
Category: Algorithms & NumericAl techNiques
poster

AN09
contact name

Kamesh arumugam: akamesh@cs.odu.edu

References

Conclusion

Motivation

Abstract

An Efficient Deterministic Parallel Algorithm for Adaptive Multidimensional
Numerical Integration on GPUs

1.

2.

Parallel method on GPUs 4.

Performance Evaluation Adaptive Integration Methods

6.

5.
An approximation to the definite multidimensional integral,

𝐼𝐼[𝑓𝑓] = …
𝑏𝑏2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1
 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙

𝑏𝑏𝑛𝑛

𝑎𝑎𝑛𝑛

is given by,

𝐼𝐼[𝑓𝑓] = 𝑓𝑓 𝒙𝒙 𝑑𝑑𝒙𝒙 ≈

𝐻𝐻
 𝑤𝑤𝑗𝑗𝑓𝑓(𝒙𝒙𝒋𝒋)
𝐿𝐿

𝑗𝑗=1

where 𝐻𝐻 is the region of integration, 𝒙𝒙𝒋𝒋 the evaluation points and 𝑤𝑤𝑗𝑗 the corresponding weights,
𝑗𝑗 = 1,… , 𝐿𝐿. Various traditional deterministic methods have been proposed in the past and are still
being used to solve the problem at different dimension (mostly lower dimension). Some of the
methods traditionally used for 1-D adaptive integration are Simpson's 3/5-points, Newton-Cotes 8-
point, Gauss-Kronrod 7/15-points and Gauss-Kronrod 10/21-points. For integrands in 2-D and 3-D,
Newton-Cotes 8-point, Gauss-Kronrod 7/15-points and Gauss-Kronrod 10/21-points are often used.
However at higher dimension the execution time for these algorithms become unacceptable since
the number of function evaluation grows exponentially with the dimension, necessitating the use
of Monte Carlo techniques that have accuracy issues.

 CUHRE [1] on the other hand is a deterministic algorithm which uses one of several cubature
rules of polynomial degree in a globally adaptive subdivision scheme. CUHRE is the best known
open source solution for solving multidimensional integration in reasonable amount of time. In
moderate dimensions CUHRE is very competitive, particularly if the integrand is well approximated
by polynomials. As the dimension increases, the number of points sampled by the cubature rules
rises considerably, thereby reducing its usefulness. Also, with the increase in dimension, the
execution time of CUHRE is unacceptable due to increase in the number of sampled points.

Kamesh Arumugam,1,2 Alexander Godunov,3,2 Desh Ranjan,1,2 Bals a Terzic , 4, 3, 2 and Mohammad Zubair1,2

1Department of Computer Science, Old Dominion University, Norfolk, Virginia 23529
2Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529

3Department of Physics, Old Dominion University, Norfolk, Virginia 23529
4Center for Advanced Studies of Accelerators, Jefferson Lab, Newport News, Virginia 23606

GPU-based multidimensional integration is implemented in 2 phases.

PHASE1:
 Divide the whole integration region into n regions, where n is chosen based on:

• Current GPU configuration, in order to have full occupancy of GPU;
• Dimensionality of the problem.

 Assign every thread of GPU to a region and apply the integration rule locally.
• Computes Rerr, 𝐼𝐼 , Neval and a subdivision axis k;
• Every thread computes an estimate 𝐼𝐼 for the integral 𝐼𝐼 which for every component 𝑐𝑐

fulfills | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐| ≤ max 𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟 𝐼𝐼𝑐𝑐 ;
• A region is set to be active if | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐| > max (𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟|𝐼𝐼𝑐𝑐|) i.e. the region has not

satisfied the requested accuracy and has to be further subdivided. If | 𝐼𝐼 𝑐𝑐 − 𝐼𝐼𝑐𝑐| ≤
max(𝑎𝑎𝑏𝑏𝑎𝑎, 𝑟𝑟𝑟𝑟𝑟𝑟|𝐼𝐼𝑐𝑐|) then the region is set inactive i.e. the computed value of integral
𝐼𝐼 for the region satisfies the requested accuracy and the region is discarded from
further computations.

 Group all the 𝑁𝑁′ active regions and compute the intermediate results from 𝐼𝐼, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟, 𝑁𝑁𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟 for
all the inactive regions using prefix sum from thrust library.

