
LLNL-CONF-599993

Symbolic Analysis of
Concurrency Errors in OpenMP
Programs

H. Ma, L. Wang, C. Liao, D. Quinlan, Z. Yang

November 9, 2012

Symbolic Analysis of Concurrency Errors in OpenMP
Programs
Boston, MA, United States
May 20, 2013 through May 24, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Symbolic Analysis of Concurrency Errors in OpenMP Programs

Hongyi Ma and Liqiang Wang
Department of Computer Science

University of Wyoming
{hma3,lwang7}@uwyo.edu

Chunhua Liao and Daniel Quinlan
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

{liao6, dquinlan}@llnl.gov

Zijiang Yang
Department of Computer Science

Western Michigan University
{zijiang.yang}@wmich.edu

Abstract—As one of the popular parallel programming models,
OpenMP has been widely used in scientific applications in
recent years to facilitate shared-memory parallelism. The
increasing availability of multicore devices has permitted
more and more sequential programs to be parallelized using
OpenMP. Unfortunately, it is a daunting task to develop correct
OpenMP programs. Concurrency errors, such as data races
and deadlocks, are tricky to detect using traditional testing
techniques. This paper presents an OpenMP Analysis Toolkit
(OAT) to detect data races and deadlocks using SMT-solver
based symbolic analysis, which can approximately simulate the
real execution of an OpenMP program. Hence, our symbolic
analysis is more accurate than traditional static analysis, and
more efficient and scalable than runtime analysis tools. We
conducted experiments on real-world OpenMP benchmarks
and university student homework assignments by comparing
our OAT tool with two commercial runtime tools for check-
ing multithreaded programs (Intel Thread Checker and Sun
Thread Analyzer). Our experiments show that our symbolic
analysis tool is more efficient and scalable than the two
commercial tools. Our tool OAT is as accurate as Sun Thread
Analyzer, and both are more precise than Intel Thread Checker
for checking concurrency errors in OpenMP programs.

Keywords-OpenMP; Data Race; Deadlock; Symbolic Analysis;
Static Analysis; Dynamic Analysis; SMT Solver;

I. INTRODUCTION

OpenMP has been widely used in scientific applications to
facilitate shared-memory parallelism. In recent years, it has
become even more popular due to the ubiquity of multi-
core computers. OpenMP is a portable parallel programming
model used to create parallel C/C++ and Fortran multi-
threaded programs on shared-memory computing platform.
It has been implemented in major compilers such as GCC,
MS Visual Studio, and Intel Compiler. In OpenMP, paral-
lelism is explicitly specified by programmers using directives
inserted into existing programs. The execution of OpenMP
programs is based on OpenMP runtime libraries, most of
which rely on the Pthreads API to create and manipulate
threads.

Developing OpenMP programs is prone to concurrency
errors. A common concurrency error in OpenMP programs
is data race. A data race occurs when two or more threads
perform conflicting data accesses (i.e., accesses to the same

variables and at least one access is a write) without using an
explicit mechanism to prevent the accesses from happening
simultaneously. Consider the Example-1 in Figure 1, the
parallelization is indicated by OpenMP directive #pragma
omp parallel for, which distributes all loop iterations
nearly equally to each OpenMP thread. By default, all
variables in a parallel region are shared except for the loop
iteration variable (i.e., i in the current example). Although
i is a private variable, some x[i] may be read and written
by two different threads simultaneously, which incurs a data
race. Another more tricky data race is shown in the Example-
2 of Figure 1, where shared and private clauses define
shared and private variables for the parallel section, and
nowait indicates that OpenMP threads do not synchronize
at the end of the parallel loop, thus the thread finishing
for iterations may execute the next assignment statement
right away. In this example, there is no obvious data race if
only considering the for loop. However, some threads that
finish iterations early will execute errors = dt[9]+1
while other threads may still simultaneously execute for
worksharing region by reading and writing d[i], which
may cause a data race.

Compared to data races, deadlocks are less common in
OpenMP. A deadlock in OpenMP is usually introduced by
improper use of the omp barrier directive or the lock
routines in OpenMP runtime library. The omp barrier
directive forces a thread to wait at a barrier until other
threads have reached the same barrier. The example in
Figure 2 shows a deadlock scenario from [1]. By default,
the two #pragma omp section are executed by two
different threads. Since every #pragma omp section
construct contains a barrier directive in the function call
print_results(), each thread would execute a different
barrier directive. Thus, each thread would wait for the other
to reach its own barrier, which will never happen. Hence, a
deadlock occurs.

