Cache Pirating: Measuring The Curse of the Shared Cache

David Eklov, Nikos Nikoleris, David Black-Schaffer and Erik Hagersten
Uppsala University, Department of Information Technology
P.O. Box 337, SE-751 05 Uppsala, Sweden
{david.eklov, nikos.nikoleris, david.black-schaffer, eh}@it.uu.se

ABSTRACT

We present a low-overhead method for accurately measur-
ing application performance (CPI) and off-chip bandwidth
(GB/s) as a function of its the available shared cache capac-
ity, on real hardware, with no modifications to the applica-
tion or operating system. We accomplish this by co-running
a Pirate application that “steals” cache space with the Target
application. By adjusting how much space the Pirate steals
during the Target’s execution, and using hardware perfor-
mance counters to record the Target’s performance, we can
accurately and efficiently capture performance data for the
Target application as a function of its available shared cache.
At the same time we use performance counters to monitor
the Pirate to ensure that it is successfully stealing the de-
sired amount of cache.

To evaluate this approach, we show that 1) the cache avail-
able to the Target behaves as expected, 2) the Pirate steals
the desired amount of cache, and 3) the Pirate does not
impact the Target’s performance. As a result, we are able
to accurately measure the Target’s performance while steal-
ing between OMB and an average of 6.1MB of the 8MB of
cache on our Nehalem based test system with an average
measurement overhead of only 5.5%.

1. INTRODUCTION

The increasing core count of modern processors has not
been met with a corresponding increase in off-chip band-
width [2]. Instead, modern CMPs have come to rely on
large on-chip caches to reduce off-chip bandwidth demand.
As these resources are typically shared across multiple cores,
the amount of each resource available to an individual core
may vary with workload. As application performance is be-
lieved to be strongly influenced by the available cache and
bandwidth [2, 11, 17], understanding performance as a func-
tion of the available shared memory system resources is in-
creasingly important for performance analysis.

Our long term goal is to understand the impact of shared
memory system resources on the performance and scalabil-

ity of multithreaded data parallel programs. For such pro-
grams, the similar execution of each thread leads to an equal
distribution of memory resources [7, 10]. This suggests that
if we knew how a single thread’s performance and off-chip
bandwidth demand change as a function of its shared cache
space allocation, we could determine the performance and
bandwidth demand as a function of the number of threads,
and therefore predict how the application will scale. As a
first step towards this goal, this paper presents a very accu-
rate, low-overhead technique for measuring performance and
bandwidth as a function how much cache space is available
to the application.

To be successful, this method must exhibit three key char-
acteristics: accuracy, efficiency, and simplicity. Accuracy
means that we need to reveal the idiosyncrasies of the real
hardware. As we will show later, details such as hard-
ware prefetchers and non-standard cache replacement poli-
cies have significant impacts on performance and must be
included. Efficiency translates into speed, and is essential to
enable us to evaluate real applications with real workloads.
If the overhead of collecting the performance data is too
high, then the technique becomes impractical. And finally,
simplicity is important to enable broad use of the technique.
If we rely on non-standard hardware extensions, operating
system modifications, or application changes to collect our
data, we not only run the risk of unknowingly impacting the
results, but we significantly raise the bar for adoption. The
technique presented here achieves accuracy through the use
of real hardware, efficiency through the use of performance
counters, and simplicity by requiring no operating system or
application modifications.

Our approach is simply to measure the performance of a
Target application while it is co-run with a Pirate applica-
tion that intentionally “steals” space in the shared cache. To
ensure accurate measurements we need to design the Pirate
to steal cache without making excessive use of other shared
resources as this can adversely impact the performance of
the Target application. Such a Pirate will allow us to eval-
uate the Target’s performance as a function of cache size by
varying the amount of space the Pirate steals and measuring
the Target’s resulting performance. Central to the success of
this method is our ability to easily monitor the Pirate while
it is executing to determine if it is stealing as much cache as
we expect. With this capability we can assure the accuracy
of our measurements regardless of the Target application’s
behavior.

The result is the Cache Pirating method which allows us
to accurately, and efficiently, evaluate the performance of an
application as a function of its available shared cache. We
demonstrate that we can achieve an average absolute error
of 0.2% (compared to reference fetch ratios) with an aver-
age measurement overhead of only 5.5%. Furthermore, this
is accomplished running on standard hardware with no mod-
ifications to the Target application or the operating system.

2. BACKGROUND AND MOTIVATION
2.1 Motivation

Performance (CPI) Bandwidth Demand (GB/s)

3
2 S—
2
1
1
0 0
2M 4M 6M 2M 4M 6M
cache size cache size
Figure 1: Sample application performance and

bandwidth demand as a function of cache size.

The performance and bandwidth requirement of an appli-
cation as a function of cache size are fundamental properties
of an application. These properties are critical for analyz-
ing performance and scaling. Consider, for example, the
performance data shown in Figure 1. Here we see that the
application’s performance does not change as its available
cache capacity changes. This implies that running more in-
stances (or threads) of this application will linearly increase
the performance. Although we expect each thread to re-
ceive less cache as the number of threads is increased, the
data clearly indicates that this will not result in a decreased
per-thread performance.

However, if we examine the bandwidth requirement for
the application, the situation changes. From the bandwidth
data we clearly see that reducing the available cache space
results in an increase in the bandwidth requirement. That
is, for this application there is a tradeoff between the avail-
able cache space and required bandwidth. The performance
curve as a function of cache size is flat because as we reduce
the amount of cache space, the application makes up for it
by increasing its off-chip bandwidth consumption.

From this information we can analyze the expected per-
formance scaling as we increase the number of threads or
application instances. With each thread consuming an equal
portion of the shared cache!, we can determine the expected

throughput by determining the per-thread performance based

on the per-thread cache allocation. Similarly, we can de-
termine the total required bandwidth from the per-thread
bandwidth data. If the total bandwidth requirement is less
than the system’s bandwidth, then we can expect to achieve
the predicted performance. However, if the total required

'The motivation of this work is the study of the performance
and scalability of data parallel programs whose threads ex-
ecuted the same code but working on different parts of the
application’s data. For such applications, the threads equal
demand for resources results in a equal distribution of cache
capacity across the threads [7, 10].

bandwidth is greater than the system’s bandwidth, we can
conclude that with this number of threads the application is
bandwidth-limited, and will not achieve the expected through-
put.

To predict performance on real hardware we need to be
able to collect realistic and accurate data. This implies that
we need to be able to collect data fast enough to measure
the performance of applications processing real datasets and
that the data we collect needs to accurately reflect the id-
iosyncrasies of the target hardware. The focus of this paper
is on how to collect this data accurately, efficiently, and sim-

ply.
2.2 Simulation

The standard approach for collecting detailed performance
data is through simulation. Simulator precision is limited
only by the detail with which they model the targeted hard-
ware. Unfortunately this accuracy comes at the cost of
performance. Detailed simulations typically take orders of
magnitude longer than native execution. To address this, a
substantial amount of work has been done to improve simu-
lation performance [12, 16, 21]. In particular, accuracy and
detail can be traded for performance by the use of analytical
performance models [18, 22].

However, for simulation to accurately report performance,
the models used to represent the targeted hardware must
be sufficiently detailed to reliably capture the true behavior
of the system. To avoid both this difficulty and the over-
head incurred in simulation, our method measures perfor-
mance metrics of the target application while it is executing
on real hardware using performance counters, and therefore
captures the true behavior of the hardware with very low
overhead.

2.3 Miss Ratio Curves

A common approach to understand how the amount of
available cache space impacts an application’s performance
is to analyze its miss ratio curve (MRC). MRCs capture an
application’s cache miss ratio as a function of the cache space
available to the applications. MRCs can be generated fairly
cheaply [9, 6, 8], and have been used in contexts such as
cache partitioning [14], off-chip bandwidth partitioning [11]
and cache contention modeling [7].

