
LLNL-CONF-438991

Exploitation of Dynamic
Communication Patterns through
Static Analysis

R. Preissl, B. de Supinski, M. Schulz, D. Quinlan,
D. Kranzlmueller, T. Panas

June 29, 2010

International Conference on Parallel Processing (ICPP)
San Diego, CA, United States
September 13, 2010 through September 16, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Exploitation of Dynamic Communication Patterns through Static Analysis

Robert Preissl1, Bronis R. de Supinski2, Martin Schulz2, Daniel J. Quinlan2, Dieter Kranzlmüller3 and Thomas Panas2

1NERSC, Lawrence Berkeley National Laboratory, USA
2CASC, Lawrence Livermore National Laboratory, Livermore, USA

3IFI, Ludwig-Maximilians-Universität München (LMU) & Leibniz-Rechenzentrum Garching (LRZ), Germany

rpreissl@lbl.gov, bronis@llnl.gov, schulzm@llnl.gov, dquinlan@llnl.gov, kranzlmueller@ifi.lmu.de and panas2@llnl.gov

Abstract—Collective operations can have a large impact on
the performance of parallel applications. However, the ideal
implementation of a particular collective communication often
depends on both the application and the targeted machine
structure. Our approach combines dynamic and static analysis
techniques to identify common collective communication pat-
terns expressed as point-to-point calls and transforms them into
equivalent MPI collectives. We first detect potential collective
communication patterns in runtime traces and associate them
with the corresponding source code regions. If our static
analysis verifies that the introduction of collectives is safe for
any program flow, we then replace the original communication
primitives with their collective counterpart. In this paper we
introduce the necessary algorithms to determine the safety of
these transformations and we demonstrate several use cases,
including automatic use of new extensions to the MPI standard
such as nonblocking collective operations. The use of dynamic
analysis significantly reduces compile times, resulting in a
speed-up of about 50 for source transformations of HPL due
to more directed analysis capabilities and also dramatically
decreases complexity of the underlying static analysis.

Keywords-MPI Code Transformation, MPI Optimization,
Collective Operations, MPI traces, Pattern Detection

I. INTRODUCTION

The efficient use of collective communication often de-

termines the performance of large scale parallel applica-

tions [1], [2]. For this reason, the MPI standard, the most

widely used API for message passing in parallel systems,

provides dedicated routines for a broad range of collective

communication patterns. Each MPI implementation can use

this abstraction to provide optimized versions for specific

target architectures. In practice, however, such optimizations

are non-trivial and depend on many factors, including the

machine architecture, the application’s communication pat-

tern, and the layout of the partition used to run the job.

Several researchers have concentrated on dynamically

adjusting the implementations of collective routines or trans-

parently converting the underlying communication topolo-

gies by substituting collectives with point-to-point calls that

better suit the target architecture [3], [1], [4]. However, none

of these approaches automatically introduces collectives not

explicitly expressed in an application and hence they miss a

significant opportunity for optimizations.

We fill this gap in the optimization space by introducing

novel techniques to identify collective communication pat-

terns that are not explicitly expressed. We verify the patterns

hold for all program flows and automatically transform them

into explicit MPI collectives. We first use dynamic analysis

of runtime traces to detect collective communication patterns

and we then turn to static analysis to verify the safety of any

transformation based on the dynamic information. The latter

requires several steps and we present algorithms that prove

the detected patterns are both input and scale independent

and maintain message integrity.

Figure 1 gives an overview of our approach: we instru-

ment the target MPI application, generate an MPI trace

of the program executed under a given set of parameters,

and then use pattern matching to isolate recurring collective

communication structures. Next, we generate an abstract

syntax tree (AST) of the application and perform static

analysis to extract the control and data flow. We map the

detected patterns onto this information, verify the safety of

any potential transformation by showing its independence of

the data and control flow, and use the results of the analysis

to guide subsequent source-to-source transformations.

Our approach applies to scenarios where programmers do

not realize that their applications use communication pat-

terns that correspond to collective operations and hence do

not exploit these optimized communication routines. These

techniques allow programmers, who do not have detailed

knowledge of MPI, to apply more efficient MPI functions

without having to learn or to use them explicitly. This

approach also applies to very large MPI codes where manual

code optimzations are impracticable and cumbersome espe-

cially due to complicated sender and receiver matching in

MPI codes. Further, it can also help in the transformation

of older codes, which contain hand-coded collectives to

exploit machine specific communication topologies, which

no longer hold on other/newer machines. In addition, our

approach can enable the automatic introduction of new MPI

collective functionality, which was not available during the

initial design of the application. An example for this is

the inclusion of non-blocking collectives in the upcoming

MPI 3 standard. While this is a promising feature for a

wide range of applications, application programmers would

have to invest significant effort to exploit them without

our automated approach. As we demonstrate, our method

can identify where to apply these new features in existing

Figure 1. Flow diagram of the main approach

applications, such as HPL, with minimal programmer inter-

vention.

The main contributions of our work are: (1) A formal

definition of collective patterns that supports their detection

for our combined dynamic and static analysis; (2) a set

of static analysis algorithms that show the patterns occur

independently of control or data flow and are safe to trans-

form; (3) a set of novel transformations to introduce MPI

collective operations automatically; and (4) a methodology

for extending our framework to new communication or

source code patterns.

II. RELATED WORK

Several projects focus on the performance and optimiza-

tion of MPI collective routines. Pješivac-Grbović et al. [1]

model the performance of MPI collectives and contrast

their models with experiments. STAR MPI [3] automatically

finds an optimal communication topology for existing MPI

collectives to match the characteristics of the application and

the machine at runtime, while other projects [5], [6] have fo-

cused on optimizing collectives at compile-time. In contrast

to our work, these approaches rely on the explicit use of

MPI collectives and cannot exploit generic communication

patterns expressed as point-to-point communication.

