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Abstract

With today’s petascale supercomputers, applicationsadienibit
low efficiency, such as poor communication and 1/0 perforcean
that can be diagnosed by analysis tools. However, thesg édbker
produce extremely large trace files that complicate perémce
analysis, or sacrifice accuracy to collect high-level statal in-
formation using crude averaging.

This work contributes Scala-H-Trace, which features mare a
gressive trace compression than any previous approacttybary
for applications that do not show strict regularity in SPM&hhv-
ior. Scala-H-Trace uses histograms expressing the priaiatlis-
tribution of arbitrary communication and I/O parametersapture
variations. Yet, where other tools fail to scale, Scala+ld€€ guar-
antees trace files of near constant size, even for variabhencmi-
cation and /O patterns, producing trace files orders of ritages
smaller than using prior approaches. We demonstrate thigyabi
to collect traces of applications running on thousands otegs-
sors with the potential to scale well beyond this level. Wehier
present the first approach to deterministically replay suaba-
bilistic traces (a) without deadlocks and (b) in a manneselp
resembling the original applications.

Our results show either near constant sized traces or obly su
linear increases in trace file sizes irrespective of the rarnab
nodes utilized. Even with the aggressively compresseddniain-
based traces, our replay times are within 12% to 15% of thtmen
of original codes. Such concise traces resembling the fahai/
production-style codes closely and our approach of detestig
replay of probabilistic traces are without precedence.

1. Introduction

As supercomputers progress in scale and capability toweas-e
cale levels, characterization of communication and I/Calv@r is
becoming increasingly difficult due to system size and cexpl
ity. Today, many scientific applications execute in ten gands

of cores or more. Moreover, modern supercomputers are peglip
with complex network interconnects to improve the speediip o
parallel applications. Apart from the network complexdifferent
vendors employ different interconnect designs to imprbesaver-

all communication performance, thereby achieving befteedup.
For example, the IBM Blue Gene family of supercomputers em-
ploys five different network interconnecfs [1]. Such interoects
mandate performance study of applications for efficient ofe
available resources. Even finding the most efficient taskpingp

to nodes has become difficult with complex, new system dssign

mate changes over land and while other nodes work on sea mod-
els. Hence, different modules, like land and sea, use diffanput

data and algorithms resulting in different communicatiehdvior
within each module.

Several studies have investigated the communication @d |/
characteristics of applications. They focus on three médsses:
tracing tools, capable of capturing and recording all mgss&ents
at the cost of high storage requirements; profiling toolsjgtesd
to provide low-overhead performance summaries tradingtoff-
age space for detail level; and communication and 1/0 kertfrlt
eliminate computation and retain only application commation
and I/O behavior. Although application kernels are degigoeap-
ture the exact application behavior, it is difficult to kebpge ker-
nels up-to-date since the applications constantly evoles time.
Application traces, in contrast, can be readily generatediin-
ple instrumentation of an application, to keep up with a dfiraa
code base. This makes performance analysis via traceseneif
method to analyze parallel applications in practice.

The combination of job scale and application complexityvho
ever, creates unique challenges for parallel tracing t@ts one
end of the spectrum, traditional tracing tools (such as \iaf@p])
record all events sequentially for each parallel procees.l&ge
application runs on leadership-class supercomputessagproach
generates unmanageable trace file sizes, introducing hitiohi
overheadse.g., for copying trace files from temporary to perma-
nent storage, hitting the maximum storage limit, and evemged
for a cluster plus another parallelized tool to performéranalysis
[2]. On the other end of the spectrum, tools that only repaitsti-
cal information (such as mpiP_Il7]) may fail to deliver thedkof
detail needed in performance analysis or debugging.

On-the-fly trace compressionJ12.]115] provides losslessrtea
and dramatically reduced trace file sizes, and it has recentiybe
extended to conduct multi-level 1/O tracifdg]19] in addititn cap-
turing communication calls. However, effective compressiuilds
on the homogeneous behavior across processes (inter-natle ¢
pression) and repetitive behavior within a process (intvde com-
pression). With complex, irregular, or self-adjusting laqgagions,
such assumptions do not hold and compression fails due to mis
matches between traced events.

In this work, we propose Scala-H-Trace, with a novel appgnoac
to collect concise traces for applications exhibitimy-SPMD be-
havior. In other words, while past approaches proved éfiecor
the easier problems of tracing SPMD codes, this work focoses
the much harder problems of tracing non-SPMD codes. Scala-H

The large numbers of processors/cores, increased aggregat Trace is motivated by the tradeoff between exact detailsnazua-

memory capacity, and optimized interconnects allow apfibos

to grow not only in targeting larger problem sizes, but to ex-
plore more sophisticated communication models. Extrecaées
applications are often complex codes, integrating mdtialftware
components exercising vastly different computation/camica-
tion models. Such codes are becoming more dynamic and digerg
from strict, regular single program, multiple data (SPMEhbav-
ior. Examples include multi-physics or coupled codes, whmar-
titions of nodes implement different simulation models,rkvon
separate datasets, or even conduct analytics tasks sucticased
duction. Such applications exhibit multiple program, riplét data
(MPMD) behavior as multiple nodes work on multiple sectiofis
the programE.g., in climate simulations, some nodes simulate cli-

ageability of trace file size. Although having exact dethidps in
root cause analysis, lossless tracing becomes incregsingfford-
able on ultra-scale machingsistogramsin Scala-H-Trace provide
an opportunity to collect overall statistical detaiésy., data send
volume, which can be useful in studying network charadies ®f
the application. They provide an overall “big picture” of@pplica-
tion’s communication behavior. Scala-H-Trace employtgisams
with multiple bins whose value ranges are dynamically aethpis
trace data is recorded on-the-fly. In addition to represgrui dis-
tribution, each bin also retains certain crude statistidfarmation
(min/max/avg/stddev), potentially useful for root causalgsis.
Scala-H-Trace also enables the user to seieaye precision

level during trace collection. This precision level drives theneo



pression efficiency by collecting statistical information varying
traces in unique histogram bins. The trace precision isetsared
to fall within the user set value. If the trace precisiondddélow the
specified precision, mismatching trace events are recavitbdut

histogram-based compressiarg, traditional structural compres-

sion techniques are employed and may fail to provide corticdses

in the absence of SPMD behavior of the cddéd [12] but resulkin e

2. Background

Scala-H-Trace is a novel design of a communication and HEirg
tool that shares its methodology for representing the tieguirace
on a single file (instead of one file per node), both otherwaties
on histogram-based data collection. While Scala-H-Traas te-
rived from the publicly available code of ScalaTrace/Skailaace
[12, [18,[19], Scala-H-Trace provides entirely novel corspien

act event recording. The size of such a trace file then becames capabilities.

function of the desired merge precision level, which canured
to obtain a manageable size while retaining trace artifsuitsable
for performance analysis or even detect root causes inpeafuce.
At the same time, our unique approach to collect histogrased
statistical information captures the overall trend in caimimation
and 1/O behavior of applications executing on thousandsodés.
Our histogram-based approach also reduces the tracingeagas
the time taken to compress smaller histogram-based traassi
siderably less than the traditional lossless traces.

