128

Peak Power (W) 220 250 250 2*95*4=760 2*75*4=600
No. of sockets 1 1 2 2 4

Cores per socket 16 30 8+1 8 16
H/W threads per core 8 8 1 2 1

Total threads 128 240 16+2 16 16
Approx. price $2250 $2229 $9555 $3000 $8000

TABLE I
SUMMARY OF EVALUATION PLATFORMS. “COST” IS A SYSTEM COST WITH MEMORY UP TO 4 GB. FOR GPUS, COST INCLUDES A NOMINAL AMOUNT FOR A DESKTOP SYSTEM

IN WHICH THE CARD MAY RESIDE.

Fig. 7. Breakdown of the effects of performance tuning

smaller fraction of peak than is the case in single-precision.
When we simply removed the square root and reciprocal
operations from the double-precision code, we saw a big
boost in double-precision performance. Thus, the lack of good
hardware support for these operations hampers performance.

2) GPU performance: The GPU implementation was the
simplest of all the systems and required the least amount of
tuning. Still, some degree of tuning was needed to get the best
possible performance, with loop unrolling being a particularly
effective optimization. Figure 7 summarizes these results for
the Tesla C1060 running in single-precision.

The results for double precision (not shown) were similar.
The main difference is that the rsqrtf() instruction does make
a significant difference for the double precision implementa-
tion as compared to the single precision kernel.

Figure 8 shows how performance varies as the number of
(independent) thread blocks increases. Not surprisingly, the
number of thread blocks have to be some positive multiple of
the number of multiprocessors for the architecture to perform
at its best. The Tesla C1060 has 30 multi-processors while
the Tesla C870 has 16. Hence Tesla C870 performs best
for number of bodies as increasing power of 2 while we

Fig. 8. Performance vs no. of independent thread blocks.

need slightly different number of bodies for the Tesla C1060
(for example instead of 4096 we would use 3840 number of
bodies).

3) PowerXCell/8i performance: The performance of the
STI PowerXCell/8i implementations exhibit good scalability
for a moderately large number of bodies, as shown in Figure 9.
If the number of bodies is sufficiently large, we attain up to
61% of peak. The relatively low performance at small numbers
of bodies is due in large part to the cost of scheduling the SPU
threads. Once this overhead is overcome, we can expect the
algorithm to perform linearly as the number of bodies go on
increasing. Although one might guess that this overhead might
be due to the DMA that is done between the PPU and the SPU,
our microbenchmarking the double-buffered DMA indicated
that we do in fact overlap DMA transfer with computation.

Apart from double buffering, some other techniques which
tend to improve the overall throughput include loop unrolling,
manual vectorization and FMA insertion, and choosing the
correct data layout. Though we do not break-down the impact
of these optimizations due to technical limitations of doing
so,2 we observed about 2x performance increase by switching
the data layout using separate coordinate arrays, as compared
to a layout that packs coordinates+mass together for each

2The program wouldn’t run at all in absence of double buffering; loop
unrolling is mandatory to perform SPU SIMD-ization and also depends on
the data layout.



point. Furthermore, unroll-and-jam applied to the outer loop
combined with using hardware rotate instructions to maintain
the alignment gave additional improvement.

Curiously, performance decreases as the number of SPEs
used increases, usually from 4 SPEs to 8 SPEs. We were
able to attribute this phenomenon to the SPE thread dispatch
overhead, which triples for this increment but only doubles for
every other increment. This causes a sharp fall in the Gflop/s
measured at these points (4 to 8). However, as the number
of interactions increases, this fixed overhead is hidden by the
computation.

The double precision implementation builds upon the single
precision algorithm. The performance is very low—6 Gflop/s
in the best case—compared to the peak of over 200 Gflop/s.
However, this relatively poor performance is due to the lack of
hardware support for square roots and reciprocals. Note that
we are using IBM’s vectorized software implementations from
the SIMDMath library provided with the SDK. To estimate the
latency of these operations, we replaced the reciprocal and
square root by simple multiplies. Omitting only one of either
reciprocal or square root boosted performance from 6 Gflop/s
to approximately 10–11 Gflop/s, and removing both boosted
performance to over 100 Gflop/s. This demonstration shows
the severity of a lack of hardware support for these operations.

Both the implementations were compiled with the IBM
XLC (v 10.1) cross-compiler for the STI Cell platform, with
optimization level -05. The single precision program benefited
from the compiler optimizations, with the xlc adding a few
tens of Gflop/s over the gcc compiled code. However, we
found that compiler optimizations, or the compiler itself for
that matter, made almost no difference for the double precision
implementation.

4) Overall Performance Comparison: To summarize, we
compare all implementations across all platforms in Figure 10
and 11. In absolute performance, the NVIDIA Tesla C1060
achieves the best single-precision performance by a factor of
2×. Perhaps somewhat surprisingly, the two GPU systems
“win” even at very small particle sizes.

