2011 International Conference on Parallel Processing

aMOSS: Automated Multi-Objective Server
Provisioning with Stress-Strain Curving

Palden Lama and Xiaobo Zhou
Department of Computer Science
University of Colorado at Colorado Springs, CO 80918, USA
{plama, xzhou}@uccs.edu

Abstract—A modern data center built upon virtualized server
clusters for hosting Internet applications has multiple correlated
and conflicting objectives. Utility-based approaches are often used
for optimizing multiple objectives. However, it is difficult to define
a local utility function to suitably represent one objective and
to apply different weights on multiple local utility functions.
Furthermore, choosing weights statically may not be effective
in the face of highly dynamic workloads. In this paper, we
propose an automated multi-objective server provisioning with
stress-strain curving approach (aMOSS). First, we formulate a
multi-objective optimization problem that is to minimize the
number of physical machines used, the average response time
and the total number of virtual servers allocated for multi-tier
applications. Second, we propose a novel stress-strain curving
method to automatically select the most efficient solution from
a Pareto-optimal set that is obtained as the result of a non-
dominated sorting based optimization technique. Third, we en-
hance the method to reduce server switching cost and improve the
utilization of physical machines. Simulation results demonstrate
that compared to utility-based approaches, aMOSS automatically
achieves the most efficient tradeoff between performance and
resource allocation efficiency. We implement aMOSS in a testbed
of virtualized blade servers and demonstrate that it outperforms a
representative dynamic server provisioning approach in achieving
the average response time guarantee and in resource allocation
efficiency for a multi-tier Internet service. aMOSS provides a
unique perspective to tackle the challenging autonomic server
provisioning problem.

1. INTRODUCTION

A modern data center is built upon virtualized server clusters
for hosting multiple Internet applications. Given the limited
amount of resources, it needs to allocate the shared resources
dynamically and efficiently among competing applications.
There are multiple correlated and conflicting objectives. A
data center wants to maximize its profitability by freeing up
as many physical machines as possible and by improving the
utilization efficiency of the shared resources [10]. It needs
to minimize the total number of virtual servers allocated
for all applications to reduce virtualization overhead [11].
And, it aims to minimize the average response time for each
application for quality-of-service (QoS) provisioning [3].

Autonomic resource provisioning in data center servers has
been an active and important research area [1], [5], [6], [16],
[17], [18], [19], [21], [23]. Many of previous efforts applied
the utility computing paradigm to achieve multiple objectives
of a data center. In a data center hosting multiple applications,
a local utility function is chosen for one objective of an

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.30

345

application. It represents various degrees of desirability for
different QoS levels [21]. Then, a global utility function is
formed by combining multiple local utility functions using
pre-determined weights. Such a global utility function is
optimized often using analytic queuing network models and
combinatorial search techniques.

Utility based server provisioning has made significant con-
tributions to the self-optimization capability of autonomic
computing systems. However, the complexity of this kind of
approaches increases significantly in modern complex multi-
tier services with diverse QoS needs. As pointed out by Hueb-
scher and McCann, the major problem with utility functions
is that they can be extremely hard to define, as every aspect
that influences the decision by the utility function must be
quantified [9]. It is also difficult to choose different weights on
multiple local utility functions. The fact is, there is no specific
guideline on choosing the weights for local utility functions.
Furthermore, choosing functions and weights statically may
not be efficient in the face of dynamic workloads.

We address the issue of autonomic server provisioning
in a virtualized multi-tier cluster environment from a novel
perspective. Unlike a traditional utility approach, we treat
each objective as a separate entity in the optimization without
applying any pre-determined weights. We formulate a multi-
objective optimization problem that is to minimize the number
of physical machines used, the total number of virtual servers
allocated and the average end-to-end response time of Internet
applications. System response time, a major performance met-
ric of multi-tier applications, is the response time of a request
that flows through a multi-tier computer system [11], [12],
[20]. We apply an analytic queuing network model to correlate
the average end-to-end response time with the number of
servers allocated.

Importantly, we propose a stress-strain curving method to
automatically select the most efficient Pareto-optimal solu-
tion considering tradeoffs between multiple objectives. In the
server provisioning problem, promoting performance and im-
proving resource allocation efficiency are essentially conflict-
ing objectives. We first obtain a set of Pareto-optimal solutions
that offer various tradeoffs between the objectives. We apply
a non-dominated sorting based optimization algorithm for the
purpose. Members of a Pareto-optimal set are non-dominated.
That is, any solution in the set does not dominate another
solution with regard to all optimization objectives. Then, we

@) CO‘ pute
1(!) I
& SOCIety

apply the stress-strain curving method to find the yield-point
solution from the Pareto-optimal set, which essentially pro-
vides the most efficient tradeoff between conflicting objectives.
The integration of multi-objective optimization and stress-
strain curving leads to an automated multi-objective server
provisioning with stress-strain curving approach (aMOSS).

Furthermore, we propose two enhancement techniques to
reduce the cost due to server-switching in the face of dynamic
workloads and improve the utilization of physical machines.

A significant merit of aMOSS is that it provides an auto-
mated method for finding the most efficient trade-off between
multiple conflicting objectives. It does so by applying stress-
strain curving method on a Pareto-optimal set of solutions. The
name of this method comes from applied physics where stress-
strain curve is used as a graphical representation of a material’s
mechanical properties [2]. When a material is elongated by
applying controlled force upon a given area (called stress),
the elongation (called strain) is proportional to the stress at
the beginning. The graph of stress vs. strain continues to be
linear up to certain point, after which it begins to curve as
the material reaches its elastic limit. The yield point of a
material is the stress at which a material begins to deform
plastically. We find an interesting and natural analogy between
the average response time vs. server allocation in a multi-tier
cluster and the stress vs. strain of a material. By analogy with
the physical process, the yield-point solution of the Pareto-
optimal set corresponds to the knee region of the performance
curve plotted against server allocation in a virtualized server
cluster beyond which the benefit gained by additional server
allocation is relatively negligible.