While histogram-based tracing can effectively reducestidata
volumes, it creates several challenges for accurate regldle
traced events. To ensure the correctness of the captuie aral
to reproduce the communication and I/O behavior, we alsaigeo
a novel replay facility. This replay tool reissues the releat trace

events without decompressing the compressed trace. Ifdire ¢

pressed trace is lossless, sender-destination node iafiormand
communication volume are recorded precisely. Also, theakar-
dering of the original application is preserved. For lossstogram-
based traces, our tool employs a distributed, orchesttddle-
terministic replay capability. Our goal in the replay of thigram-
based traces is not to capture exact original events butmétle

ScaldlO]Trace collects communication and optionally parallel

1/0 traces, using the MPI Profiling layer (PMPI] [9] througimb
pire [18] to intercept MPI calls and to collect MPI tracesfda-
tures aggressive trace compression that generates a, singtese
and lossless trace file from any large-scale parallel agddic run.
It also preserves timing information in the compressed falomg
with the calling context of events being traced. In this pape
develop Scala-H-Trace, which provides even more aggeessice
compression techniques to serve real-world scientificiegjibns
that do not show strict SPMD regularity.

ScaldlO]Trace performs two types of compressiamtra-node

andinter-node. The former exploits the repetitive nature of timestep

simulation in parallel scientific applications. The latexploits
the homogeneity in behavior (SPMD) among different proegss
running the application. Intra-node compression is pentat on-
the-fly within a node. Inter-node compression is performedss
nodes by forming a radix tree structure among all nodes amdise
ing all intra-node compressed traces to respective pareritse
radix tree. This results in a single compressed trace fileuciag
the entire application run across all nodes. The compnesdgo-
rithm is discussed in detail elsewhelel[l2] 15]. Scala-bc&rem-

existence of a sequence of events with comparable timings an ploys a different intra- and inter-node compression atharidue

communication endpoints. Resulting information can bdulse
identifying bottlenecks and also the communication patiefr a
particular application.

Contributions: Our contributions are as follows:

e We provide the capability to record lossless and concise-com Descriptors (RSD)[5] and power-RSDs capture RSD events in

munication and 1/O traces for non-SPMD programs.

¢ \We create novel capabilities for more aggressive trace oesnp
sion based on a precision level, selected by the user, tivasdr

both compression efficiency and trace accuracy.

o \We support a replay technique that reissues trace everfitswtit

decompressing the original trace file.

e We provide a distributed approach to replay statisticatetsa
that does not require back-channel communication to preser

causal event ordering for correctness.

e We ensure that replay is deterministic by (a) coordinating

sender/receiver activity through receive reordering,|éfing

a node interpret the events of all other nodes and (c) ergsurin
that all nodes use the same random number sequence for proby,
abilistic replay resulting in the same parameter and endtpo

choices for communication.

¢ We proved that deterministic replay after reordering isiiteek
free [20].

to its reliance on histograms but still shares the reducticer a
radix tree with ScalgO]Trace.

2.1 Trace Compression

We briefly introduce several techniques used in St@ldrace to
allow a later comparison with Scala-H-Trace. Repetitivergs
in different iteration of loops are collected as Regular ti®ec

nested loops[]8], both of which are represented in consfaat s
Consider the following code snippet:
for( i = 0; 1 < 10; i++ ) {
for( j = 0; j < 100; j++) {
computel();
MPI_Irecv(...); // Receive from left neighbor
MPI_Isend(...); //Send to right neighbor
MPI_Waitall(...);
}

MPI_Allreduce(...); //Collective reduction operation

Trace compression results in the following tuples: RSQ@0,
Pl_lrecv, MPLIsend, MPLWaitall} representing 100 iterations of
Pl_Irecv, MPLIsend and MPM aitall in the inner loop, PRSD1.:
{10, RSD1, MPlAllreduce} denoting 10 iterations RSD1 followed

by MPI_Allreduce in the outermost loop. The algorithm uses the

calling context of events to match repetitious behaviorisTén-
sures that identical MPI functions originating from ditet call
paths of the application are not compressed together. $iace

We evaluated our approach with the Parallel Ocean Program events from different nodes are collected and merged in glesin
(POP) and two benchmarks from NAS parallel benchmark suite. output trace file, theask rank information of nodes participating
POP is both computational and 1/O intensive and hence agepre  in an event is also compressed and encoded concisely in the co
tative application to evaluate our tool. Our results prevahe to pressed trace. This participant node information is represl in a
two orders of magnitude smaller trace files than any prevagpis tuple containing starting rank, total number of particiggaand an
proach. We also evaluated our replay tool by reissuing fiato- offset value separating ranks. Even multi-dimensionairimiation
based traced events. The replay time only deviated 12% to 15%is captured in this encoding format.
from the original application’s time in most cases, evenrfarst Apart from matching calling contexts, the compression algo
aggressively merged histogram-based traces. rithm matches function parameters and merges them alorg wit



compressed events ensuring that no information is lostypi t
cal parallel applications, communication end-pointsettificross
nodes as a result of communication with neighboring nodessé&
varying end-points inhibit event compression. Sg@lalrace uses
a unique location-independent encoding to represent cariaau
tion end-points in events like MB$end and MPRecv. It also en-
codes MPI opaque pointers like MIFile and MPLComm, which
do not exhibit repetitive patterns, potentially inhibgireffective
compression. There are special cases in which events witthma
ing calling context can have non-matching function paranset
These non-matching function parameters are compressegd asi
vector representation, so that the particular event carobeigely
represented in the trace.

2.2 TimePreservation

Another important feature of Scél@]Trace is the time preserva-
tion of captured traces. Instead of recording absolutediamps,
the tool records delta time of computation durations beihnesd-
jacent communication calls. During RSD formation, inste&éc-
cumulating exact delta timestamps, statistical histogbams are
utilized to concisely represent timing details across tlop! These
bins are comprised of statistical timing data (minimum, masm,
average and standard deviation). More details on collgdiatis-
tical timing information are provided elsewhefe][15].

2.3 Timed Replay

ScaldlO]Trace not only supports scalable tracing, it also supports

a scalable replay engine. Given a single, compressed ttacth#
replay engine allows all I/O and communication calls to heswed
without trace decompression while preserving event ondeiThe

replay engine runs as an MPI job with the same number of tasks a

its original application. It replays I/O and communicaterents in
each node with their original parameters except for actleattin-
tent/message payloads. Instead, a random buffer of thesiaemas
the original file/message buffer is used. Additionally, gartation

time on each node is simulated by a delay between tracedsevent

based on recorded delta time.

