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Abstract—Optimizing Message Passing Interface (MPI) point-
to-point communication for large messages is of paramount
importance since most communications in MPI applications are
performed by such operations. Remote Direct Memory Access
(RDMA) allows one-sided data transfer and provides great
flexibility in the design of efficient communication protocols for
large messages. However, achieving high performance on RDMA-
enabled clusters is still challenging due to the complexity both in
communication protocols and in protocol invocation scenarios.
In this work, we investigate a profile-driven compiled-assisted
protocol customization approach for efficient communication on
RDMA-enabled clusters. We analyze existing protocols and show
that they are not ideal in many situations. By leveraging the
RDMA capability, we develop a set of protocols that can provide
near-optimal performance for all protocol invocation scenarios,
which allows protocol customization to achieve near-optimal
performance when the appropriate protocol is used for each
communication. Finally, we evaluate the potential benefits of
protocol customization using micro-benchmarks and application
benchmarks. The results demonstrate that the proposed protocols
can out-perform traditional rendezvous protocols to a large
degree in many situations and that protocol customization can
significantly improve MPI communication performance.

I. INTRODUCTION

Achieving high performance in Message Passing Interface
(MPI) point-to-point communication for large messages is of
paramount importance since most communications in MPI
applications are performed by such operations. Traditionally,
MPI point-to-point communications of large messages are
realized by the rendezvous protocols, which avoid data copies
in the library, but require the sender and the receiver to
negotiate before the data are communicated.

Contemporary system area networks such as InfiniBand
[5] and Myrinet [13] support Remote Direct Memory Ac-
cess (RDMA) that allows one-sided direct data transfer. By
allowing data transfer to be initiated by either the sender or
the receiver, RDMA provides great flexibility in the design
of communication protocols. Many efforts have been made to
use the RDMA capability to improve the rendezvous protocols
[16], [18], [19]. However, all existing protocols perform well
in some situations, but not all situations.

Achieving high performance communication for large mes-
sages on RDMA-enabled clusters is challenging mainly for
two related reasons. The first is the protocol complexity. Since
the data size is large, copying data introduces significant over-
heads and should in general be avoided. Hence, all existing

protocols are rendezvous protocols with multiple rounds of
control messages, which can result in various problems such
as unnecessary synchronizations and communication progress
issues [3], [15], [16], [18], [19]. The second is the complexity
in the protocol invocation scenario. MPI allows both the sender
and the receiver to mark the times when a communication can
start (e.g. MPI_Isend/MPI_Irecv ) and when a communi-
cation must be completed (e.g. MPI_Wait ). There are many
combinations of the relative timing of these events, which can
greatly affect the performance of a given protocol. We use the
term protocol invocation scenario to denote the timing of the
events in a communication. It is virtually impossible to design
one scheme (even one that combines multiple protocols [16],
[18]) that guarantees high performance for all cases.

In this work, we consider a profile-driven compiler-assisted
protocol customization approach to maximize the performance
for communicating large messages. Instead of using the same
protocol for any protocol invocation scenario, our approach
first identifies the protocol invocation scenario for each crit-
ical communication by analyzing the execution traces of an
MPI program (program profile data) and/or by analyzing the
program, and then chooses the most appropriate protocol for
each scenario. We note that it might not be necessary to apply
protocol customization for all communication routines in an
application. Customizing the protocols in a small number of
critical communication routines may yield significant improve-
ment.

In order for profile-driven compiler-assisted protocol cus-
tomization to be effective, (1) trace analysis and/or compiler
analysis techniques must be developed to accurately determine
protocol invocation scenarios; and (2) efficient communica-
tion protocols must be designed for all invocation scenarios.
This paper focuses on the second item: obtaining efficient
communication protocols. We analyze existing protocols for
communicating large messages on RDMA-enabled clusters
and show that they are not ideal in many situations. We
develop a set of six protocols that can deliver near-optimal
performance for all protocol invocation scenarios by lever-
aging the RDMA capability: when the protocol invocation
scenario can be decided for a communication, one of the six
protocols can be selected by the compiler or runtime system
to achieve high performance. Finally, we implement all of the
proposed protocols on InfiniBand and evaluate the potential
benefits of protocol customization using micro-benchmarks



and application benchmarks. The results indicate that protocol
customization can significantly improve MPI communication
performance.