To apply the stress-strain curving method to the multi-
objective server provisioning problem, we formulate stress and
strain as functions of end-to-end response time, the number of
physical machines and the number of virtual servers allocated
in a multi-tier cluster. The yield-point solution is selected from
the Pareto-optimal set by finding the yield point of the stress-
strain curve.

For performance evaluation, we build a simulation model
for a typical three-tier virtualized server cluster that runs
multiple Internet applications. We conduct extensive simula-
tions to evaluate aMOSS, using a synthetic workload [11],
[27]. First, we compare aMOSS with three utility function
based optimization approaches in the face of a highly dynamic
workload. Experimental results demonstrate that aMOSS pro-
vides the solution with the most efficient trade-off between
conflicting objectives. Then, we illustrate the merit of aMOSS
in achieving automated trade-off between performance and
server allocation. We use absolute end-to-end response time
as a performance metric. We observe that applying a utility-
based approach for finding a solution comparable to that of
aMOSS requires many more iterations of utility optimization
using various weights on local utility functions. Furthermore,
there is no standard method for choosing a solution even when
the data corresponding to various iterations of utility optimiza-
tion is available. We also demonstrate the improvement in
the utilization of physical machines and reduction in server

346

switching cost due to the enhancement techniques of aMOSS.

We demonstrate the feasibility and performance of aMOSS
with a testbed implementation in virtualized blade servers
hosting RUBIS application [17], [20], [24], a multi-tier online
auction Web site benchmark. We compare aMOSS with a
representative dynamic server provisioning scheme proposed
in [20]. Experimental results show that aMOSS significantly
improves performance in achieving the end-to-end response
time guarantee and in resource allocation efficiency due to its
automated multi-objective server provisioning optimization.

In the following, Section II reviews related work in auto-
nomic resource provisioning for performance assurance. Sec-
tion III presents the problem formulation and analytic model.
Section IV describes the aMOSS approach. Section V gives
two enhancement techniques. Section VI presents experimen-
tal results and performance evaluation. Section VII presents
the case study based on a testbed implementation. Concluding
remarks are given in Section VIIL

II. RELATED WORK

Significant research has been conducted on utility-based
autonomic resource management in recent years [1], [16],
[19], [21], [23]. Welsh and Culler proposed the use of utility
functions expressed in high-level service-level attributes to
dynamically allocate resources in realistic autonomic comput-
ing system [21]. A table-driven approach was used to store
response time values obtained from experiments for different
values of the workload intensity and different number of
servers. The work demonstrated the effectiveness of using the
utility function scheme for dealing with Web-based transac-
tional workloads on a Linux cluster. Bennani and Menascé
replaced the table-driven approach with predictive multi-class
queueing network models to provide a utility based resource
allocation mechanism [1]. It is scalable with respect to the
number of transaction classes, applications and resources in
a data center. Lumezanu et al. examined the problem of
optimal resource allocation for event-driven distributed in-
frastructures and proposed a scalable distributed algorithm
to maximize the total system utility [15]. The work in [5]
presented a fully decentralized resource selection algorithm by
which resources autonomously select themselves in large-scale
utility computing infrastructures. In this paper, we propose
a combination of multi-objective optimization with a stress-
strain curving method for automated and efficient server
provisioning. aMOSS approach automatically selects the yield-
point solution from the Pareto-optimal set and provides the
most efficient tradeoff between performance and resource
allocation efficiency. It provides a novel perspective to tackle
the challenging autonomic server provisioning problem.

Resource management for performance assurance in multi-
tier Internet applications is a very active research topic [12],
[14], [24]. A few studies focused on the modeling and analysis
of multi-tier servers with queueing and control foundations.
Diao et al. [8] described a performance model for differenti-
ated services of multi-tier applications. Urgaonkar et al. pro-
posed an important dynamic server provisioning scheme [20].

—ON

j@\
1 / .

—10

V

clients

Sl
Tier 1 - Web : /T.er 2 - Application : Tier 3 — Database
3 . (clustered or
:O :l: : not clustered)
r‘ ----dl o mmee- L i 2 - - a3 - :]
I & d request delay bound
Fig. 1. A multi-tier server cluster architecture.

An end-to-end response time guarantee target is decomposed
into per-tier targets and per-tier server provisioning is con-
ducted at once for all tiers so as to guarantee the end-to-
end target. The work demonstrated that adding servers to one
tier does not necessarily increase the effective system perfor-
mance due to cross-tier performance dependencies. Wang et
al. proposed an approach to identify performance bottlenecks
caused by cross-tier delay in a multi-tier application [22].
Padala et al. [17] proposed a combination of an online model
estimator and a multi-input multi-output controller to achieve
the average response time based service level objective in
a shared server infrastructure. Leite et. al [14] applied a
stochastic approximation technique to estimate the tardiness
quantile of response time distribution, and coupled it with a
PID feedback controller to obtain the CPU frequency of single-
tier servers for performance assurance.

Virtualization technologies facilitate dynamic server alloca-
tion in data centers. Menascé and Bennani considered dynamic
priority scheduling and allocation of CPU shares to virtual
servers [16]. Wang et al. proposed a virtual-appliance-based
autonomic resource provisioning framework for large virtual-
ized data centers [23]. Weng et al. designed a management
framework for a virtualized cluster system, and presented an
automatic performance tuning strategy to balance the work-
load [25]. Watson et al. modeled the probability distributions
of performance metrics, in terms of percentiles, based on
variables that can be readily measured and controlled in a
virtualized environment [24]. Our work incorporates switching
delay caused by addition and removal of virtual servers in the
analytic model for highly responsive server allocation.

Power management in server clusters is an important is-
sue [6], [13], [14]. For instance, Leite et al. [14] applied
stochastic optimization to minimize power consumption while
maintaining tardiness. We minimize the total number of phys-
ical machines used for hosting multi-tier applications with a
motivation for power saving.

Statistical machine learning techniques are used for capac-
ity planning and resource provisioning in complex Internet
systems. For instance, Bu et al. [3] proposed a reinforcement
learning approach for autonomic configuration and reconfig-
uration of multi-tier web systems. It will be interesting to
explore the integration of analytic approaches and statistical
learning techniques for autonomic resource management.