3. Inter-node Trace Compression
The SPMD nature of the scientific codes causes participdrds o
parallel application to produce similar per node traceg.,B. we

treat a trace as a sequence of MPI events, traces from differe
nodes tend to have similar subsequences that contains rhost 0,,:

MPI events. In addition, loop structures captures by PRSDs i
ScalaTrace facilitate compression as traces from diffenexdes
tend to have similar PRSD nests. ScalaTrace originallyiredunot
just similar but ratheidentical patterns, i.e., it failed to fully exploit
similarities for inter-node trace compression. More sfiezly,
identical loop structures, i.e., PRSDs with identical lngeration
count, and MPI event sequence were required. While thisoagpr
works well with the perfect SPMD-style codes, it is subjent t
scalability problem when traces slightly diverge betweedas.
For the example below, I€f; be traces where each letter in a
trace “string” represents an MPI event and the pair of phesgs
represent the loop structures. The coarse-grained tratehimg
algorithm may merge the per-node tradgsand T, to T3. Yet, an
ideal compression would instead be trdge

Ty :a(b(bch)db)a T, : a(b(beb)fb)a

T3 : a(b(bch)db)(b(beb)fb)a T4 : a(b(bceb)dfb)a
Only if the inter-node trace matching algorithm does notsmis
the structural similarities can the probabilistic comnmation pa-
rameter compression (discussed below) be fully utilizedné¢,
we have designed a novel, fine-grained event matching &éhgori
that recursively compares and merges the nested loop wgtesct
Algorithm [ outlines the recursive trace merging techniqlieis

algorithm traverses traces of two nodés,andT,, to identify the
matching event pairs. Stand-alone events are comparedely th
MPI parameter values with the functiclRRAM_MATCH. If two
events start structurally identical loop nests, i.e., logsts with
equal depth and equal iteration counts at each nest leeelutit-
tion MATCH_LOOP is called.MATCH_LOOP then matches the loop
bodies at each level starting from the innermost nest andseely
call itself if new matching loop heads are found. When a péir o
matching events is identified, the preceding unmatchedesess
are sequentially linked bpo_MERGE. Since we forward the cur-
sors for both input sequences when a match is found, thisitigg

in practice, has a complexity @(n), wheren is the length of the
input traces given that two input traces are similar.

Algorithm 1 Recursive Trace Matching Algorithm

Precondition: T; andT»: input per node traces
Postcondition: T; andTs: recursively merged trace

1: procedure MATCH_TRACE(Ty, Tz)

2 for iterl < Ty.head, Ty .tail do

3 for iter2 « T,.head, T,.tail do

4: if iterl and iter2 start identical loop nesten
5: MATCH_LOOP(iterl, iter2, depthof_nest)
6 else

7 if PARAM_MATCH (iterl, iter2)then

8: DO_MERGE(iterl, iter2)

9: end if
10: end if
11: end for
12: end for

13: end procedure

14: procedure MATCH_LOOP(loopl, loop2, depth)
15: for iterl « loopl.head, loopl.tado
16: for iter2 «— loop2.head, loop2.tado

17: if iterl == loopl.head && iter2 == loop2.head &&
PARAM_MATCH (iterl, iter2)then

18: DO_MERGE(iterl, iter2)

19: end if

20: if iterl and iter2 are single events &&
PARAM_MATCH (iterl, iter2)then

21: DO-MERGE(iterl, iter2)

22: end if
: if iterl and iter2 start identical loop nesten
MATCH _LOOP(iterl, iter2, depthof_nest)

25: end if

26: end for

27: end for

28: if depth>1then

29: MATCH_LOOP(iterl, iter2, depth-1)
30: end if

31: end procedure

Algorithm[ may still fail to generate the best inter-nodenco
pression because traversing two sequences with the doabted
loop structure does not guarantee identifying the longestraon
subsequence. As an example, considierand T, below. Algo-
rithm [ will return the sequenck:

Ty :abbbbb  T,:bbbbba T3 : bbbbbabbbbb

The matching event is found before the longer subsequence
bbbbb. To solve this problem, we integratedvéeighted Longest
Common Subsequence (WLCS) algorithm into Algorithm[IL.
WLCS is adapted from the clasdiongest Common Subsequence
(LCS) algorithm. Since the loop structures in the trace khbe
treated as a whole, we enhanced LCS such that the matchipg loo
structures are evaluated with a weight that is equal to thgtheof
their longest common subsequence. This addresses the ekove
ample to compresisbbbb first.



4. Histogram-Based Trace Collection

per bin while adjusting their value range constraints. Hrisures

Noethet al. [TZ] provide trace compression techniques resulting in that the histogram captures outliers and other statistiisatibu-

an almost constant sized trace file or sublinear increagesda file
size with strong scaling (increasing number of nodes).tese re-
sults only hold for SPMD-style benchmarks, not for prodoicize
applications with non-SPMD patterns. ScalalOTraceé [18}jotes
mechanisms to collect both the communication and 1/O trémes
scientific applications like the Parallel Ocean ProgramRP[24].
But for some scientific applications, including POP, theiintode
compression technique fails to obtain a near-constant sizee
file with increasing number of nodes. Instead, we see a limear
crease in the trace size due to non-SPMD style programming.

tion properties missed by simple aggregate statistic&ctidn like
maximum, minimum, average and variance. We also collect max
imum and minimum participant rank information along witle th
frequency in bins so as to enable root cause deteatign,due to
load imbalance. Even with this lossy trace informationtdgsams
help in providing more insight into the general charactssof

the traced application. Histogram details can be colleatechri-
ous levels in the trace. The following explains what traderima-
tion is collected as histogram and discusses possibledffada
collecting statistical information versus non-lossy imfiation.

POP performs ocean simulation for multiple time steps. Each 41 |ntra-node Event Histogram

time step performs a set of computations and communications

of an inner loop in multiple iterations. Due to different aat
dependent convergence points in the computation acrdesetif
timesteps, the number of inner loop iterations varies frionestep
to timestep. Even though all MPI events originate from thaea
calling sequence (call stack), varying loop iteration deun each
timestep inhibit intra-node compression and thus nedstingact
inter-node compression across all nodes. This behavioalsarbe
observed in many Adaptive Mesh Refinement (AMR) application
in which the input set is dynamically rebalanced on a peciddi-
sis.

To address these problems, we propose a novel method of trac-

ing. We promote histogram-based trace information for a@re
fined user-tunable merge precision level to obtain highermes-
sion rates of trace events — at the expense of accuracy. @ansi
the following 3 scenarios: (1) If the user sets the mergeigi@t
level to 100%, then only events with perfectly matching fiorc
parameters are merged. (2) If the user sets the merge pret@sel

to 95%, then events with non-matching function parametéibes
merged if and only if all pairs of parameters differ by no mtiran

The loop iteration count denoted by PRSDs can be collected
histogram. This enables better compression of repeatiagtgin
many scientific applications that otherwise would fail tonpyess
due to data dependencies. Although the exact iterationtéelost
in the final trace, the number of loop iterations directly elegs
on the computation, which, in turn, varies with differenpin
sets. Hence, collecting statistical loop iteration coumtdy has
a minor impact in capturing the communication behavior @& th
application. The main advantage of this approach is thétald

obtain a concise trace file by allowing a small percentag@ssyi

trace collection that otherwise would have resulted in eetfde of

as

unmanageable size.
Consider the code snippet:
for( i = 0; i < 50; i++ ) {
//Perform calculation till the result converges
while(result > convergence_factor) {
do_calculation();
MPI_Irecv(...); //Receive from neighbors
MPI_Send(...); //Send to neighbors
MPI_Wait(...);

5%. Should any pair of parameters exceed the 5% threshold, we}

fall back to lossless tracing. (3) If the user sets the mergeigion
level to 0%, then events with non-matching function paramsere
also merged and the non-matching parameters are collectes-i
togram bins. Note that the function calling contexts alwhgse

to match for two events to be merged. Figlite 1 explains the dif
ference in the merge precision level and the precision leféie
trace file. A merge precision level of 0% does not mean thagthe
tire meaningful information is lost. Even at a 0% merge [ieci
level, the statistical function parameters collected gtddgram bins
still capture the overall behavior of the application. Degliag on
user needs, the smallest traces with high application relsewe
collected using a 0% merge precision level may be much mare us
ful than unmanageably large trace files. We provide the ngdtio
users to decide on the tradeoff between the manageabilttacé
files vs. capturing the exact application behavior.