The CPU platforms achieve large fractions of peak as well
in single-precision (67% on Intel Nehalem and 50% on the
AMD Barcelona). In double-precision, the lack of hardware
support for double-precision hampers performance. However,
it is possible that more extensive and careful tuning of the
double-precision implementation could make these platforms
more competitive.

The Tesla C1060 and Tesla C870 both achieve approx-
imately 50% of their theoretical peak in single-precision,
delivering a near constant performance of 500 Gflop/s and
250 Gflop/s respectively. For double precision implementation,
Tesla C1060 was able to reach 67% of its theoretical peak
which was impressive.

The Cell implementation was able to reach about 60% of its
advertised peak of 410 Gflop/s of an entire blade for a single
precision implementation. The double precision implementa-
tion on the other hand failed to achieve a substantial fraction
of peak, due largely to the lack of good hardware support for

square root and reciprocal operations.

B. Productivity and Ease of Implementation

We relate the implementation complexity using very ap-
proximate estimates of the number of days of effort to get a
baseline but tuned parallel implementation running correctly,
and estimates of the code line sizes, in Table II. These
estimates may be useful as a guide of development cost and
productivity. We estimate programming complexity in terms
of both number of days spent to reach the fully optimized
version and the lines of code required. All essential parts of
the code were included for each architecture. However, these
measures are only a very rough guide and not intended to be
interpreted too literally. For instance, we our “time” measures
do not account for the time to learn the architectures of the
target platforms.

For the GPU implementation most of the time was spent to
design an algorithm which maps optimally to the GPU mem-
ory architecture. The actual implementation was straightfor-
ward. The double precision implementation was quite similar
to the single precision one, except that we had to take into
account the absence float4 intrinsic type counterpart in double.
However, we did not split the 64 bit double precision number
to store as two 32 bit value, even though this technique is
known to reduce bank conflicts while accessing data in shared
memory (local store). We assume that the flops intensity is
sufficient to hide such conflicts.

In case of of IBM’s QS22, the situation was different. Given
the simplicity of the PowerXCell/8i architecture, the algorithm
development was relatively easy. However, the actual coding
required much more fine tuning and non-trivial optimization to
reach the documented performance then expected. Moreover,
the lack of hardware implemented function in double precision
(reciprocal and reciprocal square root) limited performance.

The CPU implementation was moderately complex to code
compared to the other platforms and its double-precision
performance suffers for the same reasons as PowerXCell/8i.

Another interesting criteria for comparison is the
“$/GFlops” parameter for each architecture. Figure 12
shows the variation of this criteria for 8192 number of bodies
for each architecture. The GPU, no doubt ranks the highest
as the most cost effective technology for this kernel. We
however would like the reader to note that the PowerXCell/8i
architecture could potentially outperform the others if the
code was not square root and divide heavy.

V. CONCLUSION

This paper joins a recent cross-platform multicore perfor-
mance studies [7], [16], [17] with the direct force evaluation
component from n-body simulations. Direct n-body has two
distinguishing characteristics from the kernels considered in
these prior efforts, which include sparse matrix-vector multi-
ply, stencil computations, and statistical data analysis. First,
the direct n-body force evaluation is more heavily compute-
bound, and thus stresses different aspects of the architectures
and programming models. Secondly, this computation includes



Fig. 9. STI PowerXCell/8i (QS22 blade with 2 CELL processors) performance.

Fig. 10. Cross-architecture performance comparison (single-precision) Fig. 11. Cross-architecture performance comparison (double-precision)

Criteria Tesla C870 Tesla C1060 QS22 Nehalem Barcelona
Code line size 380 390 850 500 500

No. of days spent 2 3 20 5 5

TABLE II
SUMMARY OF IMPLEMENTATION COMPLEXITY FOR VARIOUS PLATFORMS.

Fig. 12. Gflops/Dollar vs Number of bodies

square root and divide, whose latencies have large impacts in
double-precision across a number of our evaluation platforms.

Indeed, the slowness of these operations obviated the need
to carry out extensive computation-oriented low-level tuning,
and results in double-precision being more than 2× slower
than single-precision. We can conclude that for this class of
computations, having these hardware features is essential.

We have also tried in this paper to assess, at least aned-
cotally, measures of cost, energy efficiency, and end-user
programmer productivity on these platforms. By our proxy
measures, GPUs and CUDA prove to be both the most cost-
and power-efficient and the simplest to implement. Still, con-
trolling for the basic coarse-grained parallelization approach,
we still find a need for non-trivial tuning on all platforms. And
looking to other applications, our findings will be somewhat
limited to the case of semi-dense, semi-sparse methods.

The results of this paper are only an initial performance
study. We are interested in higher-level hierarchical tree-based
codes for the n-body problem, not only in physics but also
in statistical data analysis and mining [6]. Since the direct n-
body calculation appears as the leaf-leaf interaction of those



problems, we expect our results to be useful in those contexts.
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