470.lbm 471.omnetpp

1.5% 1.6 6% 2.4
- & _________
1.0% 2 A% | T 1.6
Ndos T
0.5% miss ratio 40.4 2% miss ratio 0-8
CPI -------- CPI --------
0.0% L L L 0 0% L L L 0.0
2M 4M 6M 2M 4M 6M
cache size cache size

Figure 2: Miss ratios (left axis) and CPIs (right axis)
for two applications as a function of cache size.

However, while MRCs provide significant insight into the
miss ratios and data locality of applications, they are limited
in their ability to predict performance. Consider the MRCs
and CPIs shown for two applications in Figure 2. While
470.lbm’s miss ratio changes by almost a factor of two over
the displayed cache range, its CPI is nearly constant. For
471.omnetpp, however, the CPI curve qualitatively follows

the miss ratio curve, with a higher miss ratio corresponding
in decreased performance. This data indicate that miss ratio
alone is not enough to analyze the performance impact of
reduced cache space due to shared resources.

2.4 Understanding Cache Performance
Metrics

When evaluating cache performance it is essential to dis-

tinguish between two categories of events: misses and fetches.

We define fetches as the total number of cache-lines fetched
from main memory while misses is the number of cache
misses. Fetches and misses are not always the same. (See
Figure 3.) For example, consider the impact of hardware
prefetchers. When the prefetchers fetch data from memory
that is later accessed by the program, the number of misses
is reduced, while the number of fetches stays unchanged.
However, if the hardware prefetchers fetch data that is not
accessed while live in the cache, the total number of fetches
is increased while the number of misses stays the same. This
distinction between fetches and misses is important, since it
is the number of misses that dictate how many memory-
related stalls the CPU suffers, while fetches determine the
off-chip bandwidth consumption.

8%
6% F77o T e :
™ Miss Ratio
A% Fetch Ratio --------
2%
0%

2M 4M 6M

cache size

Figure 3: Miss ratio and fetch ratio for the same
application.

In addition to distinguishing between misses and fetches,
we also distinguish between ratios and rates. For example,
miss ratio is the number of misses per executed memory
access instruction, and fetch rate is the number of fetches
per cycle. This distinction is important because ratios are
a property of the memory access stream, and do not incor-
porate specific information about the execution rate of the
hardware, which is needed for performance analysis.

3. CACHE PIRATING

3.1 Overview

Cache Pirating is a method that allows us to accurately
measure any performance metric available through hard-
ware performance counters as a function of how much shared
cache space is available to the application. We do this while
the applications is running on real hardware, and there-
fore account for all effects of the memory hierarchy, such as
non standard replacement policies and hardware prefetch-
ing. The basic idea of Cache Pirating is to control exactly
how much shared cache space is available to the application
under measurement (the Target) by co-running it with a
cache-“stealing” application (the Pirate). The Pirate steals
cache from the Target by ensuring that its entire working
set is always resident in the shared cache. This effectively
reduces the cache space available to the Target. Indeed, as

long as the Pirate keeps its entire working set in the cache,
we know that the Target has exactly the remainder of the
cache space available.

To retain its working set in the cache, the Pirate must
actively compete with the Target for cache space. How suc-
cessful the Pirate is at stealing cache depends on the Target
and how much it fights back. However, using performance
counters we can readily determine if the Pirate is successful
in stealing the requested amount of cache. When the fetch
ratio of the Pirate is zero, we can be sure its entire working
set is resident in the cache, since none of its data is fetched
from main memory. To ensure this, we monitor the fetch
ratio of the Pirate while measuring the performance of the
Target. If the Pirate’s fetch ratio is above zero, we know
that the Pirate can not maintain its entire working set in
the cache, and we discard the measurement. This feedback
enables us to ensure the accuracy of our measurements be-
cause we can detect the point at which the Pirate is unable
to steal the requested amount of cache. As alluded to above,
for some target applications, it is hard for the Pirate to steal
large amounts of cache, limiting the range of cache sizes that
we can measure. But due to the feedback we receive from
monitoring the Pirate’s fetch ratio, we can detect the point
at which this happens.

3.2 The Pirate

For a Pirate application to be successful it must meet the
following three objectives: 1) The cache space available to
the Target must behave like a real cache of the intended size.
This means that the cache-lines used by the Target have to
be evicted in the same order (determined by the replace-
ment policy) that they would if the Target was running on
a system with a cache of the intended size. 2) The Pirate
has to be capable of keeping large working sets resident in
the shared cache. The larger the working set it can keep
resident in the cache, the more cache it can steal from the
Target. 3) The Pirate can not make significant use of any
shared resource other then the shared cache its stealing. Do-
ing so could unintentionally impact the performance of the
Target, which can distort the performance measurements. A
side benefit of keeping the Pirates entire working set in the
cache is that it will not consume shared off-chip bandwidth.

3.2.1 Stealing LRU Cache

We begin our discussion of the Pirate application in the
context of (true) LRU caches. For LRU caches, we can con-
ceptually think of each cache set as being organized as a fi-
nite sized stack, with the most recently used (MRU) cache-
line at the top, and the least recently used (LRU) cache-
line at the bottom. On a cache miss, the LRU cache-line
is evicted to make room for the newly fetched cache-line
which is pushed on the top of the stack. On a cache hit,
the accessed cache-line is moved to the top. Figure 4(a)
shows from left-to-right how the stack of one set in a 3-way
associative cache evolves over time with the access pattern
shown at the top. The stack maintains an age ordering of its
cache-lines, with the more recently used cache-lines at the
top of the stack. Importantly, it also maintains the relative
age ordering among the cache-lines.

Figure 4(b) shows how the stack evolves for a 4-way asso-
ciative cache when the Target is co-running with the Pirate.
In this example, the Pirate is configured to steal one cache-
line per cache-set, thereby leaving three cache-lines per set

MRUA DP A B EFEWPBBC(CA
B ADPWPBBEWPPBC
P B ADAPADBVETETPRB
LRU C P B B DA®PAAAETP

(b) 4-way associative cache with the Pirate stealing 1 way.

Figure 4: Evolution of the LRU stack of a true 3-
way associative cache vs. a 4-way associative cache
with the Pirate (P) stealing one way. The contents
and relative ordering of the remaining 3 ways in the
4-way cache are not affected by the Pirate, resulting
in a cache that behaves as the desired true 3-way
cache.

to be used by the Target. To avoid having its cache-line
evicted, the Pirate should access its cache-line such that it
stays as close to the top of the stack as possible. When the
Pirate steals more than one cache-line per set, the most ef-
fective way to achieve this is to always access the “oldest”
cache-line. As long as the Pirate does this at a high enough
rate, its cache-lines will not be evicted and its entire working
set will stay resident in the cache. Such an access pattern
is easily constructed by accessing the first word of succes-
sive elements in an array, with an element size equal to the
cache-line size, and a total size equal to the desired work-
ing set. By using this access pattern we can maximize the
Pirate’s ability to keep a large working set in the cache.

Now, the question is: In this 4-way associative cache with
the Pirate stealing one cache-line, do the remaining three
cache-lines available to the Target behave as a the equiva-
lent 3-way associative LRU cache would? Comparing Fig-
ure 4(a) and Figure 4(b), we see that this is indeed the case.
The stack content and the order of the cache-lines belonging
to the Target are exactly the same in the two figures. This
observation holds true in general, and satisfies our require-
ment that the remaining cache space available to the Target
behaves as expected.