0 100%
oa Merge precision ,
level

0% 25% 50 75
% %
Trace Precision

100%

Figure 1. Trace precision vs Merge precision
Our approach uses histograms to collect probabilisticcimée
tion on varying trace events and event parameters thatvoiser
inhibit trace compression. Histogram-based collectiopleys a
technique to collect statistical information in dynamigdlalanced
bins. The online balancing algorithm equalizes the numbiteims

In the above example, if the iteration count matches achogs t
steps, the resulting PRSD will be of form PRSEB0, RSDJ. Due
to mismatching convergence points across different titapss the
following sample events can occur:
RSD1: <39, MPI_Irecv, MPI_Send, MPI_Wait>
RSD2: <40, MPI_Irecv, MPI_Send, MPI_Wait>
RSD3: <39, MPI_Irecv, MPI_Send, MPI_Wait>
RSD4: <42, MPI_Irecv, MPI_Send, MPI_Wait> .... till RSD50
The expected PRSD is not formed due to mismatching RSDs
across time steps. This leads to cascading compressiamefail
across nodes. As a result, the trace file size increasesljinea
with the increase in participating nodes. Histogram-baisade
collection ensures that the varying iteration count is eagat in
histogram bins. Hence, the resulting trace will have jugt BRSD
for the entire time-step calculation.

4.2 Inter-node Event Histogram

With inter-node event compression, compressed traces @liém
ferent nodes are merged together. During this process atrad
structure is formed among all nodes. Child nodes send thsjrac-
tive intra-node compressed traces to their parents. A paiee
performs compression of matching events from its child so&er
each and every event from the parent node, a matching clelat ev
is searched. If there is a match, the parent event’s paatitiiist is
updated with the rank of the child node and the child eventss d
carded. Other unmatched events will be reordered accotdiitg
dependency with other events.

In applications with non-SPMD behavior, loops created raiyiri
intra-node compression can have matching events across g
fail to compress across nodes due to a mismatch in the logpida
count. This prevents the entire loop from being mergedgiasing
the trace file size linearly with the number of nodes.



As an example, consider the code snippet from the Section on exact values that are missing from the histograms and aids

£ again. TablEl1 shows one such scenario in which compntati
dependent loop iterations fail to merge across nodes. Bgatoig
loop iterations in histogram, all events merge succegshdloss

post-mortem analysis tools. In the above example, an asdbd
may choose relative ranks of either 1 or 9 while relative sank
between 2 and 8 are excluded from the pseudo-random selectio

nodes. Note that we enable merge only when all events inside We reiterate that we provide this lossy trace collection sature

the loop match perfectly. If events from two loop candidades
not match, then these loops are considered to reprebiéertent
scenarios in the original application and are hence not eterg

Participants:0-3
Loop 50 times
MPI_Irecv from 0-3
MPI_Send to 0-3
MPI_Wait

Participants:4-7
Loop 51 times
MPI_Irecv from 4-7
MPI_Send to 4-7
MPI_Wait

Table 1. Varying Loop lteration

4.3 Function Parameter Histogram
Apart from collecting loop iteration counts in histograms,

and the decision to use this feature is entirely upon thesuser
Users may choose to enable histogram-based tracing anguwanfi
the merge precision level in response to their applicatiwalysis
needs, overheads and storage availability.

4.4 Histogram Construction

We have designed our system in a way to collect exact trace in-
formation as much as possible. Users can set a target mexge pr
sion level expressed as a percentage. Our compressiontlafgor
attempts to match events originating from the same callkstac
and compresses events only if all function parameters mbtish
togram collection is triggered only if there is a mismatcfuinction
parameters or in the loop information. In such cases, tlierdiice

MPI function parameters, such as Send/Recv volume, tag andbetween two non-matching values is checked in terms of tee us

sender/destination ranks, can also be recorded in histsgra
The Send/Recv data volume is important to capture the nktwor
load due to the communication calls issued by the applicatio
Send/Recv volumes often vary across different timestepgviR
applications. This variation in volume inhibits compressof com-
munication calls originating from the same call stack, ¢fgrin-
hibiting compression across an entire loop due to a smaiatien

in the data volume parameters. There are other methodslézicol
exact volumes. One such method is to collect the volume rimder
tion in a vector along with the rank information of partidiipay
nodes. But this results in a linear growth with the increaseum-
ber of participating nodes, which is non-scalable.

For applications that do not exhibit a regular communica-
tion pattern, it is impossible to compress repeating conicadn
tion events originating from the same call stack with difer
sender/destination ranks. The approach of location-ieléent
relative encoding of communication end-points providesogeh
opportunity for event compression. But even this approadly o
succeeds in the case of applications with regular commtioica
patterns. There are approaches in which the communicatioe: f
tion call can be expressed as a PRSD but different end-piints
different loop iterations have to be collected as a vectgain,
such an approach is not scalable for applications execunéaon-
sands of nodes. An example of collecting function pararsetera
vector is given below:

Loop iterations: 1 - 5
Participants: O - 9 (node ranks)
Event: MPI_Send
Data volume: 90 bytes [ranks: 0,1,4,5,8,9],
92 bytes [ranks: 2,3,6,7]
Destination: relative rank 1 [ranks: 0,2,4,6,8],
relative rank 9 [ranks: 1,3,5,7,9]

Assume MPISend is executed in a loop 5 times. With lossless
trace collection, both data volume and destination willdésorded
along with the rank information of the corresponding papaaot.
The relative ranks shown above is location independent:pl re
resents “the next right neighbor” and 9 represents “the fefkt
neighbor”. This compression results in a more concise seprta-
tion than its uncompressed equivalent, but it still suffeosn in-
creases in the trace size proportional to the number of nsides
no regularity for rank lists could be deduced.

Using histograms to collect relative end-points and datarwe
allows better compression of repeating events origindtiog the
same call stack. For this example, histograms will recorth bo
destinations 1 and 9 in bins along with its frequency. In &oldito
binning communication end-points, we also collect reiatanks in
a bitmap and encode it in the trace file. This provides infdiona

specified merge precision level. If the difference is witthia target
precision range, then events are merged and the non-mgtpghain
rameters are recorded in a histogram from there on. If tierdifice
falls out of the target precision range, then either eventgression
will fail or data is recorded in a vector as shown in the exanipl
E3.
In our current implementation, the number of histogram sns
fixed at the start of the application run, but the value rangéins
are dynamically adjusted. We provide an option to set amiate
after which bins are adjusted. Two bins with the lowest fezguies
are combined and the bin with maximum frequency is split into
bins. We further store auxiliary information in bins, suchraini-
mum/maximum/average/variance, which are adjusted acagyd
Apart from per-bin statistical information, we also collenaxi-
mum/minimum values over the entire value range (all bing)tae
node ranks associated with those. This provides outlieriné-
tion and can be used in the replay studies and other perfaenan
analysis tools.