 Subdivide all the 𝑁𝑁′ active regions along their respective subdivision axis by a factor 𝑘𝑘′,
which generates a new set of 𝑁𝑁′ ∗ 𝑘𝑘′ active regions for further processing. Parameter 𝑘𝑘′ is
chosen based on: fraction of input intervals those are active, current GPU configuration, in
order to have full occupancy of GPU.

 PHASE1 of the algorithm has the adaptive nature of eliminating all the regions where the
integrand is well-behaved(satisfies the error criterion) and at the same time refining the resolution
in the regions which require further application of integration rules due to complicated and
sometimes very poorly behaved integrand. Using such hierarchical subdivision guarantees the
maximum utilization of GPU and subsequently improves the performance of the integral
computation. Number of iterations of PHASE1 is decided based on the fraction of input intervals
that remain active after an iteration of PHASE1.

PHASE2:
 Set of active regions are assigned to every GPU thread.
 Every thread of GPU runs the GPU-optimized CUHRE integration rule to compute Rerr, 𝐼𝐼 , Neval

for all the regions assigned to the thread.
 Compute the integral results from the intermediate values 𝐼𝐼, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟, 𝑁𝑁𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟 generated by every

thread using prefix sum and scan operation from thrust library.

 PHASE2 starts with all the active regions which were subdivided finer along the axis where the
integrand has largest fourth difference. A portion of these new active regions can converge faster
than others depending on the integrand behavior. In this case not all threads of GPU remain active
at all times, which reduces the utilization of GPU. To avoid this scenario a set of regions are
assigned to a single GPU threads to have a uniform load balance across the GPU. PHASE2 of the
algorithm applies the integration rule (CUHRE) on every region until each satisfies the maximum
error criterion or maximum function evaluation limit.

3.

Today’s scientists can gain insight into the challenges more easily by relying on
computational methods. However, the growth of computational complexity
requires better algorithmic efficiency and more computational power.
Consequently, the ability to fully exploit parallelism is the only way to solve
multiple complex problems in science and engineering using practically limitless
computing power of multiple processors. In this context, modern powerful
Graphic Processor Units (GPUs) open a new possibility for highly efficient parallel
computing in science and engineering. Though we have access to cheap multiple
cores, the software is still lagging behind the hardware in utilizing these cores on a
processor. Applications need to be explicitly programmed to exploit multiple
cores. In general, programming GPUs for general-purpose computing is difficult as
it requires a change in programming philosophy and retraining. However, the
design of efficient computational models should utilize advantages of both CPU
and GPU architecture. Developing such algorithms whose performance is
optimized on a hybrid CPU/GPU platform is necessary and important research
topic in computer science.

 The problem considered in this research is the approximation of the definite
multidimensional integral

𝐼𝐼 = …
𝑏𝑏2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1
 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 𝑑𝑑𝑥𝑥1 𝑑𝑑𝑥𝑥2 …𝑑𝑑𝑥𝑥𝑛𝑛

𝑏𝑏𝑛𝑛

𝑎𝑎𝑛𝑛

to some accuracy . We are particularly interested in implementing globally
adaptive algorithms on GPUs by leveraging the architectural difference between
CPUs and GPUs, and using the resulting computational speedup to solve
multidimensional integration with higher accuracy in acceptable times for most of
the applications.

 In recent years a number of computational models involve integration of various
functions. Examples include quantum chemistry calculations necessitating
evaluation of millions of two-electron integrals, solution of the Navier-Stokes
equations using spectral element methods in 2-D and 3-D geometries requiring
the ability to perform multiple integration for billions of points, lattice QCD
simulations which have to evaluate highly dimensional integrals. In some of these
computational problems computing values of integrated functions is a very time-
consuming task. Therefore, one has to use highly efficient adaptive integration
algorithms. Many such algorithms have been developed, and presented in widely
used numerical libraries such as NAG, IMSL, QUADPACK and others. However,
there are few only algorithms that have been developed for parallel computing.
These considerations lead us to conclude that the most efficient algorithm for
solving multidimensional integral should utilize the advantages of both CPU and
GPU architecture, and develop algorithms whose performance is optimized on a
hybrid CPU/GPU platform.

 We base the multidimensional algorithms in this research on the adaptive
routine CUHRE [1]. CUHRE is a deterministic algorithm. It uses the Genz–Malik
cubature rules [2] in a globally adaptive subdivision scheme. It is the same as the
original DCUHRE subroutine [1]. The algorithm is thus: Until the requested
accuracy is reached, bisect the region with the largest error along the axis with the
largest fourth difference. Sequential CUHRE implementation is available from the
CUBA library [3, 4].