In summary, the most effective access pattern to achieve
the objectives listed above is a simple linear access pattern.
As long as the Pirate’s access rate is high enough it will
retain its entire working set in the cache. However, the more
cache-lines the Pirate tries to steal, the higher its access
rate needs to be to avoid having its cache-lines evicted by
the Target. Fortunately, the linear access pattern can easily
be implemented to maximally exploit features such as out
of order execution and hardware prefetchers, allowing the
Pirate to achieve the highest possible L3 access rate.

3.2.2 Stealing Cache in a Nehalem-Based System

Figure 5 shows the MRCs for two micro benchmarks gen-
erated using Cache Pirating on our Nehalem-based evalu-
ation system, and reference MRCs generated using a trace
driven LRU cache simulator. On the left (Figure 5(a)) is
the MRC for a micro benchmark that randomly accesses a
working set of 8MB. The MRC generated by Cache Pirat-

ing perfectly matches the reference curve down to a cache
size of 1IMB. Below 1MB, our measured fetch rate for the
Pirate has increased sufficiently that we determine that the
Pirate is no longer able to maintain its working set in the
cache, and we can no longer take accurate measurements.
To indicate this we have shaded that region of the graph in
gray.

Figure 5(b) shows the MRCs for a micro benchmark that
accesses an array of 8MB with a sequential access pattern.
To our surprise, the Cache Pirating curve is far from the
pseudo-LRU reference for cache sizes between 4MB and 8MB,
even though the fetch ratio of the Pirate is virtually zero.
Even more disturbingly, the Cache Pirate data shows an
increasing fetch ratio as the cache size increases from 4MB
and 6MB. Assuming we can trust the hardware performance
counters, we know that the data from the Cache Pirate is
accurate, and because the Pirate had a zero fetch rate we
know its entire working set was in the cache for those mea-
surements. This suggests that the Pirate’s data is correct,
and that the discrepancy is due to some un-modeled behav-
ior in the real hardware. Indeed, we were unable to explain
these results until we contacted the manufacturer [19] and
learned that the Nehalem L3 cache implements a replace-
ment policy similar the clock algorithm used to approximate
LRU for paging in operating systems [20]. When we gener-
ated a reference simulation MRC using this exact algorithm
(Figure 5(c)) we found that it matched the Cache Pirate
data perfectly, including the increase in fetch ratio between
4MB and 8MB. This exemplifies the challenges of model-
ing real hardware with simulators, and shows both the size
and qualitatively misleading results one can obtain when the
wrong simulation parameters are used.

3.2.3 Nehalem L3 Replacement Policy

The replacement policy implemented in the L3 cache of
Nehalem works as follows: For every cache-line the cache
maintains an accessed bit. When a cache-line is accessed,
the accessed bit is set. On eviction, the accessed bits are
searched, and the first cache-line found with an unset ac-
cess bit is evicted. Eventually, the accessed bit for all but
one of the cache-lines will be set. When this last cache-line
is accessed all accessed bits are cleared except for the one
corresponding to the last cache-line accessed. Note that this
replacement policy has two invariants: The accessed bits are
never all set or all unset at the same time.

When the Pirate is co-running with the Target on Ne-
halem system, the Pirate needs to have a high enough ac-
cess frequency to its working set so that its accessed bits
are always set when one of its cache-lines are considered for
eviction. As long as this is the case, the replacement pol-
icy will never consider the Pirate’s cache-lines for eviction.
This suggests that the linear access pattern described for
LRU caches is also optimal for the Nehalem cache.

However, the Nehalem cache is sufficiently different from
an ideal LRU cache that the space remaining for the Tar-
get application does not behave quite the same as a “true”
Nehalem cache of that size would. This deviation occurs
when the access bits are cleared by the Pirate when access-

fetch ratio

100% 100% 100%
k. XX, !
80% \":\\ 80% <. 80% ;
S 2 S IE | Iy
60% - X, £ 60% g 60% :
40% > £ 40% i £ 40% ;
= “ = 1 \
20% - simulation ~ 20% simiilation y 20%| simulation
i pirate ---s--- | pirate ---%--- y | pirate ---%---
0%] 1 1 0% 1 1 0% 1 1
2M 4M 6M 8M 2M 6M 8M 2M 4M 6M 8M
cache size cache size cache size

(a) Random access, LRU.

(b) Sequential access, LRU.

(c) Sequential access, Nehalem.

Figure 5: MRCs for two micro benchmarks that access data in random and sequential patterns for our
Nehalem system. The gray regions show where the Pirate experienced elevated fetch ratios, indicating that
we can not trust its data. Figures 5(a) and 5(b) use reference curves from an LRU cache simulator while 5(c)
uses a Nehalem-specific cache simulator. (Simulating a pseudo-LRU policy did not improve the results.) For
the random access benchmark the LRU and Nehalem simulators generate identical results, but for the case of
sequential accesses, the a Nehalem-specific simulator must be used to reproduce the hardware performance.

ing one of its cache-lines?. In this state, the portion of the
cache owned by the Target application has no access bits set,
because the only accessed bit that is set is in the Pirate’s
portion of the cache. As noted above, such a situation could
not occur in a “true” Nehalem cache, which means that the
replacement policy seen by the Target when running with
the Pirate and that of a “true” cache of the corresponding
size are different. We evaluated this with a “worst-case” Ne-
halem cache simulator that always clears all accessed bits
when the last cache-line with a unset accessed bit is ac-
cessed, and found that the “worst-case” results differed very
little from the “true” results across our benchmark applica-
tions. The negligible impact of this effect can be seen by
examining the accuracy with which the Cache Pirate results
match the “true” simulation results in Section 4.2.

3.3 Enhancements

3.3.1 Dynamic Working Set Adjustment

The simplest way to implement the Pirate is to steal a
fixed amount of cache for each execution. Therefore, to gen-
erate a performance curve for 15 cache sizes, one would re-
run the Target together with the Pirate once for each cache
size. This would result in an overhead of at least 15 times
the execution time of the Target alone. However, the actual
overhead will be larger as most of the application’s runs will
be with smaller amounts of available cache, and hence most
applications will execute more slowly. Ideally we would like
to capture data for all possible cache sizes from only one
execution of the Target.

Capturing data for multiple cache sizes from a single Tar-
get run can be achieved by varying how much the Pirate
steals as the Target executes. Figure 6 schematically shows
how this can be achieved. For each measurement interval
the Pirate steals a constant amount of cache and measures
the performance of the Target for that size. At the end of
the measurement interval the results are recorded, and the

2The state when all the Target’s accessed bits are set does
not present a problem. In this state, when the Target suffers
a cache miss, one of the Pirate’s cache-lines will be evicted.
As we reject measurements taken when the Pirate’s fetch
ratio is above a threshold (close to zero), we effectively limit
the impact of this.

(.) Cache Size ?MB
|
Pirate 1 < I
‘Warmup ®
}
tuger 1| | R[] e
‘Warmup I I
f | | Pirate

2

0

Measurement
Cycle

I

_
5

oury,

Figure 6: Schedule for dynamic working set adjust-
ment of the Pirate while the Target application exe-
cutes. During the time between each measurement
interval, the application (Target or Pirate) whose
working set size increases is allowed to execute alone
to warm up its new cache space while the other ap-
plication is suspended.

process is repeated for the next size, with the Pirate cycling
through the full range of cache sizes to be evaluated in each
measurement cycle. For this approach to work correctly, the
full measurement cycle must be evaluated in each significant
program phase.

To obtain accurate measurements when dynamically ad-
justing the Pirate’s working set size, it is important to warm
up any new cache space after each change that increases the
effective cache size. Therefore, we have to allow the Target
to warmup its cache before entering each measurement cy-
cle. If we did not do this, we would introduce and measure
artificial cold misses for the Target. Similarly, we have to
let the Pirate warm up its cache space each time it increases
its working set. These cache warm ups are achieved by halt-
ing the Pirate/Target to allow the Target/Pirate to bring its
working set size into the cache without having to compete
for cache space.