5. Deterministic Replay

While histogram-based trace collection is powerful in cogsg-
ing irregular or dynamically changing events, the collddimces
themselves create challenges for replaying and subsepasfot-
mance analysis. The core challenge of histogram-basedyrépl
to ensure that events are issued in a deterministic manmessac
nodes and with coordinated parameter value selection®fonmn
communication end-points of sends and receives. Sinca-$tal
Trace collects statistical values for communication vaurags,
and end-points, the conventional ScalaTrace replay désidoss-
less traces, which takes an independent, uncoordinatetagp
among nodes, can lead to potential deadlocks due to statisti-
certainty, or may fail to re-create the original commurimabr /O
pattern with reasonable proximity. The nature of histogtzased
traces mandates a distributed, orchestrated replay withdow-
tion among all participating nodes to ensure determinetent se-
quences during replay for Scala-H-Trace. All nodes musi edba
trace events. They need to agree on a specific value seleotad f
the statistical information found in the trace.

We have fundamentally redesigned the replay todl [12] te-rei
sue MPI calls from lossless traces such that the trace dié¢stenl
using histograms is honored during event replay. Our refdal
issues MPI calls using the compressed trace independetiteof t
original application and without decompressing the trates tool
verifies the correctness of the collected trace. It can ads@sain
the performance tuning of MPI communication and facilisgteo-
jections of network requirements for future procuremeggsart
from replaying MPI calls, this basic replay framework casoabe



extended to integrate with other performance analysisigutools
and it can be used to perform automated communication and net
work metric calculations.

The selected random value is internally used to select arapp
priate bin. The average value recorded for that bin is theseh
as a parameter for the MPI event. Histograms already recitev

Before we discuss the design of our new Scala-H-Trace replay distributions (iteration counts, send/recv ranks). Byd@nly se-

tool, we first review the conventional design of replay fasdiess
traces in ScalaTracETlL2]. For lossless traces, all ppétiitig nodes
parse the trace file anzhly act on events if the current node is a
member of the participant list. Then all nodes reissue MPI events
one by one by identifying loops using the PRSD informatiod an
extracting individual MPI function parameters from the orted
trace. This replay tool also reads the delta time infornmafrom
the trace and simulates the computation time by sleepindpitep
of computation. This simulates the exact communication l&2d
behavior of the application in terms of interconnect chemastics,
such as contention. The replay tool helps to verify the cbness of
the trace. By design, it ensures absence of deadlocks ifihiaal
application did not have any deadlocks for a given trace.l&ep
also preserves the time taken in terms of the original aaftin’s
runtime.

5.1 Scala-H-Trace Replay

With the histogram-based trace, the existing parallelagplinc-
tionality requires a complete overhaul to cope with staidtdata
instead of precise data. In our Scala-H-Trace approacpadilci-
pating nodes parse the entire trace file during replay. Itrashito
ScalaTraceall nodesread and interpret all MPI events. Such inter-
pretation amounts to the selection of a random value foliguthe
histogram distribution of any recorded events, for eacterindhe
trace. All nodes “know” the random values used by the othdeso
However, a given node only issues MPI calls if the currentenisd
a member of the participant list in the recorded trace. Ttexjme-
tation of histogram values for events that are not issuedusial
to provide efficient replay with histograms: It obviates a&eo
coordinate value selection across nodes and, hence, backel
communication that might otherwise be required due to remdo
ization, as discussed after the next paragraph.

During the random selection of replay parameters, endipoin
MPI_Send/MPllsend events are selected. Upon encountering an
MPI_Send, once a node identifies itself as a receiver, the raceive
node issues a receive call (MRecv) instead of a MPBend.
Hence, all receive communication events like M®dcv and
MPI_lrecv are ignored. Since a particular receiver can also be
a sender, only MRIrecv calls are internally issued followed
by an internal MPIWait call when a node rank identifies it-
self as a receiver of a recorded MBénd event. Such inter-
nal MPLWait calls are issued last, after all ranks have been
parsed and all MRSend/MPlirecv calls have been issued. Any
MPI_Wait/Waitall calls in the original recorded trace are igeabr

The selection of a random value for histogram-recordedmara
eter for any event parameters, such as send/destinati&narah
data volume, requires that sending and receiving nodes tingke

lecting bins and values from bins respecting histogramueegies,
replay preserves fair value distributions. The followiregton dis-
cusses distributed coordination for random selection irendetail.

5.2 Challengesfor Deterministic Replay: Point-to-Point

M essages
The following code snippet is an example of climate simolain
which first 50 nodes work on land simulation and the next 5Gsod
work on sea simulation. These simulations are performedulti-m
ple time steps in which nodes perform calculations and conimu
cate the result to surrounding neighbors. The destinatiole®and
communication volume can vary for land and sea simulation.
//Land simulation participants - Node O to 49
//Sea simulation participants - Node 50-99

int * resultbuf; //Buffer to hold results
for(timesteps from O to 100) {
int destination[100]; //Array to hold dest. ranks
int source[100]; //Array to hold source ranks
do_calculations(resultbuf);
if (simulation == land) {
volume = 80 bytes;
get_my_land_neighbors(destination, source);
else {
volume = 90 bytes;
get_my_sea_neighbors(destination, source);

for (i = 0 to total_neighbors_count ) {

MPI_Irecv (resultbuf,volume,sourcelil],...);
MPI_Isend(resultbuf,volume,destination[i],...);
MPI_Waitall (...); //Wait for Irecv
MPI_Waitall (...); //Wait for Isend

3

In the code above, all participating nodes perform calaubat
and communicate the results to corresponding neighbot$/RI
function calls originate from the same call stack but comication
volume and source/destination endpoints vary across nddés
results in perfectly compressed intra-node traces witlial@wving
events:

RSD1: {MPI_Irecv, MPI_Isend, MPI_Waitall, MPI_Waitall}
PRSD1: {total_neighbors_count, RSD1}
PRSD2: {total_timesteps, PRSD1}

Since communication volume and endpoints vary across nodes
the inter-node compression fails for the above sectionhV&it
appropriate user-specified merge precision level, comecation
volume and endpoints are collected in histogram bins dunteg-
node compression and the trace is compressed across a#f.node
Hence, all nodes need to agree upon the message payload (data
volume) and send/receive endpoints during replay. With sarc

same decision on matching end-points for a message exahange agreement between nodes for the selection of a particulae ar

between them. To ensure that sender and receiver nodesagyree
their end-points for a message exchange, all nodes use the sa
random seed during initialization. Hence, all nodes agmee¢he
random value upon each selection of a replay parametemutiki
range of 0 and total number of elements in the histogram. No co
ordination via communication is required as all nodes prirall

replay, potential deadlocks could occur.