Other research has explored compiler-based MPI code

optimizations [7], [8], or acceleration of MPI point-to-

point communication [9]. Many approaches use code motion

techniques to increase communication/computation overlap,

an orthogonal technique that we could easily combine with

our approach. Others provide several sets of optimized

algorithms for each type of collective communication to

replace existing MPI collective operations.

Our approach instead introduces MPI collectives into

existing code that does not directly use them. We analyze the

communication patterns of the application to detect repeating

messaging sequences. In detail, we apply our pattern detec-

tion algorithm, which has been designed to extract arbitrary

communication patterns [10], to the automated collection

of collective communication patterns. Once detected, we

associate these patterns with the corresponding source code

and verify their generality in any application context. Thus,

we combine novel static and dynamic techniques to achieve

more extensive optimization, including those that require

application code changes in order to exploit collective prim-

itives efficiently.

III. COMBINING STATIC AND DYNAMIC ANALYSIS

As the basis for our work, we observe that certain dynamic

collective communication patterns in a communication trace

(e.g., send edges from a root task to all other tasks in the

communicator) correspond to certain static code patterns

(e.g., an if statement testing for the root task containing

a loop where a message is sent to all other tasks) in the

source code, especially for SPMD codes. Our approach

provides an extensible set of these dynamic communication

and static code patterns. When we detect such a pair, we

perform three tests to determine whether the marked code

regions are independent of (1) code input and (2) scale

and that they (3) maintain message integrity (e.g., that a

broadcast pattern always sends the same message). If the

verification is successful, we replace the existing point-to-

point calls with the native MPI collective operations. We

provide a set of such dynamic and static patterns for several

important collective MPI operations. However we show that

the approach can easily be extended with additional dynamic

communication and static code patterns and so is not limited

to the patterns that we discuss.

While theoretically static analysis alone could achieve the

results of our approach, no general static program analysis

exists for accurate send-receive matching in message passing

programs for arbitrary numbers of tasks [11], [12]. Further,

even if it existed, it would entail significant overhead in

the static analysis, likely making it infeasible for realistic

programs. Thus, identifying the communication patterns

requires some alternative approach.

Figure 2. The ROSE compiler infrastructure

We detect the patterns from communication traces ex-

tracted during a prior execution of the application. We

collect separate traces for each MPI task and condense

them to a suffix tree that contains repeating sequences

of communication operations. Starting from a given seed

pattern, we iteratively add sequences from the different suffix

trees to grow cross rank communication patterns. Constraints

guide this approach to ensure patterns are compact, i.e., they

do not overlap with messages outside the pattern.

Once extracted, we use the detected patterns to identify

and to guide the following static analysis, which we imple-

ment in the ROSE toolkit, which generates custom source-to-

source translators. ROSE provides mechanisms to translate

input source code into an Intermediate Representation (IR),

called the Abstract Syntax Tree (AST) [13], libraries to

traverse and manipulate the information stored in the AST,

and mechanisms to generate valid source code from the

modified AST. The representation within the AST and the

supporting data structures make exploiting knowledge of

the architecture, parallel communication characteristics, and

cache architecture straightforward in the specification of

transformations [14], [15]. The flow diagram in Figure 2

reflects the general ROSE approach, for transforming and

optimizing C++ code based on user defined abstractions and

analysis steps.

IV. CLASSES OF COLLECTIVE OPERATIONS

We identify global patterns by growing them from repeats,

task local repeating MPI communication event sequences.

We define the criteria for the selection of the seed sequences,

which we call master-repeats. The pattern detection algo-

rithm matches repeats from other tasks (slave-repeats) to

the master-repeat.

Figure 3 shows an example of an MPI trace in which the

events in bold highlight a repeating set of MPI operations

that our pattern-detection algorithm detected. This pattern

is potentially equivalent to a broadcast operation using a

communication structure where one process (t4) directly

sends to the others. In this example, our static analysis

must verify that the pattern is a broadcast operation, i.e.,

it communicates the same message to all tasks, and, if so,

that we can replace the associated code segments with an

equivalent, but usually more efficient native MPI collective

call, MPI Bcast.

Our dynamic analysis currently detects broadcast, scatter,

gather, allgather and alltoall as MPI collectives in a trace

implemented in point-to-point operations in one of these

topologies:

Star: Each node is connected to a central node.

Ring: Each node r ∈ 0, 1, . . . , n− 1 has a left (r−1) and

a right (r + 1) neighbors and node 0 is connected

to node n− 1.

Chain: As Ring, but no connection between node 0 and

n− 1.

Binary Hypercube: Each node r forms the vertex of a

d-dimensional cube and is connected to d other

nodes. The nodes can be addressed using a base-2

(binary) d-digit number.

A. Preliminaries and Definitions

We now provide a formal description of the local master-

repeats through which we identify the corresponding global

patterns from the communication trace. A defines the master-

repeats and α the slave-repeats for broadcast, scatter, gather,

allgather and alltoall, where n specifies the number of tasks

in the communicator, i the root task and r the rank of

any other task, r 6= i ∈ 0, 1, . . . , n− 1. S[j] denotes an

MPI Send to task j and R[j] denotes an MPI Recv from

task j ∈ 0, 1, . . . , n− 1. We denote a unit vector where

all but the kth bit is zero as ek, while d = ⌈log2(n)⌉ is the

dimension of a binary hypercube and N0,1={0, 1}. The func-

tion u(x) : N → N
d
0,1 returns the bit-vector representation of

an integer x (ek = u(2k)), whereas v(y) : Nd
0,1 → N is the

inverse of u.
⊕

: (Nd
0,1 ×N

d
0,1) → N

d
0,1 is a bitwise logical

XOR operator and
⊗

: (Nd
0,1 × N

d
0,1) → N

d
0,1 is a bitwise

logical AND operator, while % defines a modulo operator

on integer values. Finally, mask = u(2d) and c defines a

constant, c ∈ 0, 1, . . . , n− 1.