3.3.2 Multithreaded Pirate

The amount of cache the Pirate can steal is limited by its
ability to access its working set fast enough to keep it in the
cache while the Target’s attempts to use the cache at the
same time. Therefore, if we can increase the Pirate’s access
rate we can increase the amount of cache it can steal. To
do so we parallelized the Pirate by simply using multiple
threads to access disjoint parts of the the Pirate’s working
set simultaneously. (These threads must of course be pinned
to a set of cores such that they never run on the same core
as the Target.)

Multithreading the Pirate has the potential to increase its
accesses rate linearly with the number of threads. However,
we must make sure that the Pirate does not saturate the
shared last-level cache bandwidth, as doing so can impact
the execution rate of the Target. This is essential for tim-
ing dependent metrics (rates), such as IPC, but for timing
independent metrics (ratios), such as fetch ratio, this is typ-
ically not an issue. Importantly, we can determine whether
increasing the number of Pirate threads will impact the Tar-
get by examining its execution rate for small Pirate sizes.
(See Section 4.4.) This allows us to dynamically determine
the number of threads we can use to maximize the Pirate’s
ability to steal cache without impacting the Target’s execu-
tion rate on a per-Target basis.

3.4 Summary

For both the general LRU/pseudo-LRU and hardware-
specific Nehalem replacement policies, the most effective ac-
cess pattern for keeping the Pirates working set in the cache
is a simple strided pattern. With this pattern, as long as the
Pirate’s access rate is high enough it will keep its entire work-
ing set in the cache. This allows us to easily compute the
cache space available to the Target. But most importantly,
we have shown the following: 1) When the fetch ratio (mea-
sured with performance counters) is zero, the Pirate’s entire
working set is resident in the cache; and 2) The cache space
made available to the Target behaves like a cache with the in-
tended replacement policy; and 3) By adjusting the number
of Pirate threads we can adjust the amount of shared-cache
bandwidth the Pirate consumes. Combined, these give us
a tool with which we can measure any application perfor-
mance metric(s) available through performance counters as
a function of cache space.

4. EVALUATION

To evaluate the Cache Pirating method we must look at
the following: 1) Does the cache available to the Target be-
haves sufficiently similarly to a real cache of that size? For
this, we use a trace-driven cache simulator to generate fetch
ratio curves, and compare them to the fetch ratio curves cap-
tured using Cache Pirating. The similarity of these curves
indicates that the cache space available to the Target be-
haves as a real cache of the intended size. 2) How much
cache the Pirate can steal? For this, we rely on the obser-
vation that when the Pirate’s fetch ratio is zero, its entire
working set must be resident in the cache. This allows us to
detect how much cache the Pirate can steal with different
numbers of threads. 8) How many threads can the Pirate
use before its L3 bandwidth impacts execution rate the Tar-
get? To increase the Pirate’s accesses rate we use a mul-
tithreaded Pirate (Section 3.3.2). However, doing so risks
saturating the L3 bandwidth, which can adversely affect the

performance of the Target. To evaluate this we measure how
much the Target’s CPI increases when the number of Pirate
threads is increased. 4) Can we generate results for multiple
cache sizes from one run by varying the Pirate’s working set
size as the Target executes? In order to evaluate this, we
first run the Target to completion with the Pirate stealing
a fixed amount of cache for each Target execution. We can
then compare this to the results obtained from varying the
Pirate’s working size while the Target executes.

4.1 Experimental Setup

We have implemented Cache Pirating with both dynamic
working set adjustment (Section 3.3.1) and a multithreaded
Pirate (Section 3.3.2). We have added an additional feature
that allows us to attach to a running Target process and start
and stop the Pirate at specific Target instruction addresses.
This latter feature is used to collect data for reference sim-
ulation comparison. For benchmark applications, we use all
28 SPEC CPU2006 applications (except for 416.gamess that
we could not run on our system), unless noted otherwise. We
also examined the Cigar [1] application as it has a distinctive
jump in its fetch ratio curve at 6MB.

We run all experiments on a quad-core Intel Nehalem
E5520 running Linux 2.6.32 configured with large pages.
Our kernel is patched with the perfctr-2.6.41 patch [15] to
expose the OFF_CORE_RSP_0 performance counter that we
need to count per-core L3 events, such as misses and fetches.
We need per-core events to measure L3 events for the Tar-
get and the Pirate threads individually. This approach can
be easily adopted to the Perfevents used in recent main-line
Linux kernels as soon as support for the per-core L3 events
is exposed.

4.2 Does the Cache Behave as Expected?

Assuming we can trust the hardware performance coun-
ters, we know that the data we collect for the Target are ac-
curate measurements of the application’s behavior with the
Pirate running. However, to show that this data correctly
reflects the behavior of the system with a cache of the size
we are trying to evaluate, we need to investigate whether the
cache available to the Target behaves as expected. To do so,
we compare the shared cache fetch ratio, as captured using
the Pirate, to that generated from an address trace-driven
cache hierarchy simulator. The shared cache fetch ratio is a
good metric for such a comparison because it directly reflects
the behavior of the cache, including replacement policies and
capacity, while being less sensitive to the hardware prefetch-
ers than miss ratio (see Section 2.4). We can therefore use
these reference results from the simulated cache to reliably
assess whether the real cache available to Target application
is behaving as expected.

4.2.1 Reference Cache Simulator

To generate our reference fetch ratio curves, we first cap-
ture addresses traces using the Pin [3] dynamic instrumen-
tation framework, and then run them through a cache sim-
ulator that models the Nehalem cache hierarchy to the best
of our knowledge (see Table 1). To speed up the reference
generation we analyze the time profiles of the applications
using Gprof [13] and identify the code responsible for the
largest fraction of the applications’ execution times. We
then configure our simulator to start tracing when the ap-
plications enter their hot code segments, and capture traces

of approximately one billion memory accesses. Contrary to
the standard approach of fast forwarding a fixed number of
instructions for all applications, this approach ensures that
our traces capture relevant parts of the applications’ execu-
tions. When capturing Cache Pirate data, we make sure to
attach and detach the Pirate at the exact same instructions
at which we started and stopped tracing to ensure a fair
comparison.?

Cache Pirating captures data on real hardware. To make a
fair comparison, our reference cache simulator therefore has
to model the exact behavior of the hardware. As the man-
ufacturer of our evaluation system has not disclosed all the
details of its hardware prefetchers, we can not accurately
model them in our cache simulator. Instead, we disabled
as much hardware prefetching as we could on our evalua-
tion system when capturing Cache Pirating data for this
experiment. We then calibrated our cache simulator using
performance counters (with no cache stealing) to measure
the baseline fetch ratio of our benchmark applications. This
provided us with a reference fetch ratio, which was used to
offset the the fetch ratio curves generated by the cache sim-
ulator to match the reference point. This corrects for cold
start effects introduced by our simulation methodology and
for the prefetchers that we were unable to disable.