For example, an original send/receive pair for sender (rigde
/ receiver (node 2) might result in arbitrary selection afncouni-
cation end-points without our distributed coordinatiohesme. In
other words, the sender (hode 10) may issue a message to@ode 2
both randomly selected on node 10, while node 20 interphets t

events in the same order, even if only a subset of (one or more) send event as a message originating from node 13 and diracted

nodes actually issues an MPI call. Our randomization stgitts
a common seed across all nodes so that all histogram chaiees a
deterministic. This alleviates communication overhea ttould
otherwise be required to coordinate sender/receiver tsaheftom

node 23 per uncoordinated random selection. In such a cade, n
10 would deadlock as the message is never received. Siynilesl
ceives (or waits for completion of receives) may deadlockdf
corresponding send is ever issued.

histograms. Instead, each node has the same random number se Our distributed, coordinated approach to randomized getec

quence and interprets traces in the same manner albeitgssaly
calls for events for their respective rank.

ensures that all nodes interpret the send event as originettm
node 10 and being directed at node 20. While node 10 issuesla se



(and node 20 a receive), all other nodes (13 and 23) will rsotels
any MPI call. The fact that the original event was a messawa fr
node 1 to 2 is probabilistically replayed as a message from on
node (here: 10) to another (here: 20, histograms do result in
randomized end-points but retain the original number ofsagss
for the example.

5.3 Challengesfor Deterministic Replay: Collective
Communication

With the coordinated replay approach, there are situationich

deadlocks can occur due to causal ordering of uncompresssasst

Consider the sample trace below with 8 nodes:

Participants:4-7
130: MPLIrecv from 0-3

Participants:0-3

110-111: MPlirecv(2 itera-
tions) 1st. iter: from 0-3, 2n
iter: from 4-7

112-113: MPISend(2 itera
tions) 1st. iter to 0-3, 2nd iter:
to 4-7

114: MPLWait (2 counts)
115: MPLBcast

Table2. Uncompressed Trace

il

131: MPLSend to 0-3

132: MPLWait
133: MPLBcast

Both columns in Tabl€]2 contain an uncompressed sequence
of MPI events originating from the same call stack. Each MPI
call is preceded by a sequence number as recorded by intra-
node compression. The first set of nodes, 0 to 3, issues 2 fsets o
MPI_lrecv/Send/Wait calls followed by a MBEBcast. The second
set of nodes, 4 to 7, issues only one MRdcv/Send/Wait followed
by MPI_Bcast. These events fail to compress due to mismatching
Send/Recv counts across different sets of nodes. Thigsesuhe
final trace with events 110-115 followed by events 130-133.

With the coordinated compression of Scala-H-Trace and its
corresponding replay, the MBend in sequence 112 will be is-
sued and the corresponding MPécv will be issued internally
by respective destination ranks as shown in the sample.trace
(MPI_Irecv/Wait are ignored during histogram-based replay3tNe
MPI_Bcast will be issued by ranks 0 to 3. This will block ranks 0 to
3 until the corresponding MBBcast (seq. 133) is issued by ranks
4-7. But before issuing the broadcast in sequence 133, noites
ranks 4-7 issue the MB$end in sequence 131 with destination 0-
3. Since nodes of ranks 0-3 are already blocked in #f4st (seq.
115), they cannot issue an corresponding internal Mé&dv, even-
tually leading to a situation in which nodes 4-7 cannot peact®
other events. This situation occurs frequently. In mangrsdic
applications, two sets of nodes can execute differentaecnf a
program leading to compression failure interspersed willec-
tives, such as barriers. This causal ordering of eventsdrtréce
can lead to deadlock when replayed using the above apprdéch.
employ a novel design for the inter-node compression alyori
to forcibly merge collectives even if an entire PRSD loop thfes
events does not merge properly.

Inter-node compression attempts to match an entire sequénc
events subject to the same PRSD loop across nodes. Evereiishe
a single mismatch, the entire sequence would conventionatlbe
merged but rather be written consecutively as shown in timpka
trace above. We employ a novel design for inter-node corsfmes
to greedily merge any subset of everggy., collectives inside a
loop. We then rearrange other communication calls witrectives
as synchronization points. This ensures that deadlocksotdre
introduced during the replay of MPI events.

A prove showing that our novel merge algorithm, which re-
arranges non-merging communication calls with a collectg a
synchronization point, will not introduce deadlocks is\pded in
a technical report due to space constraints [20].

6. Experimental Results

We evaluated Scala-H-Trace in three aspects: (1) its aféerss

of trace file compression, and (2) its statistical traceaggea-

ture and (3) its trace compression sensitivity to merge ipi@t
level settings. Experiments (1) and (2) utilize both thedgsam
compression approach and the WLCS-based recursive iatkr-n
compression algorithm. Most of our experiments were cotadlic

on Jaguar, the Cray XT4 system at ORNL. Each of compute node
features a 2.1 GHz quad-core AMD Opteron 1354 processor and
8GB of DDR2 memory. The login nodes run a full-featured Linux
version while the compute nodes run the Compute Node Linux mi
crokernel. Due to unavailability of Jaguar in the final expen-
tation phase, the MG experiments were conducted on Jugene, a
IBMBIlue Gene/P system with 73,728 compute nodes and 294,912
cores, 2 GB memory per node, and the 3D torus and global tree
interconnection networks.

We analyze the efficacy of Scala-H-Trace using a production-
scale application, the Parallel Ocean Program (POP) [6thas
main challenge. The Parallel Ocean Program (POP) is an ocean
circulation model developed at Los Alamos National Labamat
Our experiments exercise a one degree grid resolution ichwhi
the problem size is 320x384 blocks and the individual blazk s
is 5x6 resulting in a total of 4096 (64x64) blocks distritmit®
individual nodes. POP exhibits non-SPMD behavior, whicdfe
to trace file size increases with the number of nodes for acenve
tional trace tools, including ScalaTrace. POP is a largdesap-
plication with challenging communication patterns. Thigre dif-
ferent dominant patterns equivalent to five micro-benchsayet
in combined complexity. Hence, this application providesop-
portunity to show-case the effectiveness of histogranethdsace
collection of Scala-H-Trace. We conducted experiments dny-v
ing the maximum number of blocks assigned to each node.

We further utilize the CG and MG benchmarks from the NAS
parallel benchmark suite for inputs sizes C to study the affic
of Scala-H-Trace for different types of application beloavBoth
CG and MG mostly exhibit SPMD behavior but differ signifidgnt
in the communication pattern impacting the compressioecéffe-
ness during trace collection. These benchmarks are alsoteél
from the NAS benchmarks as these two were the challengirescas
for ScalaTrace’s lossless compression: Both were reptotesbult
in sub-linear increases in the trace file size for ScalaTjEZE