Hardware Specification:
GPU: NVIDIA Tesla M2090
CPU: Intel(R) Xeon(R) CPU X5650@2.67Ghz

The integrals have the form

𝐼𝐼[𝑓𝑓] = …
𝑏𝑏2

𝑎𝑎2

𝑏𝑏1

𝑎𝑎1
 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙

𝑏𝑏𝑛𝑛

𝑎𝑎𝑛𝑛

and for above results, the test integrands are:
𝑓𝑓1 𝒙𝒙 = 1.0

𝛼𝛼+ 𝐶𝐶𝐶𝐶𝑎𝑎 xi
2𝑛𝑛

𝑘𝑘=1
 2 , where = 0.1,

𝑓𝑓2 𝒙𝒙 = 1
2 𝐶𝐶𝐶𝐶𝑎𝑎 𝛼𝛼∗𝑥𝑥𝑖𝑖

𝛽𝛽

𝑛𝑛

𝑘𝑘=1
 , where = 10.0 and = -0.0544021,

𝑓𝑓3 𝒙𝒙 = 𝐶𝐶𝐶𝐶𝐶𝐶(2 + i𝑥𝑥𝑖𝑖) ,
𝑛𝑛
𝑘𝑘=1

 where is picked randomly from [0, 1] and i are picked randomly
from [0, 1] and then scaled according to

 i = 15
𝑛𝑛

𝑘𝑘=1

where integration region is a n-dimensional hypercube and x is an n-
vector. The algorithm input is n, a, b, f, an error tolerance tol and a limit
Lmax, on allowed number of evaluations of f. Some of the test functions
were chosen from the technical report[7].

1. Berntsen, J.; Espelid, T. O.; and Genz, A. “An Adaptive Algorithm for the Approximate Calculation of Multiple Integrals.” ACM Transactions on
Mathematical Software Vol. 17, No. 4, December 1991, Pages 437-451.

2. A. Genz, A. Malik, SIAM J. Numer. Anal. 20 (1983) 580.
3. T. Hahn. “CUBA – a library for multidimensional numerical integration”. Computer Physics Communications 176 (2007) 712–713.
4. T. Hann. “CUBA – The CUBA library”. Nuclear Instruments and Methods in Physics Research, A 559 (2006) 273–277.
5. NVIDIA, “NVIDIA’s Next Generation CUDA Compute Architecture:

Fermi”,http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.
6. Thrust, http://thrust.github.com/.
7. Berntsen, J.; Espelid, T. O.; and Genz, A. “A test of ADMINT”. Reports in Informatics 31, Dept. Of Informatics, Univ. of Bergen, 1988.

 Recent development in Graphics Processing Units (GPUs) has enabled a new
possibility for highly efficient parallel computing in science and engineering. Their
massively parallel architecture makes GPUs very effective for algorithms where
processing of large blocks of data can be done in parallel. Multidimensional
adaptive integration has a significant application in areas like computational fluid
dynamics, quantum chemistry, plasma physics, molecular dynamics and signal
processing. The computationally intensive nature of adaptive integration for
higher dimension requires a high-performance implementation. In this study, we
present an efficient parallel method for calculating multidimensional integrals
using GPUs. Various CUDA optimization techniques are applied to maximize the
utilization of the GPU. CUDA-based implementation outperforms the best known
sequential methods and achieve up to 10X-100X speedup. It also shows good
scalability with the increase in dimensionality.

In this study, we presented a parallel implementation of an efficient deterministic algorithm for adaptive multidimensional numerical
integration on a hybrid CPU/GPUs platform. Experiments showed good scalability for the parallel implementation on Tesla M2090 GPU with a
speed-up of 10X-100X over the best known sequential method. The results showed that our proposed parallel algorithm is suitable even for
higher dimensional integration. As the emergence of the CUDA programming model, GPU has become a promising platform for high
performance computing. We believe the GPU-based parallel computing will provide compelling benefits for various problems in computational
science. Current and future work includes extending our work with multiple GPU nodes along with optimizing our parallel implementation by
reducing the GPU global memory access and increasing the utilization of GPU shared memory.

Figure 1 : Speed-up for Function 1 Figure 2 : Speed-up for Function 2

Figure 3 : Speed-up for Function 3