The rest of the paper is organized as follows. Section II
describes the related work. Section III discusses protocol in-
vocation scenarios and analyzes existing rendezvous protocols.
In Section IV, we present the six near-optimal protocols.
Section V reports the experimental results. Finally, Section VI
concludes the paper.

II. RELATED WORK

The performance issues with rendezvous protocols including
unnecessary synchronizations, problems with communication
progress, and limited opportunities for overlapping communi-
cation and computation, have been observed in many studies
[1], [7], [15]. Various techniques have been developed to over-
come these problems. The techniques can be broadly classified
into three types: using interrupts to improve communication
progress [1], [17], [19], using asynchronous communication
progress to improve communication-computation overlaps [8],
[9], [10], [12], [20], and improving the protocol design [3],
[15], [16], [18], [19]. The interrupt driven message detection
approach [1], [17], [19] allows each party (sender or receiver)
to react to a message whenever the message arrives. The draw-
back is the non-negligible interrupt overhead. Asynchronous
communication progress allows communications to be per-
formed asynchronously with the main computation thread.
This approach either needs a helper thread [10], [12], [20]
or requires additional hardware support [8], [9]. Allowing
communication and computation overlaps with a helper thread
incurs performance penalties for synchronous communica-
tions. The third approach tries to improve the performance
with better protocols, which can benefit both synchronous and
asynchronous communications. It was shown that a sender-
initiated RDMA read-based rendezvous protocol uses fewer
control messages between the sender and the receiver than
the RDMA write-based rendezvous protocol [19]. Pakin [15]
showed that the receiver-initiated rendezvous protocol is sim-
pler and can achieve higher performance in most cases than the
sender-initiated protocol. Techniques that combine the sender-
initiated and receiver-initiated protocols into one communi-
cation system have also been developed [16], [18]. These
schemes, while more robust than other existing techniques,
still cannot deliver high performance in some cases. The main
problem with existing techniques is that all of them perform
well in some situations, but not all situations: this motivates
our research in using profile-driven compiler-assisted protocol
customization that allows using different protocols in different
situations to achieve the best performance. The closest work
to this research is the Gravel library [3]. Although Gravel can
be used for protocol customization, it supports a very limited
set of protocols for communicating large messages.

III. PROTOCOL INVOCATION SCENARIOS AND EXISTING
RENDEZVOUS PROTOCOLS

Each rendezvous protocol requires the exchange of one
or more control messages. The control messages introduce
implicit synchronizations between the sender and the receiver:
when a protocol requires that a party P1 responds a control
message from the other side, P1 cannot make progress unless
the other party has sent the control message. Due to the
implicit synchronizations, the performance of a rendezvous
protocol can be significantly affected by the protocol invo-
cation scenario, i.e., the timing of the communication related
events in the sender and the receiver. Next, we will first discuss
protocol invocation scenarios and then show why existing
rendezvous protocols cannot deliver high performance in many
situations.

A. Protocol invocation scenarios

There are four critical events in each MPI point-to-point
communication: (1) the time when the sender can start the
communication, which corresponds to the MPI_Isend call
at the sender side and will be denoted as SS, (2) the time
when the sender must complete the communication, which
corresponds to the MPI_Wait call at the sender side and will
be denoted as SW , (3) the time when the receiver can start the
communication, which corresponds to the MPI_Irecv call at
the receiver side and will be denoted as RS, and (4) the time
when the receiver must complete the communication, which
corresponds to the MPI_Wait at the receiver side and will be
denoted as RW . We will use the notations SS, SW , RS, and
RW to denote both the events and the timing of the events.
The sender may or may not have computations between SS

and SW ; and the receiver may or may not have computation
between RS and RW . When there are computations at those
points, it is desirable to overlap the communication with these
computations. After SW , the sender is blocked and does not
perform any useful work until the communication is completed
at the sender side. Similarly, after RW , the receiver is blocked
and does not perform any useful work until the communication
is completed at the receiver side.