III. MODELING AND ANALYSIS

Popular Internet applications employ a multi-tier architec-
ture, with each tier provisioning a certain functionality to its

347

preceding tier and making use of the functionality provided
by its successor to carry out its part of the overall request
processing [4], [8], [11], [20], [26]. For load sharing, a
tier is often replicated and clustered. A typical e-commerce
application usually consists of three tiers; a front-end Web
tier that is responsible for HTTP request processing, a middle
application tier that implements core application functionality
say based on Java Enterprise platform, and a backend database
that stores product catalogs and user orders. In this context, an
incoming user request undergoes HTTP processing and appli-
cation server processing, and triggers queries or transactions at
the database. Figure 1 shows a three-tier server cluster serving
one application with an end-to-end response time guarantee.

A. Problem Definition

A modern data center built upon virtualized server clusters
for hosting multi-tier applications has multiple objectives.
Each application competes for shared resources for QoS pro-
visioning to its users. From the perspective of the data center,
virtual servers need to be allocated efficiently. Under-utilized
resources in physical machines become a liability issue to the
data center because of inefficient power consumption, space
utilization, and excessive cost of ownership. We thus consider
three important objectives:

1) Minimize the total number of physical machines used
for all applications.

2) Minimize the average system end-to-end response time,
a key QoS metric, for all applications.

3) Minimize the total number of virtual servers allocated to
all applications to free up more physical machines and
also to reduce virtualization overhead.

There are constraints due to limited resources and QoS
needs. We consider four important constraints as follows:

1) The average end-to-end response time of each appli-
cation must be below a given bound according to the
service level agreement [11], [20].

The total number of virtual servers running for all
applications on one physical machine must not exceed
a specified limit due to the concurrency limit [8].

The utilization of a virtual server cannot exceed its
resource capacity limit.

4) The number of physical machines available is limited.

2)

3)

We consider a virtualized data center that has N physical
machines virtualized and shared by M applications with K
tiers. Let a;;z be the number of virtual servers allocated to tier
k of application j and placed in physical machine ¢. Consider
requests of application j arrive at a K -tier server cluster in a
rate \;. A request in different tiers usually demands different
processing resources [8], [11], [20]. Let r;; be the resource
demand of a request of application j at tier £ normalized with
the virtual server capacity. With a load balancer, the workload
at a tier is shared by the allocated virtual servers. Thus, the
utilization at a tier is given by p,; = \;7jx/ vazl ;-

Let d;;, be the average response time of requests served at
tier k of application j. The average end-to-end response time,

Uj, experienced by requests flowing through multiple tiers of
an application j is the sum of average response time at each
tier [11], [12], [20]. Let W be the virtual machine allocation
limit of a physical server.

We formulate dynamic server provisioning as a multi-
objective optimization problem as follows:

Minimize m (1)
M K
Minimizcz Z djx)
j=1 k=1
N M K
Minimize Z Z Z Aijk 3)
i=1 j=1 k=1
Subject to Constraints: 4)
K
VieLM], Y dn<U; ®)
k=1
M K
Vie[LN], 0<3 3 ayn <W (6)
j=1 k=1
Viel,M],Vke[1,K], 0<pjr<]1 @)
m < N. ®

Egs. (1), (2) and (3) give the optimization objectives. Egs. (5),
(6), (7) and (8) define the four constraints. The number of
physical machines used is given by m = Zf\il f(aijr) where

1 if (Zjvil Zszl aijr) > 1

flaije) = { 0 if (Z?; S) < 1

B. An Analytic Model

We apply a queuing theoretical model for performance anal-
ysis of multi-tier applications. One application is represented
by a network of queues and each queue represents a virtual
server at a particular tier. The queues from a tier feed into
the next tier, as shown in Figure 1. We model a virtual
server at a tier as a G/G/1 system to capture arbitrary arrival
distributions and service time distributions [20]. The requests
traverse multiple tiers and are serviced in a FCFS order [11],
[20]. Let X, and T} be the service time distribution and
arrival distribution of requests of application j at tier k,
respectively. According to the queuing foundations, we have

N (E[T3] + E[X?
Ay = E[W;] + E[X4] = i (BT [X5r

)

23" k(1 — pse) '
where E[Wjy;] is the expected queueing delay on an approx-
imate basis, E[X;;] and E[X?,] are the first moment and
second moment of the service time distribution Xz, E[T}y]

and E[Tfk] are the first moment and second moment of the
inter-arrival time distribution 77y, respectively.

348

Create initial population of size N ‘

]
1]

‘ Perform fast non—dominated sorting of population P ‘

i

‘ Calculate crowding distance ‘

i

‘ Perform selection using crowded-comparison operator ‘

l

‘ Perform crossover and mutation to obtain population Q ‘

}

‘ Combine populations P and Q ‘

!

‘ Pick the best N solutions from the combined population ‘

Fig. 2. The flow chart and major steps of NSGA-II algorithm.

IV. THE AMOSS APPROACH
A. Obtaining a Pareto-Optimal Set

Classical optimization methods suggest converting a multi-
objective optimization problem to a single-objective problem
which aims to optimize the weighted sum of multiple objec-
tives. Such methods assume that the weights to be assigned are
well known in advance. However, in practice, it is difficult to
choose proper weights that will result in an efficient solution
to the optimization problem. More important and challenging
is that choosing weights statically may not be efficient in the
face of dynamic workloads. We want to achieve an automated
server provisioning scheme that provides a solution with the
most efficient trade-off between multiple objectives. To this
end, we first solve the multi-objective server provisioning
problem by applying a non-dominated sorting based optimiza-
tion algorithm. This results in a Pareto-optimal set of solutions,
offering various tradeoffs between performance and server
allocation.