6.1 Trace Compression Effectiveness

We collected traces based on two different compressiomigaés.
First, the original ScalaTrace is used, in which loop dstaiid pa-
rameter values are captured losslessly and inter-node tam-
pression is performed with the coarse-grained matchingraeh
Second, our novel histogram-based trace compressionrifegatu
Scala-H-Trace is used, in which trace information is caddan
histograms for events and parameters that otherwise waotlltave
compressed with the lossless trace compression, andnatkr-
compression is performed recursively. Trace file sizes ssessed
under strong scaling, where we vary the number of nodes while
keeping the overall problem size fixed. Lossless tracesirdd
from ScalaTrace, are useful to identify exact details ofcth@mu-
nication and 1/O patterns exhibited by the application.tétisam-
based traces are obtained from Scala-H-Trace, attemmtiogg-
ture lossless information for trace events where feasibliévmon-
matching events are recorded in histogram bins. We hypiathes
that histograms suffice to capture the “big picture” of thelaa-
tion behavior and will assess this claim by accuracy of repfaes
relative to the original application. For applications #mxting non-
SPMD behavior, such as POP, histogram-based trace cohecti
(Scala-H-Trace) collects concise traces, which could tiwgravise
be obtained with lossless trace compression (ScalaTrace).
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Figure2. Parallel Ocean Program

Figure 2 depicts the trace file size for both lossless and
histogram-based traces when varying the number of node®s No
that the y axis is in log scale. Since POP exhibits non-SPMD be
havior, we observe a linear increase in the trace file sizénén t
case of lossless trace collection up to 256 nodes. The tlacsde
then stabilizes for 512 nodes and even declines for 1024snitde
identified that the timestep behavior becomes more regtitheae
levels, resulting in more effective inter-node compressBut we
again observed an increasing trend in the case of 2048 nBdes.
2048 nodes and above, we could not even collect traces arymor
as the trace file size was growing unmanageably fast andrtfee ti
taken to merge hundreds of megabytes of per-node tracembeca
prohibitive. With the histogram-based approach, there ®ula-
linear increase in the trace file size. Moreover, histogbased
trace files are two orders of magnitude smaller than thedessl|
traces. This considerable reduction is obtained by aggeessm-
pression of events and their associated function paramigtés-
tograms. This clearly shows the efficacy of Scala-H-Traceole
lect concise trace files even with applications exhibitimggular
behavior.

Figured® depicts trace file size for the CG benchmark. We ob-

serve an interesting trend in CG in which the trace file size fo
lossless traces is consistently 50% less than that of thegnamn
traces up to 1024 nodes, yet sizes match at 2048 node. Evaghtho
lossless traces are initially smaller than histogram satteere is a
consistent increase in the trace file size for the lossless. da
contrast, the size of histogram traces is almost constahttigé in-
crease in number of nodes. For lossless traces, non-matftiin-
tion parameters for events with the same call stack areatetlén
vectors associated with a participant rank list. This repngation
is more concise than histograms for smaller number of natféh.
thousands of nodes, the vector-participant list pair faheavent
has increased in size to where it is at par with histogramesac
Unlike vector-participant lists, histogram represeitais constant
with the increase in number of nodes as the number of binsad fix
during the application run and even the outlier participank in-
formation is absorbed as constants in bins. It should alswobed
that the trace file size for CG is in the order of hundreds aftkjte.
For larger applications with a similar communication bebaas
CG yet with trace file sizes in hundreds of megabytes, suateati
(or even sub-linear) growth for lossless traces may simplybe
scalable due to inter-node merge overheads, as discussed.

Figure[@ depicts the results for MG. MG exhibits a double
nested 7-point stencil communication pattern in the 3D spBoe
to the regular communication pattern and data-indepenplient
gram behavior, compressing the MPI parameter values of MG
works well for both lossless and histogram-based appr@ache
However, due to the slightly diverged per-node program ¥®eha
ior within a loop, the original inter-node compression aition
of ScalaTrace failed to merge across communication grotius.
caused trace sizes to increases linearly with the numbeodgs
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In contrast, with our novel fine-grained recursive approaahilar
PRSDs are merged and the trace size grows sub-linear|yhy.e.
factor of two as the number of nodes is increased by a facté4 of

6.2 Histogram-based Trace Replay

We studied the replay effectiveness of histogram-basextdray
comparing the original application execution time with tivee
taken to replay the recorded events. We discuss the e#eetbs
of the distributed approach of replaying statistical tsad&e also
discuss the impact of trace compression on the replay bahavi
for histogram-based traces. We show that even with stilsti
histogram-based traces, replay can still be employed tokctiee
correctness of a recorded trace and also to perform “whatril-
ysis for system procurements.

Figurel® depicts the replay time of histogram-based traeatev
compared to that of the application’s original executiondi The
compressed traces are fully forced histogram trace eveh&ev
any non-matching function parameters or loop iteratiormscal-
lected as histograms. Even with these traces, we see thagilay
time for traces collected for 32-512 number of nodes areimwbbbo
of the original execution time (with the exception of replkaye
for 128 nodes). Replay time accuracy drops to 12% for 1024 and
2048 nodes. Due to our experiment with strong scaling for,POP
the original execution time for both 1024 and 2048 nodes (€89 s
onds) is much lower than that for fewer nodeslQ0 seconds) so
that even small deviations in absolute values during reiplengase
the error percentage. We conjecture that such deviatiensrae-
alistic as POP for this particular input does not scale bayst?
nodes so that such short times are unrealistic. Simildriy,fgrob-
lem would not occur under weak scaling as runtimes would not
decrease with larger number of nodes. Overall, we obseatdtib
replay time is close to the original execution time, evenftoly
forced histograms, due to two reasons: (1) Since our hiatogr
are dynamically balanced, a random value selected froradriin
bins during replay falls within a commonly used value rangthie
original application run. (2) The inter-node compressitgodathm
effectively merged events across nodes so that commuuriczdils
are not split in the trace file.

We observe nearly 50% deviation in the case of 128 nodes for
POP. To investigate the cause, we calculated the time spent b
nodes in other communication calls and found that some rades
engaged in more communication calls than the majority osod
This created load imbalances where the remaining nodesatait
collectives for nodes participating in larger number ofrese

Figure[® depicts the replay time for the CG benchmark. In the
majority of cases, the replay time is with 10% to 15% of theyori
inal application runtime. Since the original executiondifor CG
is within 10 seconds for 1024 and 2048 nodes, even small sang
in the absolute replay execution time increase the erraceper
age considerably. The replay time deviation can be at&ibtd the
loop iterations recorded in histograms. Again, CG stop§rsgat
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Figure5. POP Replay
512 nodes for this input size so that larger application anesun-
realistic. Furthermore, if the random loop iteration stddcfrom
histograms is close to the maximum value, then all nodescpart
pate in more communication calls than in the original agian.
This is a fundamental trade-off between accuracy and maiége
ity of trace file sizes.

The replay time for MG benchmark is depicted in Fididre 7. The
averaged inaccuracy is 8.2% under strong scaling. We obsgrv
to 34.2% inaccuracy for 2,048 nodes. This outlier is due texan
cessively short runtime of 3.8s with an absolute error of ju3s.
For 1,024 nodes, this decreases to 12.5% and for 512 to 5.8% an
so on indicating that the problem is only due to excessivbtyrts
runtimes. After discarding this outlier due to strong soglimita-
tions, the replay timing accuracy for MG is high. As discusbe-
fore, with the recursive inter-node trace compression, keealle
to achieve a nearly constant trace sizes for MG even withwait t
histogram-based probabilistic approach. Due to the etion of
the imprecision, the timing behavior of the trace replayhhige-
sembles that of the original MG benchmark.