Let A, B ∈ {SS, SW, RS, RW}. We will use the notion
A ≤ B to denote that event A happens before or at the same
time as event B, A = B to denote that event A happens at the
same time as event B, and A < B to denote that A happens
before B. Ordering events in one process is trivial: clearly,
we have SS ≤ SW and RS ≤ RW . Note that SS and SW

happens at the same time in a blocking send call (MPI_Send );
and RS and RW happens at the same time in a blocking
receive call (MPI_Recv ). For events in two processes, the
order is defined as follows. Let event A happens in process
PA, and event B happens in process PB . A < B if after A,
PA has time to deliver a control message to PB before B.
A = B denotes the case when each party does not have time
to deliver a control message to other party before the event in
that party happens. Fig. 1 shows the ordering of events in two
processes.
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Fig. 1. The ordering of events in two nodes

Since SS ≤ SW and RS ≤ RW , there are only six
different orderings among the four events in a communication:
SS ≤ SW ≤ RS ≤ RW , SS ≤ RS ≤ SW ≤ RW ,
SS ≤ RS ≤ RW ≤ RW , RS ≤ RW ≤ SS ≤ SW ,
RS ≤ SS ≤ RW ≤ SW , and RS ≤ SS ≤ SW ≤ RW .
However, the ordering of the communication events is not the
only factor that affects protocol design, the actual timing of the
events also has an impact as will be shown in the Section IV.

B. Existing rendezvous protocols and their limitations

There are three existing rendezvous protocols developed
for RDMA-enabled systems, the traditional sender-initiated
RDMA write-based protocol [11], the sender-initiated RDMA
read-based protocol [19], and the receiver-initiated protocol
[15], [16]. We will briefly introduce each protocol and discuss
their limitations. Ideally, in a rendezvous protocol, when both
sender and receiver are ready for the communication, that
is, both SS and RS happen, data transfer should start to
maximize the overlap with the computations between SS and
SW in the sender side and between RS and RW in the
receiver side. None of these protocols can achieve this in all
cases.

The sender-initiated RDMA write-based rendezvous proto-
col [11] is shown in Fig. 2 (a). In this protocol, the sender
initiates the communication by sending a SENDER_READY
packet; the receiver then responds with a RECEIVER_READY
packet; after that the message data are RDMA written and a
FIN packet is sent to indicate the completion of the commu-
nication. The sender must then wait for the communication of
the data to complete before it can return from the operation.

Receiver

FIN

Sender

SENDER_READYSS RS

Done
Done

RWRECEIVER_READY

Data(RDMA write)

(a) An example

SW

ReceiverSender

SENDER_READYSS
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FINDone

SW

Done

Data(RDMA write)

RECEIVER_READY
RW

(b) Another example

Fig. 2. Examples of sender-initiated RDMA write-based protocol with sub-
optimal performance

Fig. 2 (a) and (b) show two examples that this protocol gives
sub-optimal performance. In Fig. 2 (a), SS = RS and since
both parties for the rendezvous communication has arrived,
ideally, data transfer should start within one control message
time of SS and overlaps with the computation between SS and

SW and between RS and RW . However, using this protocol,
data transfer happens after RW with no communication-
computation overlap (sender has been idling at SW, waiting
to complete the protocol). In Fig. 2 (b), SS < RS and
the receiver responds to the SENDER_READY message right
away. Again, ideally, data transfer should happen when both
SS and RS happen (both sides are ready for the commu-
nication). However, since sender is in the computation when
RECEIVER_READY arrives, the data transfer happens at a
later time in SW : there is no overlap between computation
and communication. Notice that the performance penalties for
the inefficient protocol depend on the program structure: for
Fig. 2 (a), the sender can idle in SW for a very long time
depending on the amount of computation between RS and
RW ; for Fig. 2 (b), the receiver can idle in RW for a very
long time depending on the amount of computation between
SS and SW .

An example of the sender-initiated RDMA read-based pro-
tocol [19] is shown in Fig. 3 (a). In this protocol, the receiver
responds to the SENDER_READY packet with a RDMA read
operation. After the RDMA read operation is completed, the
receiver sends a FIN packet to the sender and completes the
operation. The sender exits the operation after it receives the
FIN packet. In comparison to the RDMA write-based protocol,
this protocol eliminates the RECEIVER_READY message,
which may result in better communication progress [19].
However, this protocol also suffers from some limitations as
shown in Fig. 3. In Fig. 3 (a), SS = RS. Using this protocol,
data transfer happens at RW , which is not ideal. In Fig. 3 (b),
RS < SS. With this protocol, the receiver does nothing at RS

and data transfer still happens at RW .
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Fig. 3. Examples of sender-initiated RDMA read-based protocol with sub-
optimal performance

An example of the receiver-initiated protocol [15] is shown
in Fig. 4. In this protocol, the sender does nothing at SS if
SS < RS. The receiver sends a RECEIVER_READY packet
to the sender, which carries the receiving buffer information.
When the sender gets this packet, it can directly deposit the
data message into the receiver user space. As shown in Fig. 4,
when SS = RS, the protocol is not ideal as the data transfer
starts at SW .