We apply a computationally fast multi-objective genetic
algorithm (NSGA-II) [7] to obtain multiple Pareto-optimal
solutions in one single run. In order to apply the genetic
algorithm, we represent a solution to the optimization prob-
lem by a “chromosome”. It is a string of numbers, cod-
ing information about the decision variables. The decision
variables in our multi-objective optimization problem are the
elements of a 3-dimensional matrix of size N x M x K.
An element is denoted as a;;x. For encoding the decision
variables in a chromosome, we convert the 3-dimensional
matrix to a chromosome vector of length N x M x K. It
is denoted as A = (ay,az,....,anxmxk)- As a result, the
element a;;, of the original decision matrix is equal to the
(ix M x K +j x K +k)* element of vector A. It is known

as a gene in the chromosome. Figure 2 shows the major steps
of the NSGA-II algorithm.

B. The Stress-Strain Curving Method

The Pareto-optimal set presents an opportunity to choose a
solution by considering various trade-offs between conflicting
objectives, i.e., the average end-to-end response time, the
number of virtual servers allocated and the number of physical
machines used. For autonomic server provisioning, we need a
method for automatically selecting the solution from a broad
range of the Pareto-optimal set. Note that each solution in the
Pareto-optimal set is non-dominated and it provides the end-
to-end response time guarantee. We aim to have the average
end-to-end response time as low as possible. Meanwhile, we
need to make sure that per-tier resource utilization is efficient.

We propose a stress-strain curving method for the automatic
solution selection. Note that the average delay of a web
application decreases significantly on addition of resources,
when existing resources are highly utilized. At some point,
as the resource utilization decreases further with addition of
more resources, there is little impact on the average delay.
We formulate the stress as a function of the average response
time normalized by the number of physical machines allocated.
The normalization ensures that the selected solution will favor
using less number of physical machines, although it may result
in a non-smooth stress-strain curve. We formulate the strain
as a function of the number of virtual servers allocated. Each
solution in the Pareto-optimal set is mapped to the stress-strain

curve.

Let P be the population size of the Pareto-optimal set. We
calculate the stress and strain corresponding to each solution x
in the set. Let D, be the sum of average end-to-end response
time of all applications, PS,, be the total number of physical
machines used, and V'S, be the total number of virtual servers
allocated according to solution z. Note that the solutions in the
Pareto-optimal set are in decreasing order of the average end-
to-end response time and increasing order of the number of
virtual servers. Hence, D, _1 is greater than D,, and, V'S, _
is smaller than V.S, for all solutions z in the Pareto-optimal
set. We formulate the stress and the strain as follows:

stressy = (D1 — Dg)/PSs,Vz € [1, PJ.
straing = (V.Sz — V' S1)/VS1, Ve € [1, P].

®
10)

The stress and the strain depend, respectively, on the change
in the average response time and the number of virtual servers
allocated compared to the first solution in the Pareto-optimal
set. Figure 3 depicts a stress-strain curve obtained from a
Pareto-optimal set of solutions. The stress graph is linear
up to certain value of strain, after which it begins to curve.
This is because a high value of strain corresponds to a large
number of virtual server allocation, resulting in low per-
tier resource utilization. Thus, further increase in the virtual
server allocation (strain) will have little impact on the average
response time (stress) reduction. The fluctuation in the stress-
strain curve after a strain of 0.84 is due to variations in the
number of physical machines used.

We consider the yield point of the stress-strain curve as
the preferred solution. The rationale is that it corresponds

349

Stress-Strain Curve
50

40 -

20
[o0 2

609

A response time / # physical machines

stress -0~ 1
stress without normalization -
. 0.5 % yield strain line
0 0.5 1 1.5 2 25 3
Strain = A virtual servers / #virtual servers,,tiont

Stress
o

Fig. 3. A stress-strain curve.

to the average response time of an application due to one
particular server allocation, after which further increase in the
server allocation has little impact on the average response
time decrease. To find the yield point, we apply the widely
used offset yield point method in applied physics. The offset
value of strain commonly used is 0.5% of the maximum strain
calculated from the Pareto-optimal set. In the method, a line
originating from 0.5% offset value on the strain axis is drawn
parallel to the initial linear part of the curve. It is called yield
strain line. The intersection of this line and the stress-strain
curve gives the yield point. It is the point corresponding to the
reduction in the average response time at which the required
increase in server allocation exceeds the projected value by
0.5%. The projected value is the increase in allocation that
would be required if the stress-strain curve was consistently
linear. Smaller the offset value, the closer will be the selected
solution to the linear region of the stress-strain curve.

Depending on the Pareto-optimal set under consideration,
the 0.5% yield strain line may intersect the fluctuating region
of the stress-strain curve. In such cases, we choose the yield
point as the intersection point that is farthest from the origin
of the stress-strain curve. Thus, the yield point chosen will
be closer to the upward spike in the curve. This results in
selecting an efficient solution that uses a smaller number of
physical machines compared to other solutions neighboring
the yield point. Figure 3 also shows a stress-strain curve
obtained without normalizing stress by the number of physical
machines. Such a curve would have yielded a solution with
a larger number of physical machines for achieving similar
average response time.

C. Algorithm Complexity Analysis

The time complexity of aMOSS approach is dominated
by the chosen multi-objective optimization algorithm because
the stress-strain curving technique has a linear complexity of
O(n) in the worst case, where n is the population size of the
Pareto-optimal set. In this work, we apply NSGA-II algorithm
for multi-objective optimization that has a complexity of
O(gmn?), where g is the number of generations used for
optimization iteration and m is the number of objectives. There
are three objectives in this server provisioning problem. We
have observed that 1000 generations are sufficient to obtain

a Pareto-optimal set with diverse solutions. Thus, the time
complexity of the aMOSS is O(n?). The automation overhead
of aMOSS is evaluated in section VI.

V. ENHANCEMENTS ON THE AMOSS OPTIMIZATION
ALGORITHM

We enhance the aMOSS multi-objective optimization al-
gorithm used for obtaining a Pareto-optimal set of solu-
tions, utilizing the system knowledge about practical server
switching cost and behavior of a virtualized multi-tier system.
Note that the enhancement techniques are applicable to any
heuristic search technique such as simulated annealing, genetic
algorithm, etc.