L1 Cache | 32K, 8—way set associative, private,
pseudo-LRU, write allocate, writeback
256K, 8—way set associative, private,
pseudo-LRU, write allocate, writeback,
non-inclusive

8M, 16—way set associative, shared,
Nehalem replacement policy,

write allocate, writeback, inclusive

L2 Cache

L3 Cache

Table 1: Nehalem Cache Hierarchy

4.2.2 Results

Figure 7 shows the reference and captured fetch ratio
curves for the most interesting 12 of the 20 simulated bench-
marks. (The remaining benchmarks either show similar be-
havior or have very low miss ratios to begin with. They are
shown in Appendix 9.1, Figure 12.) The graphs are arranged
from smallest error (left column) to largest error (right col-
umn). The shaded regions indicate the cache sizes for which
the Pirate’s fetch ratio was greater than 1%. At this point
the Pirate can no longer retain its working set in the cache,
and we can not trust the measured data. The fetch ra-
tio threshold of 1% was chosen empirically and is further
discussed in Section 4.3. Across all 20 benchmarks the av-
erage and maximum absolute fetch ratio errors were 0.24%
and 2.66%, respectively. The data from Cigar (lower-right)
clearly displays the expected shape and indicates the 6MB
working size. Indeed, in all cases, the Cache Pirate data
correctly reflects the behavior of the application with the
intended cache size, and for most the accuracy is excellent.
Even in the case of the worst benchmark, 403.gcc, the Pi-
rate data shows the correct trend across the full range. This
demonstrates that the cache available to the Target does in-
deed behave like a cache of the intended size and that the

3We were unable to instrument the 6 Fortran only SPEC
benchmarks to enable the address starting and stoping re-
quired for our reference simulation, and therefore do not
include them in our reference comparison.

2.66%

235%|34%| |134%

0.6% 60%
5 0.4% 40% B
bt —
= —
5] €a}
2 g
20.2% - 1120% 2
(e} —_—
2 Ll K
- I
0% § B | b o af 0%
AR OO AR R A ARXAA AR NN
R R,
i R0 R o [a) 0 AR 2
B AT A A N
@ NN TSI %" %
o VO K D 9 W
Z %

Figure 8: Absolute and relative fetch ratio errors.

Cache Pirating method accurately captures the fetch ratio
curves of the benchmark applications.

To evaluate the errors more carefully, we present both ab-
solute and relative fetch ratio errors in Figure 8. These errors
are computed as the average absolute/relative difference be-
tween the Pirate and simulator fetch ratio curves across all
cache sizes for which the Pirate has a < 1.0% fetch ratio. It
has been previously argued [7] that relative errors in fetch
ratios can be misleading for applications with low overall
fetch ratios, and this data bears that out. The benchmark
453.povray has the largest relative error of 235% despite hav-
ing an absolute error of only 0.01%. This is due to it having
an overall fetch ratio of essentially zero (see Figure 7), which
causes the relative error calculation to blow up.

4.3 How Much Cache Can We Steal?

We can determine when the Pirate can no longer steal
the amount of cache requested by measuring when its fetch
ratio increases above zero. At this point the Pirate is unable
to keep its entire working set in the cache and we therefore
know that the Target is not seeing the desired effective cache
size. However, if we are less strict, we can actually use the
Pirate’s fetch ratio to put bounds on the amount of cache
being stolen. For example, if the Pirate’s fetch ratio is 5%,
then in the worst case the Pirate has 95% of its working set
resident in the cache, and in the best case 100%. This allows
us to bound the error in effective cache size as a function
of the Pirate’s measured fetch ratio. In practice we use a
threshold of 1% to determine if the Pirate is unable to steal
a given amount of cache, which puts our results between
99% and 100% of the reported cache size.*

For the experiments presented here, we empirically chose
a threshold of a 1% fetch ratio to consider the Pirate unable
to maintain its working set in the cache. This number was
chosen by examining a variety of benchmarks and noting
that shortly after passing 1% the fetch ratio for the Pirate
often went up very sharply. On average, with a fetch ratio
threshold of 1%, the Pirate can steal 6.4MB of cache with
one thread, and 6.9MB with two, or 80% and 86% of the
8MB of total cache, respectively. (See Figure 9.) (Note that
these results were collected with the Pirate not varying its

4The maximum off-chip bandwidth consumption of the Pi-
rate with a 1% fetch ratio is 0.3GB/s, which we consider
small enough to not impact the Target performance.

435.gromacs

401.bzip2

429.mcf

0.6% 1.2% 20% —
0.5% "'\ 1.0% ":“ 16% |t F:"“m
0.4% \ 0.8% % 12% T
0.3% \ 0.6% _\ %
0.2% N 0.4% A\ 8%
0.1% e 0.2% Drec 4%
0.0% - 0.0% = 0%
0.06% 454.calculix 5% _— 482.sphinx3 25% 470.lbm
0.05% - 4% “""’\N 20% %
0.04% Ny 3% N 15%
0.03% s N Lol
0.02% B 0 SR 0 S
0.01% o] 1% e, L 5% e
0.00% 0% 0%
20% 462.libquantum 8% 450.soplex 36% 403.gcc
15% 6% \ SO
W 24% 3T
10% 4% g 18% ol
- ke
*\\m""‘“"'ﬂ*m...._‘ 12% R
5% 2% Fepac]
6%
0% 0% 0% -
0.3% . 447.dealll 0.3% 453.povray 30.0% cigar
% 24.0% S
0.2% A% 0.2% N
* . 18.0% “X\
0.1% N 0.1%F 4 12.0% \
NG A 6.0%
0.0% 0.0% e - 0.0% —t
oM 2M 4M 6M 8M OM 2M 4M 6M 8M oM 2M 4M 6M 8M
cache size cache size cache size
Cache Simulator ---+--- Pirate

Figure 7: Cache Pirating and reference fetch ratio curves for the benchmarks with the smallest (left), median

(middle) and largest (right) errors.

threshold (of 1%) which indicates that the Pirate was unable to steal the desired amount of cache.

The gray regions shows where the Pirate’s fetch ratio reached above a

As can

be seen, the chosen threshold is quite conservative for many of the benchmarks.

8M L B B N S S E B L N N T T T T T T T 1T
6M .
4M -
2M .
oM
L Y, Y. % X ¥ ¥ ¥ YO % % s ¥ ¥ ¥ ¥ ¥ Y5 Y Ye ¥ ¥ ¥ ¥ ¥p ¥
000 % 0{?@ 9%, % Sy 1%;& % &»/ %, % y}vs %, % a‘ % 9y @ 6;6 %, »/ Az % @J%&g <%,+ “%,
), /6 G . @,/ %, Qo@ @/{@ 0} % %, 90 % o& 00 «)}% JOO %, fé % . 602 . 7, 20 6,0 %, %
006 539 » %, Gy B % 2 G o %\O Q%O»@f @%0 “‘u” 602
4 % “

1 thread m—

2 threads s

Figure 9: Maximum cache space the Pirate could steal for each application, ignoring the performance impact

on the Target of running multiple Pirate threads.

size dynamically, and are therefore not necessarily the same
as the gray zones shown Figure 7.) One of the most difficult
application for the Pirate to steal cache from is 462.libquan-
tum due to its streaming access pattern. This pattern is
both prefetcher-friendly, which increases its fetch rate, and
contains little reuse, which thrashes the cache. Yet despite
this, the Pirate able to steal 69% of the cache and obtain
accurate performance measurements.

4.4 How Many Pirate Threads?

Multithreading the Pirate allows us to increase the Pi-
rate’s access rate to the shared L3 cache, and thereby po-
tentially increase the amount of cache it can steal. However,
doing so also increases the Pirate’s use of the shared L3
bandwidth, which can adversely impact the execution rate
of the Target. We therefore need a method to determine

how many Pirate threads we can execute without impacting
the Target’s execution rate.

To determine the maximum number of Pirate threads, we
first have the Pirate steal 0.5MB of cache with one thread.
If it is able to successfully steal this much cache, we increase
the number of Pirate threads while we measure the Target’s
CPI. We then examine the Target’s CPI to see if it increased
as we increased the number of Pirate threads. If it did,
then we clearly know that we can not increase the number
of Pirate threads without impacting the Target’s execution
rate. However, if the Target’s CPI did not increase as we
increased the number of Pirate threads, then we can safely
run that many Pirate threads at all smaller Target cache
sizes.