There are other cases that all existing protocols can only
give sub-optimal performance. Since none of the protocols
is ideal in some cases (e.g. when RS = SS), the schemes
[16], [18] that combine the sender-initiated protocol with the
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receiver-initiated protocol are also not ideal in such cases.
Hence, to effectively support profile-driven compiler-assisted
protocol customization, new efficient protocols must be devel-
oped for the scenarios that existing protocols cannot perform
well.

IV. NEAR-OPTIMAL COMMUNICATION PROTOCOLS FOR
LARGE MESSAGES

In this section, we develop protocols for communicating
large messages that can deliver near-optimal performance for
all protocol invocation scenarios. We make the following
assumptions:

• Data transfer cannot start unless both SS and RS happen.
This is typical for sending large messages: both sides
must be ready for the data to be communicated.

• The delay (cost) associated with sending and receiving
a control message is negligible. The assumption is valid
since the data message is large.

• RDMA read and RDMA write have similar performance.
• The sender can buffer the data message when necessary.

Buffering at the sender side, even for large messages, is
practical since it does not require the excessive per-pair
buffers. However, buffering requires CPU time and thus,
must be used with care. Hence, we further assume that
buffering at the sender can only be performed when the
sender is blocked.

Let REND be the time when both SS and RS happen
(the rendezvous time of the communication), comm(msg) be
the time to transfer the message with either RDMA write
or RDMA read, and copy(msg) be the time to make a
local copy of the message. Under the above assumptions, an
ideal communication scheme should have the following three
properties.

• It should start the data transfer at the earliest time, which
is REND. Starting the data transfer at the earliest time
also maximizes communication-computation overlaps. It
follows that both the sender and the receiver should
complete the operation at REND + comm(msg).

• When REND ≤ SW , the sender should send the mes-
sage at REND and complete the operation at REND+
comm(msg).

• When SW < REND, the sender can buffer the data, use
a control message to notify the receiver about the buffer,

and return from the operation. The receiver can get the
data from the buffer; and the buffer can be released in a
later communication operation after the receiver gets the
data. Thus, in this case, the sender should complete the
operation at SW + copy(msg)

We note that this ideal communication scheme may not be
optimal in that the communication completion times for the
sender and the receiver may not be the earliest possible times
in all cases. For example, we do not consider the concurrency
of sending data and copying data simultaneously. Improve-
ments can be made by exploiting such concurrency, as will be
shown in one of our protocols. Hence, we will say that this
ideal scheme is near-optimal. Our protocols are near-optimal
in the sense that, ignoring the control message overheads, they
have same three properties like the ideal scheme: our protocols
have the same communication start times and completion times
as the ideal communication scheme.

Next, we will present our protocols for all protocol invo-
cation scenarios. We group all protocol invocation scenarios
into three classes: SS < RS, SS = RS, and RS < SS. For
a SS < RS scenario, the sender arrives at the communication
earlier than the receiver: the sender can notify the receiver
that it is ready for the communication at SS and the receiver
can get the notification at RS. Similarly, for a RS < SS

scenario, the receiver arrives at the communication earlier
than the sender: the receiver can notify the sender that it is
ready for the communication at RS and the sender can get the
notification at SS. For a SS = RS scenario, the sender and
the receiver arrive at the communication at similar times: SS

and RS are within one control message time.
Let us first consider the scenarios with SS < RS. The

scenarios in this class are further partitioned into three cases
with each case having a different protocol. The three cases
are: SS ≤ SW < SW + copy(msg) < RS ≤ RW , SS ≤
SW < RS(≤ SW + copy(msg)) ≤ RW , and SS < RS ≤
{SW and RW}. Here, SW + copy(msg) is copy(msg) time
after SW . In the case SS < RS ≤ {SW and RW}, SW and
RW both happen no earlier than RS and the order between
SW and RW does not matter.