A. Improving usage of physical machines

One main advantage of server virtualization for resource
allocation is the improvement in the utilization efficiency of
physical resources [23], [25]. We emphasize the advantage by
applying a threshold-based enhancement on the optimization
algorithm. The enhancement feeds incremental search space
to the genetic algorithm for finding the Pareto-optimal set. It
initiates the genetic algorithm for multi-objective optimization
using a small fraction of the total number of physical machines
available. The physical machines are chosen randomly for this
purpose, assuming that available resources are homogenous
due to virtualization. The algorithm searches for the Pareto-
optimal set within this confined search space. After a certain
number of evaluations, it increases the number of physical
machines in the search space by one if the percentage of
evaluations that violated the resource constraint defined in
Eq. (6) exceeds a certain threshold.

Based on simulation, we consider a cluster of 20 physical
machines shared by an application with an end-to-end response
time target of 300 ms. Let the total number of virtual servers
allocable to one application on a physical machine be up to
60. For a particular workload, we compare the Pareto-optimal
set obtained by the optimization with the enhancement and
without the enhancement. Figure 4 shows that compared to
the optimization without the enhancement, the Pareto-optimal
set obtained by the optimization with the enhancement uses
less than half of the number of physical machines for achieving
the same range of average end-to-end response time [247.89
ms ~ 299.04 ms].

Figure 5 illustrates that the solutions obtained with the
enhancement have higher average utilization of physical ma-
chines. Experimental results indicate that the developed en-
hancement improves utilization of physical machines, which
in turn frees up more of the available physical machine pool.

B. Reducing server switching cost

Server switching by addition and removal of a virtual
server at a tier introduces non-negligible latency to a multi-
tier service. It affects the perceived average response time
of users. A newly added server spends time adapting to
the existing system. For example, an addition of database
replica goes through a data migration and system stabilization

350

Pareto optimal set

‘ Pareto optimal set with the enhancement +
Pareto optimal set w/o the enhancement °

300
290
280
270
260 - *
250
240

8
oy
oBetSe

1.7k »

@o &
°

o °

©o_ o000 0°
S © &
o

%6 8 oo0d 8o

° N
o °
0950 o0° oo
° 5o & om oo

average response time (milliseconds)

Fig. 4. Impact of the enhancement on the Pareto-optimal set.
120
‘ Pareto optimal set with the enhancement +
—_ Pareto optimal set w/o the enhancement °
IS
SO0 ¢y vk
] [oo g o8
K] P 0 © e 5
£ e, i1 0 %00 %, ° oo
El T+ 1 o
bt M °
g IR 6 o
e ° 3
§ 60ry ., o o L. e
E + o1 °
g P, o et oo
2 40 it °
s i . o °
S Is ° © 8 0o
g ° ° 0 °
s 20t o e H
8 g0 8.38°
c8885,
0 . ? . .
0 5 10 15 20

physical machines

Fig. 5. Impact of the enhancement on utilization of physical machines.

phase [4], during which the delay will be higher than expected.
A removal of a server does not happen instantaneously, since
it has to process residual requests of an active session. We
enhance the optimization algorithm by reducing the undesired
effects of server-switching cost. The enhancement incorporates
the time required for the reconfiguration of server allocation
scheme into calculation of the average response time, while
evaluating a group of candidate solutions. A candidate solution
provides a potential server configuration scheme. Consider that
the addition of a virtual server at tier k to an application needs
time T}’ and the removal of virtual server needs time 77. Given
N physical machines and M applications, the server switching
cost in terms of delay is calculated by:

((bijr —aijr)™ - T + (aijx —bijr)" - T},)),

where a;;;, is the current virtual server configuration and b;
is a candidate solution. (b;;; —a;;x)* represents max (0, b, —
aijk). For application j, let D and D? be the average end-
to-end response time of the current virtual server configura-
tion and the candidate solution respectively. Let T be the
“control interval” at which reconfiguration decision is made
periodically. Considering the time required for reconfiguration,
the enhancement calculates the expected average end-to-end
response time of the application as follows:

. Db

T. D%+ (Ts — T, :
= il) L.vj e 1, M.

D; T

TABLE I
‘WORKLOAD CHARACTERISTICS.

‘WebTier AppTier DBTier
E[X;i] | 64679 ms | 9478 ms | 84.75 ms
E[ijk] 4191.695 8991.681 | 7191.683

45

Request arrival rate (per sec)

60 80 100
time (min)

40

120

Fig. 6. A dynamic workload variation with time.

This enhancement essentially penalizes too frequent server
switching. It plays an important role in avoiding any potential
system thrashing that could result from dynamic workload
fluctuations. Experimental results in Section VI show that
the enhancement reduces unnecessary virtual server switching
while minimizing the average end-to-end response time in the
face of dynamic workloads.

VI. PERFORMANCE EVALUATION

For performance evaluation, we first build a simulation
model. In the simulations, each physical machine has a limit
of 60 virtual server allocation per application. We generate
a synthetic workload using bounded-Pareto distribution of
request inter-arrival time and service time [11], [27]. Table I
gives the workload characteristics.

The workload is measured periodically on “control interval”
of 5 minutes and aMOSS is executed when a significant
change in workload is observed. aMOSS avoids potential
system thrashing in case of fluctuating workloads, since it
is invoked only at certain control intervals and also due to
its awareness of server switching cost. Each result reported
is an average of 100 runs. In the experiments, we choose a
population size of 100 and limit the number of generations to
1000. These parameters are chosen to obtain a good diversity
of solutions in the Pareto-optimal set.

A. Efficiency Comparison with Utility based Approaches

We compare aMOSS with utility-function based approaches
in obtaining the most efficient tradeoff among multiple cor-
related yet conflicting objectives. We use a highly dynamic
workload with varying step-change intensity similar to work-
load scenarios used in [20], as shown in Figure 6. First, we
consider a single application with an average response time
target of 300 ms. We consider three utility-based approaches,
in which the global utility functions are defined as:

Ui =02-Uys+02-Ups+0.6-Up.
Uz =0.34-Uys +0.33-Ups +0.33 - Up.
U3 =08-Uys+0.1-Ups +0.1-Up.