B. Defining Master- and Slave-Repeats

We define the characteristics of substrings for master- and

slave-repeats for each of the collective properties defined

above.

Tables I and II show formal definitions of master- and

slave-repeats for broadcasts and scatters for the previously

defined topologies. For example, we define the master-

repeat for a broadcast or scatter for a star topology as

the concatenation of send events, starting with a send

event to process (0 + c)%n (Table I). Correspondingly,

the slave-repeat is a single receive event from the root

Figure 3. A detected pattern representing a broadcast operation in an MPI trace

Table I
MASTER-REPEAT FOR BROADCAST & SCATTER

Topology Master-Repeat

Star A = ”S[f(0)], . . . , S[f(i − 1)], S[f(i +
1)], . . . , S[f(n− 1)]”, where f(x) = (x+ c)%n

Ring A = ”S[(i+ 1)%n], R[(i− 1)%n]”
Chain A = ”S[(i+ 1)%n]”
Binary Hy-
percube

A = ”S[g(0)], S[g(1)], . . . , S[g(d − 1)]”, where
g(x) = v(u(x)

⊕

ex) and d = ⌈log2(n)⌉

Table II
SLAVE-REPEAT FOR BROADCAST & SCATTER

Topology Slave-Repeat

Star α = ”R[i]”
Ring α = ”R[(r − 1)%n], S[(r + 1)%n]”
Chain α = ”R[(r − 1)%n], S[(r + 1)%n]”
Binary Hy-
percube

α = ”h(0), h(1), . . . , h(d − 1)”, where h(x) =










R[g(x)] if v(r
⊗

mask) = 0 ∧ v(r
⊗

ex) = 0

S[g(x)] if v(r
⊗

mask) = 0 ∧ v(r
⊗

ex) 6= 0

∅ else

process (Table II). This matches the example of the broad-

cast pattern in Figure 3 with (n = 8, i = 4, c = 0).

A = ”S[0], S[1], S[2], S[3], S[5], S[6], S[7]” is the master-

repeat and the corresponding slave-repeat α is ”R[4]”.

Similarly, for a broadcast on a ring, the master task invokes

MPI Send followed by MPI Recv and the slaves use the

same operations, but in reverse order (Table II). In general,

the definitions in the tables reflect the basic rules for several

variations of how point-to-point operations can implement

collective operations.

We note that the static analysis is different for broadcast

and scatter operations. Scatters send different messages to

the individual nodes, while broadcasts communicate the

same data.

A gather is the reverse operation to a scatter and results in

similar master- and slave-repeats, only swapping send and

receive events in Tables I and II. The dynamic features of

our allgathers and alltoalls are concatenations of substrings

for gathers and broadcasts and can be specified analogously

for each topology.

V. VERIFYING TRANSFORMATION SAFETY

Once our pattern detection algorithm finds potential com-

munication bottlenecks in the form of collective communi-

Figure 4. Simplified SDG around MPI Send

cation implemented by point-to-point operations, we transfer

the results to our static analysis component. First, we gener-

ate an AST of the application and mark the nodes represent-

ing the corresponding MPI Send and MPI Recv calls. We

then compute the System-Dependence-Graph (SDG) [16]

and the Control-Flow-Graph (CFG), which combine to de-

scribe all dependencies between nodes in the AST. Figure 4

illustrates a simplified excerpt of an SDG that ROSE gen-

erated. It shows data and control dependencies around an

MPI Send call. It represents the data-flow between the state-

ments and expressions and shows the control-dependence

edges that represent control conditions for individual state-

ments or expressions.

Based on the information contained in the SDG and CFG,

we then perform a series of static analysis steps to verify that

any collective pattern considered for transformation is valid

independent of any dynamic information like command-line

arguments or the number of tasks involved. In particular,

we have to verify three main static analysis criteria: (1)

Input Independence: the detected pattern is independent of

any input to the program; (2) Scale Independence: The

detected pattern spans all tasks of the communicator in the

program when run at any scale; and (3) Message Integrity:

Messages are not changed inside the collective operation

pattern. Although these three criteria apply equally to all

communication patterns, the way some of these properties

are verified statically in the source code depends on the

Algorithm 1 Input independence

Require: AST-annotated send and receive functions in dy-

namic pattern

Ensure: Determine input independence

1: Compute code pattern (backward traversals of SDG

starting at send or receive nodes), specified by collective

statement

2: Apply ROSE-query operator on code pattern to detect

conditional statements and store results in list CS
3: if sizeof(CS) ≥ 1 then

4: abort transformation

5: end if

topology: for example a broadcast implemented with a ring

topology requires different static-analysis than a broadcast

based on a star.

A. Input Independence

In order for input independence to hold, no conditional

statements are allowed within the code pattern. To define

such code patterns we look for collective statements that

are responsible for the collective behavior and determine the

boundaries of a code pattern. Collective statements are single

for, while or do-while loops for star topologies. For rings

and chains they are modulo statements and for hypercubes

they are nested loops. We locate collective statements with

backward traversals of the control dependence graph from

the SDG starting at send or receive nodes in our dynamic

pattern.