Fig. 5 (a) shows the scenario for SS ≤ SW < SW +
copy(msg) < RS ≤ RW , where SW is much earlier than
RS. Our protocol for this case, shown in Fig. 5 (b), is called
the copy get protocol. In this protocol, the sender copies the
message data to a local buffer at SW (this has no costs
since sender is blocked for the communication and cannot do
anything useful). After the data are copied, the sender issues
a READY message, which contains the address of the local
buffer and other related information to facilitate the RDMA
read from the receiver, to the receiver. The task in the sender
side is completed; and the sender can exit the operation.
When the receiver gets the READY message, it performs a
RDMA read to obtain the data from the sender buffer. The
sender side buffer must be released at some point. Since
this is a library buffer that the application will not access,
the information for the receiver to notify the sender that the
buffer can be released can be piggybacked in a later control



message. The copy get protocol leverages the RDMA capa-
bility and allows the sender to complete the communication
before the receiver even arrives. For the sender, the operation
completes at SW + copy(msg). The data transfer starts at
REND = RS and the receiver completes the communication
at REND+comm(msg). Hence, this protocol is near-optimal
for both the sender and the receiver.

sender Receiver

SS
SW copy

RS

RW

(a) invocation scenario

sender Receiver

SS
SW copy

RS

RW
RDMA read

Done

Done

READY

(b) copy_get protocol

Fig. 5. SS ≤ SW < SW + copy(msg) < RS ≤ RW scenario and the
copy get protocol

Fig. 6 (a) shows the scenario for SS ≤ SW < RS(≤
SW + copy(msg)) ≤ RW , where sender blocks (SW )
slightly earlier than receiver arriving at the communication
(RS) with not enough time to copy the whole message. Our
protocol for this case, shown in Fig. 6 (b), is called the
copy check put protocol. In this protocol, the sender sends
a SENDER_READY message to receiver at SS. At SW , the
sender starts copying the message data to a local buffer while
monitoring control messages from the receiver. This can be
implemented by repeatedly copying a small chunk of data and
checking the message queue. Like in the copy get protocol,
these operations have no costs since the sender is blocked for
the communication and cannot do anything useful. When the
receiver arrives at RS, it will receive the SENDER_READY
and send a RECEIVER_READY message, which should arrive
at the sender before the sender finishes making a local copy.
When the sender gets the RECEIVER_READY message, it
sends partial data to the receiver while continuing to copy the
message concurrently. We will assume that the system knows
the copy and data transmission speeds and can determine
the amount of data to be copied and to be transferred so
that the combination of copied data and transferred data
covers the whole message and that the (partial) data copy and
(partial) data transfer complete at the same time. Note that
this assumption can be approximated in practice. After that,
the sender initiates the sending of the copied data and the FIN
packet, and then returns from the communication. The copied
data will be released in a later communication operation.
For this protocol, the sender completes the operation before
SW +copy(msg) since it returns after the message is partially
copied (initiating a communication does not take time). This is
due to the concurrent sending and copying data in the protocol.
The data transfer starts at REND = RS and the receiver
completes the operation at REND + comm(msg). Hence,
this protocol is near-optimal.

For SS < RS ≤ {SW and RW} scenarios, the traditional
sender-initiated RDMA read-based protocol is near-optimal.

sender Receiver

SS

RW

(a) invocation scenario

sender Receiver
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copy
SW RS

READY

SW partial copy
RS

Done

(b) copy_check_put protocol

uncopied data
copied data

FIN Done

Fig. 6. SS ≤ SW < RS(≤ SW + copy(msg)) ≤ RW scenario and the
copy check put protocol

Using this protocol, data transfer starts at REND = RS; and
both the sender and the receiver complete the communication
at REND + comm(msg).

Let us now consider the second class: SS = RS. This
is one case when all existing rendezvous protocols are not
ideal. However, if trace/profile/static analysis can draw the
conclusion that SS and RS are within one control mes-
sage time, the solution is straight-forward: waiting for the
corresponding control message at SS or RS. We will call
such protocols delayed sender-initiated protocols and delayed
receiver-initiated protocols. Fig. 7 (a) shows a delayed sender-
initiated RDMA read-based protocol. In this protocol, the
receiver adds a delay time RS (marked as RS(begin)
and RS(end) in Fig. 7 (a)). During the delay, the receiver
repeatedly pulls the control message queue waiting for the
SENDER_READY message to arrive at RS so that data transfer
can start before the receiver leaves RS. Notice that the delay
is less than one control message time and the communication
starts within one control message time from REND. Hence,
both the sender and receiver will complete the operation at
REND+comm(msg). Fig. 7 (b) shows the delayed receiver-
initiated protocol where the delay is added to the sender at SS.