The reason for this is that as the Pirate steals more cache,
the Target gets less cache space, its execution rate decreases
(or stays the same), and its L3 bandwidth consumption
therefore decreases (or stays the same). Furthermore, the
L3 bandwidth consumed by the Pirate is the same no mat-
ter how much cache it steals. Therefore, if the bandwidth
demand of the Target can be satisfied when the Pirate steals
a small amount of cache it must also be satisfied when the
Pirate steals more cache, as the Target’s bandwidth demand
is lower. This allows us to use the method described above
to dynamically determine the maximum number of Pirate
threads we can run on a per-target basis.

However, for this method to work we first need to ver-
ify that the Pirate does not impact the Target’s execution
rate with one thread. To investigate this we identified 10
SPEC benchmarks whose fetch ratio does not increase when
their cache space is reduced by a small amount (in this case
0.5MB). For these benchmarks, we expect the CPI stay un-
changed when their cache space is reduced. We then used
the Pirate to steal 0.5MB of cache from these applications
and compared the measured CPI to that when the appli-
cations run alone (using the whole L3 cache). The average
and maximum relative difference were 0.2% and 0.6% re-
spectively. This indicates that the Pirate can indeed use
at least one thread without impacting the execution rate of
these applications.®

Using these criteria we were able to run 14 of the 28 SPEC
benchmarks with two threads without impacting their exe-
cution rate. Considering how many threads the Pirate can
use for each application the average amount of cache it can
steal is 6.14MB, or 77% of the total cache capacity. The
results presented in this paper were collected using the max-
imum number of Pirate threads we could run without im-
pacting Target performance.

4.5 Dynamically Varying the Pirate Size

Dynamically varying how much cache the Pirate steals
while the Target is running allows us to capture data for
the full range of cache sizes from a single execution of the
Target. To evaluate the effectiveness of this approach, we
collected reference data by running the Pirate and Target to

SWe also evaluated the maximum number of Pirate threads
we could execute by measuring the Pirate’s L3 bandwidth.
We found that when running 1, 2, 3, and 4 Pirate threads,
each thread was able to achieve an L3 bandwidth of 28.7,
28.4, 22.8, and 17.0GB/s, respectively. This demonstrates
that two Pirate threads do not saturate the L3 bandwidth,
while three do. Since three Pirate threads and no Target
saturate the L3 bandwidth, we can not use more than two
Pirate threads without affecting the Target’s performance.

completion once for each cache size, and compared it to mea-
surements taken while dynamically adjusting the Pirate’s
working set size. All measurement were done with the Pi-
rate running the maximum number of threads determined
using the algorithm described in Section 4.4.

With Gee | Without Gee
Measurement Avg./Max Avg./Max. Avg./Max.
Interval Size | Overhead (%) | Error (%) Error (%)
10M 6.6 /18 0.7 /2.4 06 /1.6
100M 55/ 17 05/ 3.1 0.3/ 1.0
1B 5.1/ 13 1.9/ 23 0.8 /35

Table 2: Average and maximum execution time
overhead and relative CPI error.

To evaluate the tradeoff between accuracy and overhead
we evaluated measurement intervals of size 10M, 100M, and
1B executed Target instructions (see Figure 6). In all cases
data was collected for 15 different cache sizes, ranging from
8MB to 0.5MB in 0.5MB increments The resulting execution
time overheads and errors are presented in Table 2. For
these three measurement intervals, the average increase in
execution time over running the Target alone was 6.6%, 5.5%
and 5.1%, respectively. This overhead is clearly low enough
to analyze the complete executions of real applications.

The accuracy varied with measurement interval size, with
100M executed Target instructions giving the most accurate
measurements. Across all benchmarks, the average relative
CPI error was 0.5%, with a maximum error of 3.1%. Across
all interval sizes, 403.gcc had the largest errors of 2.4%, 3.1%
and 23%, respectively. The reason for 403.gcc’s large error
is that its many small phases are not accurately captured
with large measurement intervals. Decreasing the interval
size to 10M decreases 403.gcc’s error to 2.4%, for an average
error across all benchmarks of 0.7%, and an average over-
head of 6.6%. This demonstrates that dynamically varying
the Pirate’s size can reduce the overhead from 1500% for 15
cache sizes to 5.5% with only a 0.5% relative increase in CPI
error.

A further reduction in overhead could be accomplished by
running the Pirate in a sampling mode where it waits for a
random amount of time between measurement cycles. As
long as the the sampling covers all phases of the application
fairly, this would allow accurate data collection with a fur-
ther reduction of the overhead. Such approaches have been
used to speed up simulation [16] and stack distance collec-
tion [6]. However, we have not implemented this approach.

5. RESULTS

The results of applying the Cache Pirating method to col-
lect performance (CPI), bandwidth (GB/s), miss ratios and
fetch ratios for several benchmarks are shown in Figure 10.
(Graphs for more benchmarks are shown in Appendix 9.2,
Figure 13 and 14.) As can be seen from the data, these ap-
plications span a wide range, with off-chip bandwidth vary-
ing from 5.0GB/s (462.libquantum) to 0.01GB/s (401.bzip),
CPI from 3.5 (429.mcf) to 0.7 (462.libquantum), and miss
ratios from 10% (429.mcf) to 0.009% (454.calculix).

For most of the benchmarks, the CPI curves are relatively
flat as the cache size is decreased, despite noticeable in-
creases in miss ratio. The reason for this can be clearly seen
by examining the off-chip bandwidth consumption. As the
cache size is reduced, the bandwidth increases to compen-

435.gromacs 401.bzip2 16% 429.mcf
0.3%Hh 0.9% N ’ |
2 129 e
= 0.2% 0.6% % 8% B R T e
o '\\\ o S 0
0.1% 0.3% . 4
— P §
0.0% 0% — 0‘73«;
0.6
= 0.2 9
M 0.1 0.3 1
0.0 0.0 0
0.8 1.0 Ap-
—— \‘-
— —
% 0.4 0.5 2
0.0 0.0 0
0.12% 454.calculix 482.sphinx3 470.1bm
4% = saie] 6%
= \ \\
EO'OG% S . Y A > 3%
N Sl
h B PR S PR S NN\ R i el EET T T S
0.00% 0% — 0% —
0.06 2 3
= 2
M 0.03 1
1
0.00 0 0
1.0 1.0 — 1.6
5 o
O 05 0.5 0.8
0.0 0.0 0.0
20% 462.libquantum 12% 450.soplex 4% 403.gcc
—— |
< 10% 6% s 2P0ty
=3 R SV NS B i e
---“---.--*~*'~0---+-—d---d--- e e = e = B i
0% 0% 0%
3 1.8
= 4 2 1.2
M
2 1 0.6
0 0 0.0\
0.8F= 1.5 W 1.2 —
&~
S 04 1o 0.6
0.5
0.0 0.0 0.0
1M 3M 5M ™ 1M 3M 5M ™ 1M 3M 5M ™
cache size cache size cache size

Miss Ratio ---+---

Fetch Ratio

Figure 10: Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for
several benchmarks. This data was collected with hardware prefetching enabled.

sate. How successful an application is in compensating for
decreased cache size with increased bandwidth depends on
its sensitivity to long-latency memory operations and how
effectively it can utilize the hardware prefetchers.

For example, 435.gromacs, has a constant CPI down to
1MB of cache, but its miss ratio and bandwidth increase by a
factor of nearly 10x. However, its fetch ratio and miss ratio
are nearly identical, indicating no prefetching. This suggests
that the application is relatively insensitive to the increased

memory latency it sees when its miss ratio increases from
0.01% to 0.1%.