351

where Uy g, Upg, Up are local utility functions correspond-
ing to the number of virtual servers allocated, the number
of physical machines used and the average response time
respectively. We use a sigmoid function for Up as the work
in [1], [21], [23] and linear functions for Upg and Uy s.

Figure 7 (a) shows that the average response time due to
aMOSS is just slightly higher than the utility based approaches
due to global utility functions U; and Us,. However, it is
compensated by a significantly large improvement in terms
of the virtual server allocation and the number of physical
machines used, as shown in Figures 7 (b) and 7 (c). aMOSS
reduces the number of virtual servers allocated by 63% at
best compared to utility function U; and by 38% compared to
utility function Us,. It reduces the number of physical machines
used by 80% and 67% compared to the two utility-function
based approaches respectively. Compared to utility function
Us, the number of virtual servers allocated by aMOSS is
slightly higher because function Us over-emphasizes the utility
of the virtual server allocation. However, utility function Us
resulted in significantly higher average end-to-end response
time than aMOSS. Furthermore, as shown in Figure 7 (a), it
actually fails to achieve the target end-to-end response time
when the workload increases at time 60th minute. aMOSS is
consistently able to satisfy the end-to-end response time target
throughout the experiment.

The main reason behind the efficiency of aMOSS is that
it performs multi-objective optimization by considering the
trade-off between performance and server allocation in re-
sponse to a highly dynamic workload. Whereas, a utility
based approach applies static weights on the local utility
functions for each objective and aims to optimize a global
utility function. Results illustrate that applying static weights
is not efficient in the face of a highly dynamic workload.
The stress-strain curving method of aMOSS automatically
chooses the yield-point solution of the Pareto-optimal set,
which essentially guarantees the most efficient tradeoff among
multiple conflicting objectives.

We obtained similar results in case of multiple applications
hosted in the virtualized server clusters.

B. Automation Performance and Overhead

Next, we highlight aMOSS’s agility to automatically select
an efficient server allocation scheme. We compare its overhead
with that of a utility optimization approach.

Efficient server allocation occurs in the knee region of the
delay vs. server allocation curve. The benefit gained by adding
additional servers is negligible beyond the knee region. A
utility function based server allocation approach often requires
many iterations of utility optimization with various weights on
delay and server allocation in order to find the knee operating
region. Consider a global utility function defined by Eq. (11).
Here Uy s, Ups, Up are local utility functions weighted by
Wy s, Wps and W corresponding to the number of virtual
servers allocated, the number of physical machines used and
the average response time respectively.

Ug=Wys-Uyvs+ Wps-Ups +Wp -Up. (1)

340

120

Utiity 1 - . tiity 1 -
L| utiity2 Utility 2
33011 Uiy 3 Utility 3

300 - 100 ali

310
80

300

290 [60

virtual servers

280

270 + 40

ity 1 ——& -
Utility 2

Fl utiity 3
aMOSS --

physical machines

Average response time (milliseconds)

260
250 §-8

20

240 0

60 80 100 20
time (min)

(a) Average response time.

40 120 0

Fig. 7.

40
time (min)

(b) Virtual server allocation.

Comparison of aMOSS with utility based approaches (single

60 80 100 80 100 120
time (min)

(c) Physical machines used.

application).

280

250 280
‘Average response time —x—
virtual servers s

275 275 x_
4 200 A

270 | 270

265 [265

1 150

260 260

255 1 100 255

virtual servers

Knee region

250 I 250

1 50

Average response time (milliseconds)
Average response time (milliseconds)

245 - 245 |,

240 4 240 -

Average response ime ——x—
virtual servers ——e

250

Utilty based Ss==v
aMOSS e

200

150

virtual servers

100

execution time (sec)

50

02 03 04 05 06 07 08 09
Delay Weight (Wp)

0.1

(a) at 10 requests/sec

Fig. 8.

Figure 8 (a) shows the average response time achieved and the
number of virtual servers allocated when the utility function
in Eq. (11) is optimized iteratively for different values of
delay weight Wp that varies from 0.1 to 0.9. The values
of Wy s and Wpg are chosen to be equal and the sum of
three weights is equal to one. The workload arrival rate is
average 10 requests per second. We observe that a low value
of Wp results in a small number of server allocation and
a correspondingly high value of the average response time.
As Wp increases, the number of allocated virtual servers
increases and the average response time decreases. Thus, only
after repeatedly performing utility optimization using various
weights, a utility function based approach can measure the
trade-offs between performance and server allocation. We have
performed the experiment with delay weight increasing in
steps of 0.1. For more accurate estimation of trade-off be-
tween performance and server allocation, the step size can be
reduced further. However, it will result in even more number
of optimization iterations. Furthermore, there is no standard
method for selecting an efficient solution even when the data
is available. In this experiment, we choose the intersection
of the average response time curve and the server allocation
curve as the knee region, which provides an efficient solution.
The knee region corresponds to a delay weight of 0.3 for the
given workload. In this case, it requires four iterations of utility
optimization to find the knee region.

aMOSS performs a multi-objective optimization only once
for a measured workload, which results in a pareto-optimal set
of solutions. It applies stress-strain curving method to auto-
matically determine an efficient trade-off between performance

01 02 03 04 05 06 07 08
Delay Weight (Wp)

(b) at 30 requests/sec).

352

R
10 30
request arrival rate (per sec)

(c) Overhead comparison with aMOSS.

0.9

Automated average response time and virtual server allocation tradeoffs at various workloads.

and server allocation. aMOSS took an average of 6.5 seconds,
running on a linux machine with 2 GHz Intel Core 2 Duo
processor and 2 GB RAM, to find a yield-point solution for
the multi-objective optimization problem. The utility based
approach took about 23 seconds to find a similar solution.
Figure 8 (c) shows that aMOSS reduces the computational
overhead in terms of the number of optimization iterations and
algorithm execution time by about 75% compared to utility
based provisioning approach.