ReceiverSender

RECEIVER_READY RS

FIN
SWDone

RW
Done

SS(begin)

SS(end)

Receiver

SENDER_READY

Sender

SS

SW Data (RDMA read)
Done

RW
Done

FIN

RS(begin)
RS (end)

(a) Delayed sender−initiated protocol (b) Delayed receiver−initiated protocol

Fig. 7. Delayed rendezvous protocols for SS = RS scenarios

Finally, for the third class where receiver arrives earlier
than the sender (RS < SS), the traditional receiver-initiated
protocol, as shown in Fig. 4, can achieve near-optimal perfor-
mance. Data transfer starts exactly at SS = REND, which
is the earliest time possible. Both sender and receiver will
complete the operation at REND+comm(msg), which is the
same as the ideal communication scheme. Notice that when
the receiver arrives at RS and RW much earlier than the
sender, it must wait for the sender in order to complete the
communication: there is an inherent synchronization from the
sender to the receiver in every communication. As a result,



the case when receiver arrives much earlier cannot be further
optimized.

The six protocols that we discuss in this section, the
copy get protocol, the copy check put protocol, the sender-
initiated RDMA read-based protocol, the delayed sender-
initiated protocol, the delayed receiver-initiated protocol, and
the receiver initiated protocol, should be able to achieve near-
optimal performance for communicating large messages in any
protocol invocation scenario. By combining these protocols
with a profile driven static analysis scheme that identifies
protocol invocation scenarios, protocol customization can po-
tentially achieve near-optimal communication performance for
all situations.

V. PERFORMANCE STUDY

In this section, we evaluate the performance of the proposed
rendezvous protocols and study the potential benefits of pro-
tocol customization with micro-benchmarks and application
benchmarks. We have implemented the six protocols discussed
in the previous section over InfiniBand using the Verb API [6]
in six versions of MPI_Isend , MPI_Irecv , MPI_Send ,
MPI_Recv , and MPI_Wait . Our library can co-exist with
MVAPICH. MPI functions that are not supported by our
library can be realized by MVAPICH. This allows us to
compare the performance of MPI programs with point-to-point
routines using our protocols to that with MVAPICH.

The evaluation is performed on an InfiniBand cluster that
has 16 compute nodes with a total of 128 cores. Each
node is a Dell Poweredge 1950 with two 2.33Ghz Quad-
core Xeon E5345’s (8 cores per node) and 8GB memory.
All nodes run Linux with the 2.6.9-42.ELsmp kernel. The
compute nodes are connected by a 20Gbps InfiniBand DDR
switch (CISCO SFS 7000D). We compare the performance of
protocol customization with that of the default MVAPICH2-
1.2.rc1, which uses the sender-initiated RDMA write-based
protocol to communicate large messages.

A. Micro-benchmark results

We use a micro-benchmark to evaluate the performance of
different protocols with different protocol invocation scenarios.
The micro-benchmark is shown in Fig. 8. In this benchmark,
the time for 1000 iterations of the loop is measured. Inside
the loop, a barrier is first called to synchronize the sender
and the receiver. After that, the sender performs some com-
putation comp1, calls MPI Isend to start the send operation,
performs some more computation comp2, calls MPI Wait
to complete the send operation, and performs some more
computation comp3. Similarly, the receiver also performs
some computation comp4 after the barrier, calls MPI Irecv
to start the receive operation, performs some more compu-
tation comp5, calls MPI Wait to complete the receive op-
eration, and performs some more computation comp6. The
message size and the computation in between the commu-
nication routines are parameters. We will use the notation
(comp1, comp2, comp3, comp4, comp5, comp6) to represent
the configuration of the benchmark, where compX represents

the duration of the computation (in the unit of a basic loop).
For each computation, the larger the number is, the longer the
computation lasts. By changing the values of the parameters,
the benchmark can create all protocol invocation scenarios.
In the discussion, we will use notation C(compX) for the
time for compX computations, T (msize) for the time to
transfer a message of msize bytes, and copy(msize) for the
time to copy a message of msize bytes. In the experiment,
C(X)+C(Y ) ≈ C(X +Y ), C(1) ≈ 18µs and T (100KB) ≈
90µs.