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor of
20x. The fetch ratio and miss ratio curves are slightly differ-
ent indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the

increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.1bm shows an 8x difference between its fetch and miss
ratios, indicating 8 prefetch memory access for every demand
access. However, the relative increase in miss ratio is still
roughly 2x. This indicates that 470.lbm is also relatively
insensitive to the increased latency. The data in Figure 11
show the performance of 470.]Jbm with hardware prefetch-
ing disabled. Disabling hardware prefetching reduces band-
width by a third and increases CPI at all cache sizes. Fur-
thermore, the CPI is now no longer constant with varying
cache size, clearly showing that prefetching was helping to
compensate for the reduced cache space. This demonstrates
that 470.]lbm not only heavily leverages hardware prefetch-
ing, but also heavily benefits from it.

470.1bm

6%

N\

F/M

3%

BW
%)

CPI

0.8

0.0

1M 3M 5M ™
cache size

Miss Ratio ---+---- Fetch Ratio

Figure 11: Performance data for 470.lbm with hard-
ware prefetching disabled. (Fetch ratio and miss ra-
tio are identical.)

This data shows that on real systems most applications
are not overly sensitive to decreasing cache capacity because
they can compensate with increased bandwidth. However,
this requires that the memory system provides sufficient ag-
gregate bandwidth for all cores sharing the cache. With the
bandwidth data we can collect, we can estimate the aggre-
gate bandwidth demand and predict when it will reach the
system’s bandwidth limit. This relationship between avail-
able cache size and off-chip bandwidth makes it clear that
it is essential to take into account the impact on bandwidth
when examining the effect of sharing cache capacity.

6. RELATED WORK

The most closely related work to Cache Pirating is that
of Xu et al. [4, 24]. As in Cache Pirating, they use a stress
application (called Stressmark) to steal cache from a co-run
target application. But unlike our approach of controlling
the stress application to ensure that it keeps its working
set resident in the cache, they infer the how much cache
their stress application from an analysis of its known MRC.
This approach incurs two measurement problems avoided by
Cache Pirating. First, by allowing the stress application to
experience a fetch ratio they consume off-chip bandwidth,

which can adversely affect the performance of the target ap-
plication. Second, the miss ratio of the stress application is
determined by its interaction with the target application’s
cache footprint. As this behavior varies during execution,
they are only able to determine the average cache utiliza-
tion for a given execution. This presents a problem for
applications where varying phases have distinct cache be-
havior as the minimum and maximum cache used by the
target application could vary significantly from the average.
Unfortunately they do not present sufficient evaluation of
their approach to determine if this is significant. Cache Pi-
rating avoids both of these issues by carefully controlling
and monitoring how much of the cache is taken by the pi-
rate application to ensure that we do not consume off-chip
bandwidth and that we accurately know how much cache is
available to the target application.

To test the impact of allowing Xu’s Stressmark application
to consume off-chip memory bandwidth, we implemented it
exactly as described in the paper. We set the Stressmark
application to steal 4MB of cache from the sequential access
micro benchmark used in Section 3.2.2. The Stressmark
saturated the off-chip bandwidth, and thereby increased the
measured CPI of the target 37% over that measured with
Cache Pirating. This impact on the Target’s CPI due to
the Stressmark’s off-chip bandwidth usage indicates that it
is not possible to reliably measure execution rate dependent
metrics (such as CPI) on our Nehalem system using this
approach.

Doucette and Fedorova [5] co-run a set of micro bench-
marks, called base vectors, with a Target application to mea-
sure how the Target reacts to the base vectors, and how the
base vectors react to the Target. They evaluate their method
on a UltraSPARC T1, with base vector application’s stealing
the following resources: L1 data cache capacity, L1 instruc-
tion cache capacity, L2 cache capacity and FPU cycles. In
the context of this paper, the most interesting base vector
is the L2 base vector. This base vector sequentially access a
fixed size working set whose size to the L2 cache size. (The
L1 instruction and data base vectors are similar.) This is
different from Cache Pirating that sweeps a range of work-
ing set sizes. Furthermore, they do not relate the working
set size of the base vector to the cache capacity available to
the Target, instead they interpret the slow down of the Tar-
get, as a single cache sensitivity measure, and the slowdown
of the base vector as an single intensity measure.

Cakarevic et al. [23] use a similar set of micro benchmarks
as Doucette and Fedorova to characterize the shared hard-
ware resource in UltraSPARC T2. They co-run their micro
benchmarks, stressing different shared resources, and inves-
tigate how the micro benchmarks impact each other. This
allows them to identify and characterize the critical shared
hardware resources. Contrary to Cache Pirating, they do
not characterize the behavior of applications.

7. CONCLUSION

We have show that the Cache Pirating technique allows us
to accurately measure the Target application’s performance
and bandwidth demand as a function of its available shared
cache space. By multi-threading the Pirate and dynamically
varying its working set size as the Target runs, we are able to
steal on average 6.1MB of the shared cache with an average
overhead of 16%, without impacting the Target’s measured
performance. All of this is done without requiring special

hardware or modifications to the Target application or op-
erating system. This demonstrates that the Cache Pirating
technique is a viable and accurate method for measuring any
combination of hardware performance counter statistics for
the Target application as a function of its available shared
cache space.

Cache Pirating has enabled us collect performance data
for real applications running on real hardware. The results
show that as the available cache size is decreased most ap-
plication’s bandwidth increases to compensate, resulting in
relatively flat performance curves. To better understand
this bandwidth increase, we can examine the fetch and miss
ratio curves we to determine how much of it is due to hard-
ware prefetchers. The ability to collect and visualize this
data is an important first step towards enabling us to an-
alyze the performance scaling effects of shared resources in
the memory system. Future work is to evaluate the accu-
racy of this approach for scalability analysis and extend the
method to measure performance in the presence of limited
off-chip bandwidth. Beyond scaling analysis, we are excited
to see what can be done with the myriad of other perfor-
mance counters available on modern systems, and hope to
make this tool available to others shortly.

8. REFERENCES

[1] Cigar. http://www.cse.unr.edu/"sushil/class/gas/
code/.

[2] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang and Y.
Solihin. Scaling the Bandwidth Wall: Challenges in and
Avenues for CMP Scaling. In Proc. of the Intl. Sympo-
stum on Computer Architecture (ISCA), Austin, TX,
USA, June 2009.

[3] C.-K. Luk and R. Muth and R. Cohn and H. Patil and
A. Klauser and S. Wallace G. Lowney and V. J. Reddi
and K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In Proc.
of Pogramming Language Design and Implementation
(PLDI), Chicago, IL, USA, 2005.

[4] C. Xu, X. Chen, R. P. Dick and Z. Morley Mao. Cache
Contention and Application Performance Prediction for
Multi-Core Systems. In Proc. of the Intl. Symposium
on Performance Analysis of Systems and Software (IS-
PASS), White Plains, NY, USA, Mar. 2010.

[5] D. Doucette and A. Fedorova. Base Vectors: A Poten-
tial Technique for Microarchitectural Classification of
Applications. In Proc. of the Workshop on the Interac-
tion between Operating Systems and Computer Archi-
tecture (WIOSCA), in conjunction with ISCA-84, San
Diego, CA, USA, June 2007.

[6] D. Eklov and E. Hagersten. StatStack: Efficient Mod-
eling of LRU caches. In Proc. of the Intl. Symposium
on Performance Analysis of Systems and Software (IS-
PASS), White Plains, NY, USA, Mar. 2010.