Listing 1 shows a code excerpt for the master process

of a broadcast operation on a star topology. As long as the

number of tasks does not exceed 41, a code transformation

into MPI Bcast would be correct; but leading to incorrect

behavior otherwise. We detect such conditional statements

like the one in line 5 through static analysis by applying

query operators on AST subtrees. We show an example

query below, where the querySubTree function extracts all

SgIfStmt nodes (repesenting If-Statements in the ROSE IR)

in a subtree of the AST (subtree indicates the root node for

the code pattern subtree in the AST, e.g., a single for loop

specifying the collective statement) and stores the results

in a RoseSTLContainer, which is basically an STL list of

SgNodes (SgNode represents the base class for all IR nodes).

RoseSTLContainer<SgNode∗> l i s t o f F o r L o o p s =
NodeQuery : : querySubT ree (s u b t r e e , VSgIfStmt) ;

The only exceptions are if-statements in combination with

MPI-Test-Functions like MPI Test and MPI Probe. Such

Test-Functions are often used to overlap communication

and computation and cause additional complexity for our

static analysis. We present additional details for them in

Section VII-B. Algorithm 1 summarizes the required steps

for proving input independence.

MPI Comm rank (MPI COMM WORLD, & rank) ;
2 MPI Comm size (MPI COMM WORLD, & num tasks) ;

i f (r ank == m a s t e r t a s k) {
4 f o r (i = 0 ; i<num tasks ; + + i) {

i f (r ank = = 4 2) cont inue ;
6 MPI Send (. . , i , . .) ; } }

Listing 1. Checking input independence

Algorithm 2 Scale independence

Require: AST-annotated send and receive functions

Ensure: Determine scale independence

1: Reuse collective statements CS computed in Algo-

rithm 1 and determine virtual topology V
2: if (V ∈ {star, hypercube}) && ¬(for, while or do−

while loop of CS data dependent on MPI Comm Size)

then

3: abort transformation

4: else

5: if (V ∈ {chain, ring}) && ¬(modulo opera-

tor’s right hand side operand data dependent on

MPI Comm Size) then

6: abort transformation

7: end if

8: end if

Figure 5. SDG around MPI Comm Size

B. Scale Independence

To test for scale independence we look for data de-

pendencies of the collective statements on functions that

compute the number of tasks in a communicator (i.e.,

MPI Comm Size). For star and hypercube topologies, the

for, while or do-while loop’s test statement and, for ring

and chain topologies, the modulo’s right hand side operand

(e.g., line 8 of Listing 2, which shows a broadcast for a ring

topology) must have a data dependence on MPI Comm Size

to guarantee scale independence. Full generality of this test

would require pointer analysis since the variable that stores

the number of processes in the communicator is passed by

reference to MPI Comm Size. Instead, we limit the scope

in which the dependence occurs, conservatively rejecting

transformations that more accurate analysis could determine.

i n t x , numtasks , m a s t e r t a s k = 2 ;
MPI Comm rank (MPI COMM WORLD,& rank) ;
MPI Comm size (MPI COMM WORLD,& num tasks) ;
f o r (i = 0 ; i<s o m e i t e r a t i o n s ; + + i) {

5 i f (r ank == m a s t e r t a s k) {
MPI Send(&x , 1 , MPI INT , (rank +1)% numtasks ,

t ag ,MPI COMM WORLD) ;
MPI Recv(&x , 1 , MPI INT , (rank −1)%numtasks ,

t ag ,MPI COMM WORLD,& S t a t) ; }
10 e l s e {

MPI Recv(&x , 1 , MPI INT , (rank −1)%numtasks ,
t ag ,MPI COMM WORLD,& S t a t) ;

MPI Send(&x , 1 , MPI INT , (rank +1)% numtasks ,
t ag ,MPI COMM WORLD) ; } }

Listing 2. Broadcast on ring

i n t x , numtasks , m a s t e r t a s k = 4 ;
MPI Comm rank (MPI COMM WORLD, & rank) ;
MPI Comm size (MPI COMM WORLD, & num tasks) ;
f o r (i = 0 ; i<s o m e i t e r a t i o n s ; + + i) {

5 i f (r ank == m a s t e r t a s k){
f o r (j = 0 ; j<num tasks ; + + j) {

i f (r ank ! = m a s t e r t a s k) {
MPI Send(&x , 1 , MPI INT , j ,

t ag ,MPI COMM WORLD) ; }}}
10 e l s e {MPI Recv (&x , 1 , MPI INT , m a s t e r t a s k ,

t ag ,MPI COMM WORLD,& S t a t) ;} }

Listing 3. Transformation of broadcast:before

Figure 5 shows the simplified picture of the SDG for

the code excerpt in Listing 3. It shows data- and control-

dependence on the MPI Comm Size function. The mod-

ulo’s right hand side operand numprocs is passed by refer-

ence to MPI Comm size and, since the static analysis does

not support pointer analysis, no data dependence edge from

numprocs to the MPI Comm size function can be seen.

However, as stated above, this problem can be circumvented

by first getting the variable declaration from numprocs in

the SDG, which is “int numprocs” in the left upper corner

in Figure 5. Since the SDG gives interprocedural control and

data dependence, it does not matter if the variable declara-

tion and the broadcasting loop are in different functions of

the code. Then the SDG (Figure 5) depicts that numprocs
is passed by reference to MPI Comm size as highlighted in

Figure 5 by the address operator “&” applied to numprocs
as input parameter to MPI Comm size. Additionally we

prove that numprocs is not modified anymore between the

place where its value is being set in MPI Comm size and

the time it is used in the loop. Algorithm 2 shows the two

basic steps for checking scale independence.