With the exception for MG, which fares equally well with
histogram-based compression, replay for Scala-H-Tracergéd
traces with forced histograms results in runtimes that athinv
12-15% of the original application for most cases. This ltésun-
teresting as forced histograms are equivalent to a 0% meegé p
sion level, which is the most aggressive compression plessilth
Scala-H-Trace. More accurate replay may result from higheci-
sion levels at the cost of slightly larger traces, as disatisext.

6.3 Trace Sensitivity Study

Finally, we study the effect of varying merge precision lsven
trace file sizes. This experiment serves as an illustratiorttfe
benefits of user-specified merge precision levels as a meatesar
compression, which should improve as precision decrebsmge
precision levels provide a tunable parameter to selecetdrgce
file size as required by operating environments or perfooaan
analysis experiments. Lossless traces may be desirablexémt
analysis of application behavior and users with accessdessive
storage may happily utilize this feature even if the trace sikze
becomes large. When desiring a more compact trace file and whe
inter-node merges become prohibitive for lossless tratess can
decrease merge precision level to target a desired tracizZdend
tracing overhead.

Figure[® depicts the impact of verifying merge precision lev
els on the final trace file size. We fixed the number of nodes to
512 for POP and measured trace file sizes for varying merge pre
cision levels. We observe that even with a small decreaskein t
merge precision from 100% to 95%, the trace size reduced lbg mo
than a factor of three. This significant reduction is due togimg
events with varying numbers of loop iterations for the titepsn
POP. With lossless traces, two different sets of loops Withex-
act same events fail to compress due to varying numbers pf loo
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iterations across the timestep. This variation is data ridget and
induced by computation as explained in the sedfioh 4.1. Tdwet
file size is constant up to a 70% merge precision level. At 60%
precision, sizes drop again by almost 50%. This second fietuc
has been attributed to function parameters collected &sgnéns.
Many events with varying function parameters are not coeudbin
under lossless tracing or result in vectors collected toesgmt
varying parameters. Both contribute to the significantease in
the trace file size and prevent trace scalability with insim@num-
bers of nodes. Finally, another three-fold reduction indrsizes is
observed for forced histograms (0% merge precision lex¢lhe
0% merge precision level, all non-matching values are ssmied
as histograms, which results in the most concise tracelgessith
Scala-H-Trace. Overall, sensitivity experiments to mgngeision
levels show that small reductions in precision can signifigare-
duce the overall trace sizes. This particularly aids prtidoescale
codes like POP, which otherwise cannot be feasibly tractsowi
loss of information for thousands of nodes.

7. Related Work

There are several tools, such as TAUI[16], Vampir [10], Parav
[L3] and SCALASCA[[#], that capture communication and/@ I/
trace events using library instrumentation similar to &daiTrace.
But only few employ trace compression techniques to corttrel
trace file size. Many of these tools depend on zlib for congioas
which compresses blocks of data without preserving thesire
of the tracej.e., post-processing/analysis only becomes feasible af-
ter decompression. This also increases the memory regemtsm
effectively rendering trace analysis infeasible on comityadiesk-
tops or laptops and sometimes even high-end workstatiepgrl-
ing on the uncompressed trace size. Unlike these techni§oeta-
Trace [12] compresses traces while preserving the tragetste in
terms of order of events. As a result, post-processingfaisatan
be performed without decompression. We utilize this conaép
structure preserving compression in Scala-H-Trace. Yéev@ta-
laTrace and any of the aforementioned tracing tools reassléss
traces with a subset or all event parameters, Scala-H-TFEsted-
lishes a different methodology. Parameters, event frezjesrand



participant lists of nodes are recorded as histograms wdsstelss
compressing cannot be established within a user-specifezdgem
precision level. Employing statistical methods resultsiore con-
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Appendix

We next prove that our novel merge algorithm, which reareang
non-merging communication calls with a collective as a byoc
nization point, will not introduce deadlocks. We assume tha
original application is deadlock free (which is reasonaihee the
event trace was collected from a terminating applicatiow) jro-
vide the proof below:

THEOREM1. Areplayed trace of a program with events reordered
to synchronized collectives does not result in deadlock if the origi-
nal trace was deadlock free.

Proof: Follows from Lemmas 1-3. [ |

LEMMA 1. Lemma 1: A replayed trace of a program with only
collectives will not deadlock.

Proof: By construction of traces, all recorded participants ergag
in a collective during replay in the same order as recorded: C
lectives are blocking. Hence, all participants completeléective

at (nearly) the same time (as collectives provide globat/grsyn-
chronization). |

LEMMA 2. Areplayed trace of a program with only point-to-point
communication will not deadlock.

Proof: Blocking/non-blocking sends are replayed in the same order
as recorded. The corresponding receives are issues asaukinlg
receives in the same order that the sends where issued. ®nce a
non-blocking receives of a PRSD have been issued, waitssare i
sued on all pending non-blocking receives. Hence, if thgiai
trace did not deadlock, replayed point-to-point messagsisien-

tical receive ordering followed by wait ordering relativeedender
ordering will not deadlock either. |

LEMMA 3. A replayed traces with mixed events of collectives and
point-to-point messages will not deadlock.

Proof: (a) Assume a trace with alternating phases of only point-
to-point messages and only collectives. Since collectpreside

a fence where all point-to-point messages are consumedtpréo
collective, replaying such a trace is deadlock free for eagion

by Lemmas 1 and 2 and thereby also for the entire trace sirte ea
phase is causally independent.

(b) If a point-to-point message is crossing collectivesi{4e-
fore but received after a collective across a pair of nodasalso
participates in the collective), then the same send wilsbaed dur-
ing replay before the corresponding collective, but theespond-
ing non-blocking receive will also be issued before theemile
followed by a wait. Hence, if the application with its tracexkents
was deadlock free, the replay will also be deadlock free.

Let S= si,...,5 be the set of event streams overnodes
wheres = ey, ..., ey are ordered sequences of of point-to-point or
collective communication events.

(c) By structural induction over (b): Les € Sandsc € She
event streams with alternating phases of collectives amut-po-
point messages or point-to-point messages crossing tiede@s
in proof step (a) or (b) of Lemma&?, respectively. Then leS"
be the induced set of event streams of the traced application
with an additional point-to-point message sent from nioenode
k denoted as; — fy” whereeg € 57, fy € 57 ands' € ST,
s{ € S'. Furthermore, le{ey,e1} C 5 and{fy, fy 1} C s be
subsequences such thia, e}, 61} € § and{fy, f,", fy 11} C
s{ for arbitrary 1< x < mj and 1<y < my. Furthermore, le8
be the set of event streams with reordered non-blockingvese
in place of sends corresponding $followed by waits that is
deadlock free under replay.

The corresponding induced set of replayed event streghs,
is then{ey, e} 6,1} C 8§ and{fx, f,", fip1} C S forsj e S*
ands) e S™. Since the application was deadlock free $and
St and replay was deadlock free f&f, replay is also deadlock
free forS™ since replay preserves ordering of event sequesiﬁfes
ands’; with respect to the send order of the application, i.e., a non
blocking receive (followed by a wait) is issued at the rergj\node
after fy € &} . [ ]
Notice that we fold the non-blocking receive and the corre-
sponding wait intofy+ in the above notation to facilitate readability
without loss of generality.
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