Process 1: Process 2:
Loop Loop:

barrier() barrier()
comp1 comp4
MPI Isend() MPI Irecv()
comp2 comp5
MPI Wait() MPI Wait()
comp3 comp6

Fig. 8. Micro-benchmark

We perform experiments using this micro-benchmark with
different orderings of events and different relative timings. Pro-
tocol customization consistently achieves high performance. In
the following, we will show the results for three representative
cases. The first case has configuration (1, 1, 48, 30, 19, 1),
which emulates the case when SS and SW are much earlier
than RS and RW as shown in Fig. 5 (a). The second case has
configuration (10, 30, 10, 10, 30, 10), which emulates the case
when SS = RS as shown in Fig. 2 (a). The third case has con-
figuration (10, 20, 20, 1, 40, 9), which emulates the case when
RS < SS as shown in Fig. 3 (b). Note that for all cases, both
sender and receiver have a total of 50 units of computations,
which translate to roughly C(50) = 50× 18 = 900 µs if both
sides perform the computation concurrently.

Results for configuration (1, 1, 48, 30, 19, 1) with different
message sizes are shown in Fig. 9. Using the default ren-
dezvous protocol in MVAPICH, there is an implicit synchro-
nization from RS to SW , which results in the computation
before RS (30 units) at the receiver and the computation after
SW (48 units) at the sender to be sequentialized. Hence, the
total time for each iteration is roughly T (msize)+C(30+48).
On the other hand, with protocol customization, the most
effective protocol is the copy get protocol in Fig. 5 (b), where
the sender makes a local copy of the buffer and leaves the
communication. With this protocol, the total time for each
iteration is roughly copy(msize) + C(50), which is much
better than the result with the default MVAPICH as shown in
Fig. 9. Notice that this is one scenario where no rendezvous
protocol can perform well: copy get is not a true rendezvous
protocol since the sender leaves the communication before the
receiver starts the communication. Notice also that copying
data introduces significant overheads as shown in the upward
slope for the curve for our scheme in Fig. 9.

Results for configuration (10, 30, 10, 10, 30, 10) with differ-
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Fig. 9. Results for configuration (1, 1, 48, 30, 19, 1)

ent message sizes are shown in Fig. 10. This is the case when
the READY messages from both sender and receiver pass
each other and no existing protocol is ideal as discussed in
Section III. With the default MVAPICH protocol, data transfer
is performed at SW (and RW ), and no communication-
computation overlap is achieved. The per iteration time is thus
roughly T (msize) + C(50): the time increases linearly with
the message size as shown in Fig. 10. The most effective
protocol for this situation is the delayed receiver-initiated
protocol shown in Fig. 7 (b), where the sender repeatedly
polls the incoming message queue for the RECEIVER_READY
message. Using this protocol, the communication can be
completely overlapped with computations between SS and
SW at the sender side and RS and RW at the receiver side;
and the per iteration time is roughly C(50), shown as a flat
line in Fig. 10.
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Fig. 10. Results for configuration (10, 30, 10, 10, 30, 10)

Results for configuration (10, 20, 20, 1, 40, 9) with different
message sizes are shown in Fig. 11. This case emulates the
situation at Fig. 3 (b). With the default protocol, the com-
munication starts at RW . Hence, the per iteration is roughly
C(41) +T (msize)+ C(20) = C(61) +T (msize). Using the
near-optimal receiver initiated protocol, the communication is
overlapped completely with computation and the total time is
roughly C(50).

These results demonstrate that by using near-optimal pro-
tocols for different protocol invocation scenarios, protocol
customization avoids the performance penalties due to the
mismatch between the protocol and the protocol invocation
scenarios and can achieve higher performance in comparison
to traditional rendezvous protocols in many cases. Moreover,
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Fig. 11. Results for configuration (10, 20, 20, 1, 40, 9)

the improvement from protocol customization depends not
only on the system communication performance, but also on
program structures.

B. Application benchmark results

We use five application benchmarks to investigate the po-
tential performance benefits of protocol customization. Three
benchmarks are from the NAS parallel benchmarks [14]: BT,
CG, and SP. We use the CLASS C problem size for all of
the three programs. The other two programs are jacobi and
sparsemm. The jacobi program uses Gauss-Siedel iterations
to solve Laplace equations on a 8K × 8K discretized unit
square with Dirichlet boundary conditions. The sparsemm is
a message passing implementation of the sparse SUMMA
sparse matrix-matrix multiplication algorithm [2]. The pro-
gram performs multiple times the self multiplication of a
sparse matrix stored in file G3 circuit.mtx that is available
in the University of Florida sparse matrix collection [4]. The
matrix in G3 circuit.mtx is a sparse 1585478×1585478 matrix
with 4623152 non-zero entries.