C. Message Integrity

Message Integrity is fulfilled if there are no modifications

of the message buffer inside the collective communication

statement that do not match the semantics of the collec-

i f (r ank == m a s t e r t a s k) {
f o r (d e s t = 0 ; d e s t < num tasks ; + + d e s t) {

i f (d e s t ! = m a s t e r t a s k) {
MPI Send(& buf , 1 , MPI INT , d e s t ,

5 tag ,MPI COMM WORLD) ;
buf ++; }}}

e l s e {
MPI Recv(& buf , 1 , MPI INT , m a s t e r t a s k ,

t ag ,MPI COMM WORLD,& S t a t) ; }

Listing 4. Message integrity fails: broadcast

Algorithm 3 Message integrity

Require: AST-annotated send and receive functions

Ensure: Determine message integrity

1: Reuse collective statements CS (Algorithm 1)

2: Get message of collective function and compute mes-

sage’s def-use chain D
3: if any d ∈ D is control dependent on CS then

4: abort transformation

5: end if

tive operation1. First, the algorithm computes the collective

communication statement in the AST and identifies the

corresponding nodes in the SDG. Then the system computes

the message of the collective function in the SDG and

figures out all locations that illegally modify this message

in the code. This is expressed by its data dependence

chain in parent direction. If any of those statements of

the message’s data dependence chain are control dependent

on the collective communication statement (i.e., improper

modifications can happen before and after — but not during

— the code pattern is executed), message integrity is not

given and therefore code transformations have to be denied

for certain collective functions. For example, messages must

not be changed inside a for loop in case of a broadcast like

the following example (Listing 4) demonstrates.

Figure 4 shows the simplified image of the SDG for

the code excerpt in Listing 4. In detail, it is representing

control and data dependency from the root process around

its MPI Send function. Despite the fact that the code in

Listing 4 would generate a detectable broadcast pattern

for a star-like communication topology, the static analysis

will reject this pattern because of the message increment

(“buf ++”) statement in line 6.

First, we identify the send statement from line 4 (List-

ing 4) in the SDG. It is the MPI Send expression at the

bottom of Figure 4. Starting from this node we follow

the control dependence chain in parent direction (backward

slicing) until the collective communication statement is

1This depends on the particular collective communication function. For
instance, during a broadcast operation any changes to the send buffer
are forbidden, whereas a scatter/gather operation can be implemented by
sending a constantly increasing single value.

reached (here a for loop). The algorithm identifies this loop,

because the fourth parameter (the destination parameter

dest) of the send MPI call is data dependent on this

for loop. In case of the code in Listing 4, the collective

communication statement’s test-function is represented in

the SDG in Figure 4 in the upper right corner as the

expression “dest < numprocs”. Now, we locate the first

parameter (the message to be sent) of the send function

in the SDG. Note, since the message is an integer value

(following data dependence chain in parent direction until

variable declaration, “int buf” is reached) the dynamic

pattern cannot be a scatter operation and therefore can only

lead to a broadcast. It is “&buf” in the SDG in Figure 4.

Starting from this node, we traverse its data dependence

chain in parent direction (backward slice) and check if

its value is modified inside the collective communication

statement. This is the case in line 6 of the code in List-

ing 4, represented by the expression “buf + +” in the

corresponding SDG. (Note, that there is a data dependence

edge from the first parameter “&buf” to “buf ++”). Since

the “buf + +” node in the SDG is control dependent on

the collective communication statement, we can not perform

any source transformations. This control dependence can be

seen in Figure 4, indicated by control dependence edges

from “buf++” to “dest 6= master proc”, which is control

dependent on “dest < numprocs”.

Other communication patterns require a similar in-

tegrity analysis, although with slight variations. The

key property of a scatter is that a certain container

(e.g., an array) is scattered across the nodes in the

communicator. In detail, the first parameter of the

MPI Send, the message buffer, must have the form:

“send buf AddSubOp (loop var MultDivOp size)”,

where AddSubOp = {+,−}, MultDivOp = {∗, /},

send buf is the pointer to the scattered array and loop var
is the incremented or decremented loop variable. The second

MPI Send parameter must also be size. For instance:

MPI Send (s e n d b u f + i ∗ r e c v s i z e , r e c v s i z e ,
MPI FLOAT , i , t ag ,MPI COMM WORLD) ;

The supported dynamic pattern for allgather is composed

of a gather followed by a broadcast. As a result the trans-

formation requirements are the same as for gather combined

with those for broadcast, with the additional message in-

tegrity rule that the message must not be changed between

the gather and the broadcast.

D. Extensibility

Our approach currently covers the common patterns de-

scribed previously. However, other variations are possible

and we easily accommodate them by supporting user defined

patterns. These extensions under our semi-automated ap-

proach require the addition of new characteristics for master-

and slave-repeats to the dynamic analysis. The static code

Figure 6. Increasing ring broadcast from HPL

MPI Comm rank (MPI COMM WORLD, & rank) ;
MPI Comm size (MPI COMM WORLD, & num tasks) ;
i n t r o o t =0 , n e x t =(rank +1)% num tasks ;
i n t prev =(rank −1)%num tasks ;

5 i f ((prev −1)%num tasks == r o o t){ p a r t n e r = r o o t ;}
e l s e { p a r t n e r = prev ; }
i f (r ank == r o o t) { MPI Send (nex t , . .) ;

MPI Send (n e x t + 1 , . .) ; }
e l s e { MPI Recv (p a r t n e r , . .) ;

10 i f (p rev ! = r o o t && n e x t ! = r o o t) {
MPI Send (nex t , . .) ; } }

Listing 5. Modified increasing ring in HPL

pattern also must be specified so we can apply the three

previously defined safety tests.