Next, we change the workload intensity to average 30
requests per second. Figure 8 (b) shows the experimental
results. We note two important observations. First, the knee
region of delay and server allocation graph is found at different
values of delay weight. Hence, a utility based provisioning
approach with static weights may not provide an efficient
tradeoff between average end-to-end response time and server
allocation in the face of dynamic workloads. On the other
hand, aMOSS is able to find the yield point solution in spite
of workload variations. Second, the computational overhead of
utility based approach for finding an efficient trade-off between
delay and server allocation may vary for different workloads.
In this case, it requires six iterations of utility optimization to
find the knee region. Figure 8 (c) show the improvement in
computational overhead by aMOSS is 83%.

C. Impact of Reducing Server Switching Cost Enhancement

To evaluate the impact of the aMOSS enhancement tech-
nique for reducing the server switching cost, we assume the
times taken by addition and removal of a virtual server of an
application are five and two seconds respectively. We compare

With self-tuning -~ o
W/o self-tuning -
target

Average response time (milliseconds)

20 40 60 80 100
time (min)

120

(a) Average response time.
Fig. 9.

1800

virtual servers

55 with self-tuning -

w/o self-tuning

50

45

40

35

30
0 20 40 60 80 100
time (min)

(b) Virtual server allocation.

120

35
‘ aMOSS -0~
per-tier approach -

physical machines

25

with sefftuning -
w/o self-tuning

0.5

0
0 20 40 60 80 100
time (min)

(c) Physical machines used.

120

Impact of the aMOSS server switching cost reducing enhancement technique.

average response time oo~y
server allocation efficiency wemms

aMOoSS o
per-tier decomposition approach -
target

1700 - 30

1 L
600 25

1500 -
20
1400

virtual servers

Fes 25
1300 |- x j 5 P00a S0l
X i 000 S0
K% ek o o
1200 pe*s ; P
Henerpe K i
K 5005 00000 5
1100 |- ; 4
o 00000
@ o

Average response time (milliseconds)

improvement (%)

1000 & 0 . .
20 40 60 80 100 120 0 20 40

time (min)

(a) Average response time.

time (min)

(b) Virtual server allocation.

60 80 100 120

0-30 min

30-60 min 60-90 min 90-120 min

(c) Performance improvement.

Fig. 10. Comparison of aMOSS with a per-tier decomposition approach based on a testbed implementation.

the performance of aMOSS with and without the enhance-
ment for'a single application that has the average response
time target of 300 ms. Figure 9 (a) shows that the average
response time due to the enhancement overall is slightly higher
than the average response time due to aMOSS without the
enhancement. This is because the enhancement tries to reduce
the number of server addition or removal between consecutive
control intervals. Figure 9 (b) shows the significant benefit due
to the enhancement. It shows that the number of virtual servers
allocated is much less with the enhancement of aMOSS.
Figure 9 (c) shows that the enhancement also makes aMOSS
more conservative in changing the usage of physical machines,
freeing up more physical machines. This is beneficial to a data
center due to cost reduction and efficient space utilization. It
also avoids unnecessary physical machine usage in the face of
temporary spike in the dynamic workload during the interval
of minutes 60-85.

VII. TESTBED IMPLEMENTATION WITH A CASE STUDY

We implement aMOSS in a testbed that consists of HP
ProLiant BL460C G6 blade server modules and a HP EVA
storage area network. A blade server is equipped with Intel
Xeon E5530 2.4 GHz quad-core processor and 32 GB PC3
memory. We implement a virtualized multi-tier server cluster
assuming that the database tier is not replicated. Virtualization
of the cluster is enabled by an enterprise-level virtualization
product, VMware ESX 4.1. aMOSS uses vSphere API to
dynamically instantiate or de-instantiate VMs on the hosts.
Each tier of an application is hosted inside a virtual machine
with 1 VCPU, 4 GB RAM and 15 GB hard disk space.

353

Like others in [17], [20], [24], we use open-source multi-
tier application RUBIS in our experimental study. RUBIiS
implements the core functionality of an eBay like auction site:
selling, browsing and bidding. We configure the RUBiS clients
to generate workloads of step-change time varying intensity.
The number of concurrent users is 300 in the first 30 minutes,
and is changed to 500, 900, and 700 in the consecutive 30-
minute intervals.

We compare aMOSS with a representative dynamic server
provisioning approach proposed in [20]. In that per-tier de-
composition based approach, an average end-to-end response
time target is decomposed into per-tier targets and per-tier
server provisioning is conducted based on a G/G/1 queueing
model to meet the per-tier targets. We experimented with the
approach that sets the average response time target of the three
tiers to be 10%, 50% and 40% of the end-to-end response
time target [20]. We estimate the parameters for our analytic
performance model by examining the server logs, similar to
the approach applied in [20].

Figure 10 (a) shows that aMOSS achieves a lower average
response time than the per-tier decomposition based approach
does. It is due to the fact that the per-tier decomposition
based approach only aims to achieve the per-tier delay target.
Whereas, aMOSS aims to minimize the average end-to-end
response time in a multi-tier architecture while maintaining
efficient resource utilization. It also shows that the per-tier
decomposition based approach violates the average response
time target by a big margin during the “control interval” of
minutes 60-65. However, aMOSS avoids the violation because
it effectively allocates servers to multiple tiers and achieves

a lower response time due to the automated multi-objective
server provisioning optimization.

Figures 10 (b) shows that aMOSS is more efficient in
the virtual server allocation. Both approaches use only one
physical machine in this experiment. We observe up to 32%
improvement in virtual server allocation efficiency and 10%
improvement in the average response time reduction as shown
in Figure 10 (c). Certainly, the improvement margin of aMOSS
depends on how the per-tier decomposition based approach
decomposes the end-to-end response time target to per-tier
targets and how per-tier delay factor associates with the
resource allocation and workload characteristics. The case
study illustrates the merits of aMOSS for automated multi-
objective optimization.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to explore the promise of auto-
mated multi-objective optimization for autonomic server pro-
visioning using a novel stress-strain curving method (aMOSS).
Extensive experimental results based on the simulation as well
as implementation have demonstrated its significant merits
in trading off the resource allocation and the performance
of multi-tier applications. aMOSS automatically chooses the
yield-point solution of the Pareto-optimal set, which essen-
tially guarantees the most efficient tradeoff among multiple
conflicting objectives. aMOSS also significantly outperforms
a representative dynamic server provisioning approach for the
end-to-end response time guarantee in a multi-tier Internet
service.

aMOSS provides a novel perspective to tackle the chal-
lenging autonomic server provisioning problem. The aMOSS
approach is generalizable to any objective in a datacenter that
can be modeled with sufficient accuracy. Furthermore, multiple
correlated objectives can be combined together as stress and
the objectives conflicting to stress can be formulated as strain.
In our future work, we will address aMOSS application for
joint power and performance control in data centers. We
will also address service differentiation among competing
applications in case of resource saturation.

