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An approximation to the definite multidimensional integral, 
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is given by, 

𝐼𝐼[𝑓𝑓] =   𝑓𝑓 𝒙𝒙 𝑑𝑑𝒙𝒙 ≈
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where 𝐻𝐻 is the region of integration, 𝒙𝒙𝒋𝒋 the evaluation points and 𝑤𝑤𝑗𝑗 the corresponding weights, 
𝑗𝑗 = 1,… , 𝐿𝐿. Various traditional deterministic methods have been proposed in the past and are still 
being used to solve the problem at different dimension (mostly lower dimension). Some of the 
methods traditionally used for 1-D adaptive integration are Simpson's 3/5-points, Newton-Cotes 8-
point, Gauss-Kronrod 7/15-points and Gauss-Kronrod 10/21-points. For integrands in 2-D and 3-D, 
Newton-Cotes 8-point, Gauss-Kronrod 7/15-points and Gauss-Kronrod 10/21-points are often used. 
However at higher dimension the execution time for these algorithms become unacceptable since 
the number of function evaluation grows exponentially with the dimension, necessitating the use 
of Monte Carlo techniques that have accuracy issues. 
 
    CUHRE [1] on the other hand is a deterministic algorithm which uses one of several cubature 
rules of polynomial degree in a globally adaptive subdivision scheme. CUHRE is the best known 
open source solution for solving multidimensional integration in reasonable amount of time. In 
moderate dimensions CUHRE is very competitive, particularly if the integrand is well approximated 
by polynomials. As the dimension increases, the number of points sampled by the cubature rules 
rises considerably, thereby reducing its usefulness. Also, with the increase in dimension, the 
execution time of CUHRE is unacceptable due to increase in the number of sampled points. 
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GPU-based multidimensional integration is implemented in 2 phases. 
 
PHASE1: 
 Divide the whole integration region into n regions,  where n is chosen based on:  

• Current GPU configuration, in order to have full occupancy of GPU; 
• Dimensionality of the problem. 

 Assign every thread of GPU to a region and apply the integration rule locally. 
• Computes Rerr, 𝐼𝐼 , Neval and a subdivision axis k; 
• Every thread computes an estimate 𝐼𝐼  for the integral 𝐼𝐼 which for every component 𝑐𝑐 

fulfills | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐|  ≤ max 𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟 𝐼𝐼𝑐𝑐 ; 
• A region is set to be active if | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐| > max (𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟|𝐼𝐼𝑐𝑐|)  i.e. the region has not 

satisfied the requested accuracy and has to be further subdivided. If | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐|  ≤
max(𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟|𝐼𝐼𝑐𝑐|) then the region is set inactive i.e. the computed value of integral 
𝐼𝐼  for the region satisfies the requested accuracy and the region is discarded from 
further computations. 

 Group all the 𝑁𝑁′ active regions and compute the intermediate results from 𝐼𝐼, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟, 𝑁𝑁𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟 for 
all the inactive regions using prefix sum from thrust library. 

 Subdivide all the 𝑁𝑁′ active regions along their respective subdivision axis by a factor 𝑘𝑘′, 
which generates a new set of 𝑁𝑁′ ∗  𝑘𝑘′ active regions for further processing. Parameter 𝑘𝑘′ is 
chosen based on: fraction of input intervals those are active, current GPU configuration, in 
order to have full occupancy of GPU. 

 
        PHASE1 of the algorithm has the adaptive nature of eliminating all the regions where the 
integrand is well-behaved(satisfies the error criterion) and at the same time refining the resolution 
in the regions which require further application of integration rules due to complicated and 
sometimes very poorly behaved integrand. Using such hierarchical subdivision guarantees the 
maximum utilization of GPU and subsequently improves the performance of the integral 
computation. Number of iterations of PHASE1 is decided based on the fraction of input intervals 
that remain active after an iteration of PHASE1. 
 
PHASE2: 
 Set of active regions are assigned to every GPU thread. 
 Every thread of GPU runs the GPU-optimized CUHRE integration rule to compute Rerr, 𝐼𝐼 , Neval 

for all the regions assigned to the thread. 
 Compute the integral results from the intermediate values 𝐼𝐼, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟, 𝑁𝑁𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟 generated by every 

thread using prefix sum and scan operation from thrust library. 
 

        PHASE2 starts with all the active regions which were subdivided finer along the axis where the 
integrand has largest fourth difference. A portion of these new active regions can converge faster 
than others depending on the integrand behavior. In this case not all threads of GPU remain active 
at all times, which reduces the utilization of GPU. To avoid this scenario a set of regions are 
assigned to a single GPU threads to have a uniform load balance across the GPU. PHASE2 of the 
algorithm applies the integration rule (CUHRE) on every region until each satisfies the maximum 
error criterion or maximum function evaluation limit. 

3. 