We demonstrate on a concrete example how to extend the

functionality by taking a currently unsupported collective

communication – a broadcast for an increasing ring, which

is one of six broadcast algorithms used in High Performance

Linpack [17]. In an increasing ring, task 0 sends two

messages and process 1 only receives one message. So

0 → 1; 0 → 2; 2 → 3; 3 → 4 and so on. Figure 6

shows this communication pattern for 6 tasks. New dynamic

characteristics for this communication, which have to be

added to the code of the pattern detection algorithm, are:

A = ”S[(i + 1)%n], S[(i + 2)%n]” and α = ”R[(r −
1)%n]” if r = (i+1)%n, α = ”R[(r−2)%n], S[(r+1)%n]”
if r = (i+ 2)%n, or otherwise α = ”R[(r− 1)%n], S[(r+
1)%n]”.

For example, the master repeat (A) for a modified increas-

ing ring with 6 processes is “S[0], S[1]” and the slave repeat

(α) for the process with rank 2 (= r) (third line of formula)

is α =“R[0], S[3]”, according to the formula above.

Starting from the send and receive nodes in the AST,

which we determine by dynamic analysis, we look for the

code pattern for this collective class. A valid code pattern is a

root task sending out two messages to its next two neighbors

and the slaves receiving and sending, except two slaves do

not send. Listing 5 shows pseudocode for this code pattern.

If we detect the dynamic communication and static code

patterns, we apply our safety tests and, if the transformation

is safe, use a native MPI collective.

VI. SOURCE TRANSFORMATION

After detecting and extracting patterns from the dynamic

trace we verify their safety. If this is successful, we ap-

ply a series of transformations for the static code pattern

Algorithm 4 Transformation of MPI source code

Require: MPI Source code, communication patterns

Ensure: Optimized parallel code

1: Get collective pattern M from dynamic analysis

2: if M 6= ∅ then

3: Generate AST (ROSE front-end)

4: Generate CFG & SDG (ROSE mid-end)

5: Relate pattern information to source code

6: Locate code pattern through static analysis

7: Verify transformation safety through static anal.

8: if code pattern found && transformation is safe

then

9: Transform source code (ROSE mid-end)

10: Generate optimized code (ROSE back-end)

11: end if

12: end if

then replacing it with the native MPI collectives such as

MPI Bcast. Finally, we generate valid C++ code from the

modified AST through the ROSE rewrite mechanism.

Algorithm 4 outlines the source code transformation pro-

cess, combining dynamic and static analysis for transforming

point-to-point based collectives into native MPI collective

operations. In the code transformation process the subtrees

for the send and receive operations are cut off from the pat-

tern in the AST and parts of their parameters for the newly

generated original collective MPI functions are reused. In

detail, the system “recycles” parameters of the receive event

(e.g., the source of a broadcast operation) and generates a

new function call expression in the AST for the original MPI

function call. We must compute the root of the collective

operation in some cases, such as when we find a broadcast in

a chain- or ring-topology, which does not explicitly specify

the master-task in the MPI Recv call. Listing 2 shows such a

ring broadcast code pattern while Listing 3 shows a simpler

scenario in which the receive function already holds the

master task parameter, in which case we simply reuse it.

In case of not explicitly declared master-tasks, we exploit

the SPMD nature of the code pattern to find the missing

parameter guarding the code that the master task executes,

which is for example contained in the if statement on line 5

of Listing 2. We use the CFG to identify this if statement.

Since the send event (line 6) happens before the receive

event (line 8) in the control flow, the root executes this part.

We identify rank as the variable that stores its rank since it

is passed by reference to MPI Comm rank. Finally we use

the variable that is compared to rank as the broadcast root.

VII. CASE STUDIES

To show its capabilities, we first apply our approach to

a simple code that implements a broadcast in point-to-point

operations. We then show how our approach can automati-

i n t x , numtasks , m a s t e r t a s k = 4 ;
MPI Comm rank (MPI COMM WORLD,& rank) ;
MPI Comm size (MPI COMM WORLD,& num tasks) ;
f o r (i = 0 ; i<s o m e i t e r a t i o n s ; + + i) {

5 i f (r ank == m a s t e r t a s k) {
MPI Bcast (&x , 1 , (MPI Datatype) 6 ,

m a s t e r t a s k , (9 1)) ; }
e l s e { MPI Bcast (&x , 1 , (MPI Datatype) 6 ,

m a s t e r t a s k , (9 1)) ; } }

Listing 6. Transformation of broadcast:after

cally update MPI applications to use new functionality such

as nonblocking collectives.

A. Transforming Collectives (Broadcast)

Listing 3 shows a point-to-point broadcast on a star

topology. Its loop on line 6 distributes data from task t4
to all other tasks. An execution of this application produces

the trace shown in Figure 3. The detected master- and slave-

repeats match the formal description of master- and slave-

repeats for broadcasts (Tables I and II in Section IV-B)

on a star topology. Thus, our pattern detection algorithm

automatically identifies this broadcast communication pat-

tern and marks it as a potentially inefficient collective

communication.

Our safety tests succeed since the message x is not

changed during the broadcast (message integrity) and the

collective statements’ bound variable numtasks is data

dependent on MPI Comm size (scale independence). Input

independence is guaranteed since it has no conditional

statements on input variables. Thus, our static analysis

determines the code implements a broadcast in any execution

context so we can transform it into an MPI Bcast function.

Listing 6 shows the transformed source code that allows the

application to benefit from the highly tuned MPI collective

routines.