[7] D. Eklov, D. Black-Schaffer and E. Hagersten. Fast
Modeling of Shared Caches in Multicore Systems. In
Proc. of the Intl. Conference on High-Performance and
Embedded Architectures and Compilers (HiPEAC), Jan.
2011.

[8] D. K. Tam and R. Azimi and L. B. Soares and
M. Stumm. RapidMRC: Approximating L2 Miss Rate
Curves on Commodity Systems for Online Optimiza-
tions. In Proc. of the Intl. Conference on Architec-

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]

24]

tural Support for Programming Languages and Oper-
ating Systems (ASPLOS), New York, NY, USA, 2009.
E. Berg and E. Hagersten. Fast Data-Locality Profiling
of Native Execution. In Proc. of ACM SIGMETRICS
2005, Banff, Canada, June 2005.

E. Z. Zhang and Y. Jiang and X. Shen. Does cache
sharing on modern CMP matter to the performance
of contemporary multithreaded programs? In Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), May 2010.

F. Liu, X. Jiang and Y. Solihin. Understanding how
Off-chip Memory Bandwidth Partitioning in Chip Mul-
tiprocessors Affects System Performance. In Proc. of
the Intl. Symposium on High Performance Computer
Architecture (HPCA), Bangalore, India, Jan. 2010.

G. Hamerly and E. Perelman and J. Lau and B. Calder.
SimPoint 3.0: Faster and More Flexible Program Anal-
ysis. In Workshop on Modeling, Benchmarking and
Simulation, June 2005.

J. Fenlason and R. Stallman. GNU Gprof. http://www.
cs.utah.edu/dept/old/texinfo/as/gprof_toc.html.
M. K. Qureshi and Y. N. Patt. Utility-Based Cache Par-
titioning: A Low-Overhead, High-Performance, Run-
time Mechanism to Partition Shared Caches. In Proc.
of the Intl. Symposium on Microarchitecture (MICRO),
Washington, DC, USA, 2006.
M. Pettersson. Perfctr.
“mikpe/linux/perfctr/.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C.
Hoe. SMARTS: Accelerating Microarchitecture Simula-
tion via Rigorous Statistical Sampling. In Intl. Sympo-
stum on Computer Architecture (ISCA), 2003.

N. Rafique, W.-T. Lim, and M. Thottethodi. Effective
Management of DRAM Bandwidth in Multicore Pro-
cessors. In Intl. Conference on Parallel Architecture and
Compilation Techniques (PACT), Sept. 2007.

S. Eyerman and L. Eeckhout and T. Karkhanis and
J. E. Smith. A Mechanistic Performance Model for Su-
perscalar Out-of-Order Processors. ACM Trans. Com-
put. Syst., 27:1-37, May 2009.

S. Singhal, Intel. personal communication, Sept. 2010.
A. Silberschatz, P. B. Galvin, and G. Gagne. Operating
System Concepts. Wiley Publishing, 8th edition, 2008.
T. F. Wenisch and R. E. Wunderlich and M. Ferdman
and B. Falsafi and J. C. Hoe. SimFlex: Statistical
Sampling of Computer System Simulation. IEEE Mi-
cro, 26:18-31, July 2006.

T. S. Karkhanis and J. E. Smith. A First-Order Super-
scalar Processor Model. In Proc. of Intl. Symposium on
Computer Architecture (ISCA), 2004.

V. Cakarev, P. Radojkovi, J. Verdu, A. Pajuelo, F. J.
Cazorla, M. Nemirovsky and M. Valero. Characteriz-
ing the Resource-Sharing Levels in the UltraSPARC
T2 Processor. In Intl. Symposium on Microarchitecture
(MICRO), New York, NY, USA, Dec. 2009.

X. Chen, C. Xu, R. P. Dick, Z. Morley Mao. Per-
formance and power modeling in a multi-programmed
multi-core environment. In Proc. of the Design Au-
tomation Conference (DAC), Anaheim, CA, USA, June
2010.

http://user.it.uu.se/

9. APPENDIX

9.1 Simulation Results

0.3% 444 namd 433.milc 445.gobmk
+ 6% -) . . 20% gy
0.2% 4 15%
T 4%
o 10%
0.1 A
T\ 2% 5%
0.0% hifh sl Bl 0% 0%
0.3% 458.sjeng 16% . 456.hmmer 8% 471.omnetpp
. 12% 4 6% 2
Y 8ol sk T
\m 0 il 0 R =
0.1% j 1 t +——t \ ey
4% i 2%
0% 0% L= ———t 0%
0.3% 464.h264ref 10% 473.astar 1.2% 436.cactusADM
+
s 0.9% b
0-2%4 6% e RN
\ o~ 06% o :
0.1% B 4% I
W 2% 0.3%
0% R = 0% 0%
oM 2M 4M 6M 8M O0M 2M 4M 6M 8SM O0M 2M 4M 6M 8M
cache size cache size cache size
Cache Simulator ---+--- Pirate

Figure 12: Cache Pirating and reference fetch ratio curves for the remaining benchmarks. See Figure 7 for
further discussion.

9.2 Pirate results

0.4% 464.h264ref 0.8% 465.tonto 0.24% 458.sjeng
0.16%
§ 0.2% . 0.4% g S ——
$ 5 " 0.08%
. 5
S T |
0.0% = — 0.0% T o222 0.00%
0.50 0.15
0.4
= 0.25 0.10
m .
0.2 0.05
0.00 0.0 0.10(2)
0.6 1.0 .
= 0.8
o
O 0.5
0.3 0.4
0.0 0.0 0.0
1M 3M 5M ™ 1M 3M 5M ™ 1M 3M 5M ™
cache size cache size cache size
Miss Ratio ---+-- Fetch Ratio

Figure 13: Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for
several benchmarks. This data was collected with hardware prefetching enabled.

0.16% 444 .namd 1.0% 447.dealll 4.0% 459.GemsFDTD
I~ T
2 0.08% 0.5% 2.0%
= N [ToF==t--s = = = e e = = o = o
0.00% Iotodeodeedeeseeecbeckoniecsnadeag (0.0% 0.0%
0.06 0.6
2
=
M 0.03 0.3 1
0.00 0.0 0
1.0 0.8 1.4
&
O 0.5 0.4 0.7
0.0 0.0 0
0.4% 400.perlbench 3% 410.bwaves 3.0% — 473.astar
T e
= ~\~\\ 2% . *--m"*--o._
< 02% % S 1.5% e
F +m\ 1% =
=~ B UL P SO PR S
0% 0% 0.0%
0.3 2.1
1.0
= 0.2 1.4
an]
0.1 0.7 0.5
0.0 0.0 0.0
0.6 0.9 1.6
= 04 0.6
O 0.8
0.2 0.3
0.0 0.0 0.0
433.milc 1.6% 434.zeusmp 7.0% 471.omnetpp
6% *’\h—....._‘,_k :%\
2 3% 0.8% 3.5% .
o 0
0% 0.0% 0.0%
0.9 1.6
2
0.6
% 1 0.8
0.3
0 0.0 0.0
1.6 -
_ 192 2.0 L
o
0.0 0.0 0.0
3% 437 leslie3d 0.6% 445.gobmk 10% 453.povray
—
S 2% \\
= 0.3% R 05%%
1% Rt S S ~+.Nm‘m “‘
RPN Fre—iemeo N
0% 0.0% 00% P
2 0.3 0.10
2 0.2
m 1 0.05
0.1
0 0.0 0.00
1.00 1.0 0.8
&
O 0.50 0.5 0.4
0.00 0.0 0.0
1M 3M 5M ™ M 3M 5M ™ 1M 3M 5M ™
cache size cache size cache size
Miss Ratio ---4---. Fetch Ratio

Figure 14: Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for
several benchmarks. This data was collected with hardware prefetching enabled.