Acknowledgement

This research was supported in part by U.S. National
Science Foundation CAREER Award CNS-0844983 and re-
search grants CNS-08244448 and CNS-0720524. The authors
thank the NISSC for providing blade server equipments for
conducting the experiments.

REFERENCES

[1] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In Proc. IEEE Int’l
Conf. on Autonomic Computing (ICAC), 2005.

H. Boyer. Atlas of Stress-Strain Curves. ASM International, 1987.

X. Bu, J. Rao, and C.-Z. Xu. A reinforcement learning approach to
online web system auto-configuration. In Proc. IEEE Int’l Conf. on
Distributed Computing Systems (ICDCS), pages 670-673, 2009.

J. Chen, G. Soundararajan, and C. Amza. Autonomic provisioning of
backend databases in dynamic content Web servers. In Proc. IEEE Int’l
Conf. on Autonomic Computing (ICAC), 2006.

[2]
[3]

[4]

354

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Costa, J. Napper, G. Pierre, and M. Steen. Autonomous resource
selection for decentralized utility computing. In Proc. IEEE Int’l Conf.
on Distributed Computing Systems (ICDCS), 2009.

R. Das, J. O. Kephart, J. Lenchner, and H. Hamann. Ultility-function-
driven energy-efficient cooling in data centers. In Proc. IEEE Int’l Conf.
on Autonomic computing (ICAC), 2010.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. [EEE Trans. on Evolutionary
Computation, 6:182—197, 2002.

Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaihk, and M. Surendra.
Controlling quality of service in multi-tier Web applications. In Proc.
IEEE Int’l Conf. on Distributed Computing Systems (ICDCS), 2006.
M. C. Huebscher and J. A. McCann. A survey of autonomic computing:
Degrees, models, and applications. ACM Computing Surveys, 40(3),
2008.

G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu.
Mistral: Dynamically managing power, performance, and adaptation
cost in cloud infrastructures. In Proc. IEEE Int’l Conf. on Distributed
Computing Systems (ICDCS), 2010.

P. Lama and X. Zhou. Efficient server provisioning for end-to-end delay
guarantee on multi-tier clusters. In Proc. IEEE Int’l Workshop on Quality
of Service (IWQoS), 2009.

P. Lama and X. Zhou. Autonomic provisioning with self-adaptive
neural fuzzy control for end-to-end delay guarantee. In Proc. IEEE
Int’l Symp. on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2010.

P. Lama and X. Zhou. Perfume: Power and performance guarantee with
fuzzy mimo control in virtualized servers. In Proc. IEEE Int’l Workshop
on Quality of Service (IWQoS), 2011.

J. C. Leite, D. M. Kusic, and D. Mossé. Stochastic approximation control
of power and tardiness in a three-tier web-hosting cluster. In Proc. IEEE
Int’l Conf. on Autonomic computing (ICAC), 2010.

C. Lumezanu, S. Bhola, and M. Astley. Utility optimization for
event-driven distributed infrastructures. In Proc. IEEE Int’l Conf. on
Distributed Computing Systems (ICDCS), 2006.

D. A. Menascé and M. N. Bennani. Autonomic virtualized environments.
In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC), 2006.

P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In Proc. of the EuroSys Conference (EuroSys), pages 13-26, 2009.

R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic mix-aware
provisioning for non-stationary data center workloads. In Proc. IEEE
Int’l Conf. on Autonomic Computing (ICAC), pages 21-30, 2010.

G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart. Utility-function-
driven resource allocation in autonomic systems. In Proc. IEEE Int’l
Conf. on Autonomic Computing (ICAC), 2005.

B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. Agile
dynamic provisioning of multi-tier Internet applications. ACM Trans.
on Autonomous and Adaptive Systems, 3(1):1-39, 2008.

W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility functions in
autonomic systems. In Proc. IEEE Int’l Conf. on Autonomic Computing
(ICAC), 2004.

H. Wang, Q. Teng, X. Zhong, and P. Sweeney. Using the middle tier
to understand cross-tier delay in a multi-tier application. In Proc. IEEE
Int’l Parallel Distributed Processing Symp.(IPDPS), 2010.

X. Wang, D. Lan, G. Wang, X. Fang, Y. Meng, Y. Chen, and Q. Wang.
Appliance-based autonomic provisioning framework for virtualized out-
sourcing data center. In Proc. IEEE Int’l Conf. on Autonomic Computing
(ICAC), 2007.

B. J. Watson, M. Marwah, D. Gmach, Y. Chen, M. Atlitt, and Z. Wang.
Probabilistic performance modeling of virtualized resource allocation.
In Proc. IEEE Int’l Conf. on Autonomic computing (ICAC), 2010.

C. Weng, M. Li, Z. Wang, and X. Lu. Automatic performance tuning
for the virtualized cluster system. In Proc. Int’l Conf. on Distributed
Computing Systems (ICDCS), 2009.

Q. Zhang, L. Cherkasova, and E. Smirni. A regression-based analytic
model for dynamic resource provisioning of multi-tier Internet appli-
cations. In Proc. IEEE Int’l Conf. on Autonomic Computing (ICAC),
2007.

X. Zhou, J. Wei, and C.-Z. Xu. Processing rate allocation for propor-
tional slowdown differentiation on Internet servers. In Proc. IEEE Int’l
Parallel and Distributed Processing Symp. (IPDPS), pages 88-97, 2004.