B. Transforming HPL

The Linpack N×N benchmark (HPL) [17] computes the

solution of a linear system of equations Ax = b, where A is

a dense N ×N matrix, and x and b are vectors of size N .

HPL factorizes Matrix A in place as the product A = LU ,

where L and U are lower and upper triangular matrices. It

then logically partitions both dimensions of the matrix into

NB × NB blocks, which it cyclically assigns to a P ×Q
process grid.

Figure 7 shows an excerpt of an HPL MPI trace for 16

tasks in a (P = 1) × (Q = 16) process grid where an

increasing-ring broadcasts the factorized panel of columns.

The highlighted events form an instance of a detected

broadcast pattern on a chain topology, where the root task

(t0) sends to its right neighbor (t1) and tj receives a message

from task tj−1 and sends to task tj+1. We detect other

instances of this chain-broadcast, e.g., where task t1 is

Figure 7. HPL chain broadcast pattern

the root, despite that they arise from the same send and

receive statements. As with the previous example, our static

analysis must verify the three criteria from Section V and,

if successful, we can replace the associated AST nodes with

an equivalent MPI Bcast.

We must resolve the additional if statement (line 17 in

Listing 7) in the slave’s portion of the code pattern before

we can perform the safety tests. The MPI Iprobe on line 11,

which tests for the message sent by lines 8 or 18, causes this

additional complexity. This if statement does not alter the

broadcast semantics since the outer while loop on line 3

ensures that the MPI expressions inside it execute once per

task. If the message has arrived, the true branch (i.e., the re-

ceive and send) executes and the loop terminates. Otherwise

the application performs computation that is independent of

the message and then executes the MPI Iprobe. Our data

dependence analysis detects these characteristics through

interprocedural analysis that the SDG supports. We easily

prove message integrity since the message M BUFF is

not altered between the slave’s receive and send. Input in-

dependence clearly holds since no inappropriate conditional

statements occur within the code pattern (the if statement

on line 13 refers to the MPI Iprobe and the one on line

17 is part of a chain broadcast code pattern). The code

is scale independent since a data dependence exists from

next task, recv task to MPI Comm size.

However, unlike the previous simple example, this trans-

formation decreases the performance of the application be-

cause HPL significantly overlaps computation with commu-

nication. Thus, a blocking MPI Bcast decreases this overlap

substantially, which results in the performance loss. The next

subsection shows how we can avoid this problem.

C. Automatically Updating to MPI 3.0

The communication patterns in HPL implement nonblock-

ing collective operations, which are not part of the cur-

rent MPI standard. However, such constructs are proposed

for the upcoming MPI 3.0 standard and libNBC portably

implements a first functional prototype (although not yet

fully optimized) of nonblocking collective operations on

top of MPI-1 [18], [19]. While nonblocking collective op-

erations could mitigate pseudo-synchronization effects and

vo id HPL bcast () {
i n t t e s t = HPL KEEP TESTING ;
whi le (t e s t == HPL KEEP TESTING) {

/ / Do some c o m p u t a t i o n : e . g . HPL dgemm

5 (vo id) H P L b c a s t t e s t (. . , & t e s t) ; }}
i n t H P L b c a s t t e s t (. . , i n t ∗ IFLAG) {

i f (r ank == r o o t) {
MPI Send (M BUFF, M COUNT, M TYPE,

n e x t t a s k , msgid , comm) ; }
10 e l s e {

MPI Iprobe (prev , msgid , comm ,
&go ,&PANEL−>s t a t u s [0]) ;

i f (go ! = 0) {
MPI Recv (M BUFF, M COUNT, M TYPE,

15 r e c v t a s k , msgid , comm ,
&PANEL−>s t a t u s [0]) ;

i f (n e x t t a s k ! = r o o t) {
MPI Send (M BUFF, M COUNT, M TYPE,

n e x t t a s k , msgid , comm) ; } }
20 e l s e { ∗ IFLAG=HPL KEEP TESTING ;

return (∗ IFLAG) ; }}
∗IFLAG = HPL SUCCESS ; return (∗ IFLAG) ;}

Listing 7. Original HPL chain broadcast

hide latency costs, properly applying them to existing real-

world applications is non-trivial. Their use often requires

significant restructuring to exploit communication/compu-

tation overlap fully [20]. This requirement confronts the

programmer with yet more complexity in the optimization

process. Our approach, however, can automatically include

nonblocking collectives and combine with code motion tech-

niques to provide the necessary overlap. We demonstrate this

potential by transforming HPL with a nonblocking broad-

cast (NBC Ibcast) that preserves the carefully constructed

communication/computation overlap.

The transformed code preserves the overlapping nature

of the HPL bcast test function. We added global variables

and test functions (NBC Test similarly to MPI Iprobe)

that test if the nonblocking broadcast has finished. The

transformation process takes 4.5 seconds on a standard PC

with a 2.8GHz CPU and 2GB RAM running Linux.

Our approach of combining static and dynamic analysis

vastly simplifies the analysis needed to detect such trans-

formation candidates. We only need the SDG. Creating the

SDG dominates static analysis overhead (about 90%). Since

we only require the SDG for the source files that contain

MPI calls in the dynamic pattern, the analysis is considerably

sped up. The complexity of SDG construction grows expo-

nentially with the size of the source code. Creating the SDG

for all HPL files that contain MPI communication (as would

be necessary if we did not have dynamic analysis to limit its

scope) takes 195 seconds. Generation of our “semantically

sliced” SDG takes only 3.9 seconds, an improvement of a

factor of 50.

Early runtime experiments show only marginal perfor-

mance benefits with libNBC. The gains are limited because

HPL sends large messages and the libNBC implementation

does not pipeline packets from an individual message.