Since we have not developed trace and compiler anal-
ysis techniques to identify the most effective protocol for
each communication, we are not able to thoroughly evalu-
ate the benefit of protocol customization. Our methods to
select protocols in this experiment, which will be described
next, are preliminary and may not select the most efficient
protocols for all communications. Hence, the results in this
section only represent the potential improvement achievable
through protocol customization. In the experiments, we do
the following. We manually examine MPI program execution
traces, which gives the timing of each MPI routine calls,
and use the timing information to decide the protocol for
each communication. This approach is not always effective
since the relative timing of critical communication events
may change when the communication protocol is changed.
More sophisticated techniques that can select protocols more
effectively are still under development. In addition to the trace-
driven protocol customization, we also run each individual
protocol for each of the programs. The reported performance
results for protocol customization are the best communication
times from both the trace-driven execution and the individual
protocol execution.

Table I shows the total application times, total communica-



MVAPICH Customization Comm.
total comm. total comm. improv.

(sec.) (sec.) (sec.) (sec.) percentage
BT 321.76 10.11 315.55 3.65 177.0%
CG 35.66 3.41 35.12 3.02 12.9%
SP 180.57 6.53 176.94 2.78 134.9%

sparsemm 16.35 12.75 10.51 6.92 84.2%
jacobi 282.94 2.88 282.33 2.35 22.6%

TABLE I
PERFORMANCE ON 16 PROCESSES (ONE PROCESS PER NODE)

MVAPICH Customization Comm.
total comm. total comm. improv.

(sec.) (sec.) (sec.) (sec.) percentage
BT 99.90 21.00 98.52 16.45 27.7%
CG 16.45 6.87 16.16 6.60 4.1%
SP 56.28 13.77 55.70 12.12 13.6%

sparsemm 14.06 12.44 11.97 10.56 17.8%
jacobi 97.15 63.78 92.60 58.95 8.2%

TABLE II
PERFORMANCE ON 121/128 PROCESSES (8 PROCESSES PER NODE)

tion times, and the communication improvement percentages
using our protocol customization scheme over MVAPICH
for the programs running on 16 processes (one process per
node). The communication time includes all Send, Isend, Recv,
Irecv, and Wait times, which account for the majority of all
communication times in these benchmarks. As can be seen
from the table, protocol customization achieves significant
improvement over MVAPICH for all the programs. The reason
that protocol customization provides better performance for
different programs are different. For BT, SP, and jacobi,
the main reason is that protocol customization can explore
the communication and computation overlapping opportunities
better than the traditional protocol. For sparsemm, the main
reason is the use of the copy-get protocol that eliminates the
unnecessary synchronization from the sender to the receiver:
the computation load is not balanced in this sparse matrix-
matrix multiplication program and unnecessary synchroniza-
tions can introduce large waiting time, which is reduced
with protocol customization. For CG, the performance gain
is mainly from using a simpler receiver initiated protocol
to carry out the communication. As can be seen from the
table, although communication does not account for a large
percentage of the total application time in BT, CG, SP, and
jacobi, the improvement in communication times transfers into
improvement of the total application time. For sparsemm, the
total application time is also significantly improved since the
communication time dominates this program.

Table II shows the results for the programs running on
121/128 processes (121 for BT and SP, 128 for CG, sparsemm,
and jacobi) with 8 processes running on each node. One of
the main difference between running one process per node
and 8 processes per node is the intra-node communication.
Since intra-node communication does not use the rendezvous
protocol, our protocol customization is only applied to a por-
tion of all communications (inter-node communications with

large messages) in this experiment. This is the main reason that
the communication improvement percentage is much lower for
the 121/128 processes cases. However, as shown in the table,
having a better inter-node communication mechanism with
protocol customization still provides noticeable improvement
for all the benchmarks.

VI. CONCLUSION

In this work, we show that existing protocols for handling
large messages are not ideal in many cases and develop a
set of protocols that can achieve near-optimal performance for
any protocol invocation scenario. These protocols can be used
in profile-driven compiler assisted protocol customization. Our
preliminary evaluation with micro-benchmarks and application
benchmarks demonstrates that protocol customization can sig-
nificantly improve MPI communication performance. We are
currently working on developing trace analysis techniques for
automatic MPI protocol customization.
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