Today’s scientists can gain insight into the challenges more easily by relying on 
computational methods. However, the growth of computational complexity 
requires better algorithmic efficiency and more computational power. 
Consequently, the ability to fully exploit parallelism is the only way to solve 
multiple complex problems in science and engineering using practically limitless 
computing power of multiple processors. In this context, modern powerful 
Graphic Processor Units (GPUs) open a new possibility for highly efficient parallel 
computing in science and engineering. Though we have access to cheap multiple 
cores, the software is still lagging behind the hardware in utilizing these cores on a 
processor. Applications need to be explicitly programmed to exploit multiple 
cores. In general, programming GPUs for general-purpose computing is difficult as 
it requires a change in programming philosophy and retraining. However, the 
design of efficient computational models should utilize advantages of both CPU 
and GPU architecture. Developing such algorithms whose performance is 
optimized on a hybrid CPU/GPU platform is necessary and important research 
topic in computer science. 
  
   The problem considered in this research is the approximation of the definite 
multidimensional integral 
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to some accuracy . We are particularly interested in implementing globally 
adaptive algorithms on GPUs by leveraging the architectural difference between 
CPUs and GPUs, and using the resulting computational speedup to solve 
multidimensional integration with higher accuracy in acceptable times for most of 
the applications. 
  
    In recent years a number of computational models involve integration of various 
functions. Examples include quantum chemistry calculations necessitating 
evaluation of millions of two-electron integrals, solution of the Navier-Stokes 
equations using spectral element methods in 2-D and 3-D geometries requiring 
the ability to perform multiple integration for billions of points, lattice QCD 
simulations which have to evaluate highly dimensional integrals. In some of these 
computational problems computing values of integrated functions is a very time-
consuming task. Therefore, one has to use highly efficient adaptive integration 
algorithms. Many such algorithms have been developed, and presented in widely 
used numerical libraries such as NAG, IMSL, QUADPACK and others. However, 
there are few only algorithms that have been developed for parallel computing. 
These considerations lead us to conclude that the most efficient algorithm for 
solving multidimensional integral should utilize the advantages of both CPU and 
GPU architecture, and develop algorithms whose performance is optimized on a 
hybrid CPU/GPU platform. 
   
    We base the multidimensional algorithms in this research on the adaptive 
routine CUHRE [1]. CUHRE is a deterministic algorithm. It uses the Genz–Malik 
cubature rules [2] in a globally adaptive subdivision scheme. It is the same as the 
original DCUHRE subroutine [1]. The algorithm is thus: Until the requested 
accuracy is reached, bisect the region with the largest error along the axis with the 
largest fourth difference. Sequential CUHRE implementation is available from the 
CUBA library [3, 4]. 

Hardware Specification: 
GPU: NVIDIA Tesla M2090 
CPU: Intel(R) Xeon(R) CPU X5650@2.67Ghz 

The integrals have the form 
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and for above results, the test integrands are: 
𝑓𝑓1 𝒙𝒙  = 1.0
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 , where  = 10.0 and  = -0.0544021, 

𝑓𝑓3 𝒙𝒙  = 𝐶𝐶𝐶𝐶𝐶𝐶(2 +   i𝑥𝑥𝑖𝑖) , 
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        where  is picked randomly from [0, 1] and i are picked randomly 
from [0, 1] and then scaled according to 

 i = 15
𝑛𝑛
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where integration region is a n-dimensional hypercube and x is an n-
vector. The algorithm input is n, a, b, f, an error tolerance tol and a limit 
Lmax, on allowed number of evaluations of f. Some of the test functions 
were chosen from the technical report[7]. 
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          Recent development in Graphics Processing Units (GPUs) has enabled a new 
possibility for highly efficient parallel computing in science and engineering. Their 
massively parallel architecture makes GPUs very effective for algorithms where 
processing of large blocks of data can be done in parallel. Multidimensional 
adaptive integration has a significant application in areas like computational fluid 
dynamics, quantum chemistry, plasma physics, molecular dynamics and signal 
processing. The computationally intensive nature of adaptive integration for 
higher dimension requires a high-performance implementation. In this study, we 
present an efficient parallel method for calculating multidimensional integrals 
using GPUs. Various CUDA optimization techniques are applied to maximize the 
utilization of the GPU. CUDA-based implementation outperforms the best known 
sequential methods and achieve up to 10X-100X speedup. It also shows good 
scalability with the increase in dimensionality. 

In this study, we presented a parallel implementation of an efficient deterministic algorithm for adaptive multidimensional numerical 
integration on a hybrid CPU/GPUs platform.  Experiments showed good scalability for the parallel implementation on Tesla M2090 GPU with a 
speed-up of 10X-100X over the best known sequential method. The results showed that our proposed parallel algorithm is suitable even for 
higher dimensional integration. As the emergence of the CUDA programming model, GPU has become a promising platform for high 
performance computing. We believe the GPU-based parallel computing will provide compelling benefits for various problems in computational 
science. Current and future work includes extending our work with multiple GPU nodes along with optimizing our parallel implementation by 
reducing the GPU global memory access and increasing the utilization of GPU shared memory. 

Figure 1 : Speed-up for Function 1 Figure 2 : Speed-up for Function 2 

Figure 3 : Speed-up for Function 3 