However, we can expect this and other optimizations of

the implementation of nonblocking collectives once they

are included in the standard. At that point, we expect our

transformation will provide significant benefits even to a

highly optimized benchmark like HPL.

VIII. CONCLUSIONS

This paper presents novel dynamic and static program

analyses that support algorithms to transform source code

of parallel scientific applications automatically. In particular,

we focus on optimizing MPI point-to-point operations that

correspond to collective operations, which is often critical

to overall application performance. We detect collective

communication patterns in runtime traces, apply three tests

to verify that these collective patterns exist independent of

application context, and then provide transformations that

replace them with equivalent MPI collective routines. Our

work closes an important gap in existing frameworks for

automated MPI optimization, which has previously mostly

focused on optimizing existing MPI collective routines or

providing communication/computation overlap through code

motion.

We demonstrated our approach on the HPL benchmark

as well as simple examples. We also demonstrated with

HPL how our approach can transparently update a legacy

code to use new MPI features like the recently agreed upon

nonblocking collectives, which will be part of the MPI 3.0

standard. We also demonstrated that combining dynamic and

static analysis provides a significant performance advantage

to the analysis, speeding up the static analysis time by a

factor of 50.

REFERENCES

[1] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra, “Performance analysis of MPI
collective operations,” Cluster Computing, vol. 10, no. 2, pp.
127–143, 2007.

[2] R. Rabenseifner, “Automatic MPI Counter Profiling of All
Users: First Results on a CRAY T3E 900-512,” in Proceed-
ings of the Message Passing Interface Developer’s and User’s
Conference (MPIDC’99), Atlanta, March 1999, pp. 77–85.

[3] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned
adaptive routines for MPI collective operations,” in ICS ’06:
Proceedings of the 20th Annual International Conference on
Supercomputing. Cairns, Queensland, Australia: ACM, 2006,
pp. 199–208.

[4] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra, “Automatically
tuned collective communications,” in Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Super-
computing. Dallas, TX, USA: IEEE Computer Society, 2000,
p. 3.

[5] A. Faraj and X. Yuan, “Automatic generation and tuning
of MPI collective communication routines,” in ICS ’05:
Proceedings of the 19th Annual International Conference on
Supercomputing. Montreal, Canada: ACM, 2005, pp. 393–
402.

[6] A. Karwande, X. Yuan, and D. K. Lowenthal, “CC–MPI: A
compiled communication capable MPI prototype for ethernet
switched clusters,” SIGPLAN Not., vol. 38, no. 10, pp. 95–
106, 2003.

[7] A. Danalis, L. Pollock, M. Swany, and J. Cavazos, “MPI-
aware compiler optimizations for improving communication-
computation overlap,” in ICS ’09: Proceedings of the 23rd
international conference on Supercomputing. Yorktown
Heights, NY, USA: ACM, 2009, pp. 316–325.

[8] C. Hu, Y. Shao, J. Wang, and J. Li, “Automatic Transforma-
tion for Overlapping Communication and Computation,” in
NPC ’08: Proceedings of the IFIP International Conference
on Network and Parallel Computing. Shanghai, China:
Springer-Verlag, 2008, pp. 210–220.

[9] M. Lauria and A. Chien, “MPI-FM: high performance MPI
on workstation clusters,” J. Parallel Distrib. Comput., vol. 40,
no. 1, pp. 4–18, 1997.

[10] R. Preissl, T. Köckerbauer, M. Schulz, D. Kranzlmüller, B. R.
de Supinski, and D. J. Quinlan, “Detecting Patterns in MPI
Communication Traces,” in ICPP, 2008, pp. 230–237.

[11] G. Bronevetsky, “Communication-Sensitive Static Dataflow
for Parallel Message Passing Applications,” IEEE/ACM Inter-
national Symposium on Code Generation and Optimization,
pp. 1–12, 2009.

[12] S. Shao, A. Jones, and R. Melhem, “A compiler-based com-
munication analysis approach for multiprocessor systems,”
IEEE International Parallel & Distributed Processing Sym-
posium, p. 65, 2006.

[13] M. Schordan and D. J. Quinlan, “A source-to-source archi-
tecture for user-defined optimizations,” in JMLC ’03: Joint
Modular Languages Conference, ser. LNCS 2789. Springer-
Verlag, 2003, pp. 214–223.

[14] T. Panas, D. J. Quinlan, and R. Vuduc, “Tool Support for
Inspecting the Code Quality of HPC Applications,” in SE-
HPC ’07: Proceedings of the 3rd International Workshop
on Software Engineering for High Performance Computing
Applications. Minneapolis, MS, USA: IEEE Computer
Society, 2007, p. 2.

[15] D. J. Quinlan, “ROSE: Compiler Support for Object-Oriented
Frameworks,” Parallel Processing Letters, vol. 10, no. 2/3, pp.
215–226, 2000.

[16] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” SIGPLAN Not., vol. 39, no. 4, pp.
229–243, 2004.

[17] “HPL: A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers,
http://www.netlib.org/benchmark/hpl/,” Sept. 2008.

[18] T. Hoefler and A. Lumsdaine, “Design, Implementation, and
Usage of LibNBC,” http://www.unixer.de/publications/, Aug.
2006, Open Systems Lab, Indiana University, IN, USA.

[19] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation
and performance analysis of non-blocking collective opera-
tions for MPI,” in SC, 2007, p. 52.

[20] T. Hoefler, P. Gottschling, and A. Lumsdaine, “Leveraging
non-blocking collective communication in high-performance
applications,” in SPAA, 2008, pp. 113–115.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