Traditional data race and deadlock detections are usually
either dynamic (e.g.[16], [25]) or static (e.g.[15]). Static
analysis is able to consider all possible behaviors without
actually executing a program. However, it produces false
positives due to the fact that some aspects of the program’s
behavior, such as aliases and pointers, are impossible to

/* Example-1 */
#pragma omp parallel for
for(i = 1; i<1000; i++){

x[i] = x [i]+ x[i-1];
}

/* Example-2 */
#pragma omp parallel shared(b) private(errors)
{
#pragma omp for nowait
for(i = 0; i < 10; i++)

dt[i] = b + dt[i]*5;
errors = dt[9] +1;
...
}

Figure 1. Examples of Race Condition In OpenMP Programs.

void print_results(float array[N], int section)
{
#pragma omp critical {
int tid =omp_get_thread_num();
printf("The results are in section

%d\n", section);
for (i=0; i<N; i++)

printf("%e ",array[i]);
} /*** end of critical ***/
#pragma omp barrier
printf("Thread %d done and synchronized.

\n", tid);
}
#pragma omp sections {

#pragma omp section {
print_results(c, 1);

}
#pragma omp section {

print_results(c, 2);
}
/*** Use barrier for clean output ***/
#pragma omp barrier

} /* end of parallel section */

Figure 2. Example of deadlock in OpenMP programs.

obtain precisely. Furthermore, static analysis usually cannot
report witnesses in term of an execution leading to detected
errors. Therefore, significant manual efforts are required
to confirm each detected error. Dynamic analysis, on the
other hand, can miss errors because not all possible program
behaviors can be observed during executions. In addition, the
approaches are not appropriate for large-scale applications
since the overhead is usually more expensive.

In recent years, symbolic approaches have become a promis-
ing trend to error detections because of less false positives
and false negatives. Symbolic execution [14], [11], [27], [3],
[4] attempts to explore all program paths under symbolic val-
ues. By encoding the current execution into first order logic
formula, predicative analysis [28], [24] is able to predict
errors accurately even under correct executions. Conconlic

approaches [5] perform symbolic analysis during dynamic
executions so paths can be explored systematically without
redundancy. The common theme among these symbolic
approaches is encoding of program models, followed by
SMT-based solving. In order to achieve scalability, encoding
must be carefully designed and optimized based on domain
knowledge. Satisfiability Modulo Theories (SMT) problem
is a decision problem for a logical formulas with respect
to combinations of special background constraints in first-
order logic and verify the statements whether satisfies with
established constraints.

In this paper, we propose a symbolic approach to detect
race conditions and deadlocks in OpenMP programs. Our
tool, called OpenMP Analysis Toolkit (OAT), is able to
automatically detect data races and deadlocks accurately and
efficiently. To the best of our knowledge, OAT is the first
tool using symbolic analysis to check OpenMP programs
for concurrency errors. Specifically, our paper makes the
following contributions:

• We present a novel encoding algorithm specialized for
OpenMP programs. Although there exist algorithms
that encode various systems, including parallel pro-
grams, none of them can be directly applied to OpenMP
programs. In particular, we encode every parallel code
region of an OpenMP program into formulae suitable
for off-the-shelf SMT-solvers such as Yices [2]. By
interpreting the solution we able to produce a feasible
execution that reproduces the error.

• Our approach is fully automated and does not require
any manual intervention or source code annotation by
the programmer. We build our tool using the ROSE
compiler infrastructure [23] to parse OpenMP pro-
grams, translate them to Yices formulae, then instru-
ment the source code with fault injection technique to
confirm reported errors.

• Finally, our approach is scalable to analyze large-scale
OpenMP code. Our experimental evaluation, presented
in Section V, shows that our approach is accurate and
efficient at detecting race conditions and deadlocks.

The remainder of this paper is organized as follows: Section
II describes the encoding algorithms. Section III introduces
the approaches to detect data races and deadlocks. Section
IV introduces the implementation of our tool. Section V
presents our experimental evaluation of our tool OAT over
a set of benchmarks and real-world applications. Section
VI reviews the latest literature and discusses how the tool
OAT differs from them. Section VII concludes this paper
and provides direction for the future work.

II. SYMBOLIC ENCODING ALGORITHMS

Figure 3 gives a simplified grammar of OpenMP C pro-
grams. The notation “var,” indicates a list of variables,
“[term]” means an optional term, and “type∗” and “type[]”
denotes pointer and array types, respectively. Expression
exp represents usual C expressions including assignments.
The notation newline indicates that the following block or
statement should start with a new line.

program ::= var decl | fun decl
var decl ::= type var[= exp]
fun decl ::= type fun name([<type var>,]) block
block ::= {stmt;}
stmt ::= openmp construct

| if exp block [else block]
| for (exp;exp;exp) block
| block
| var decl
| lock routines
| fun name ([exp,])

openmp ::= par construct
construct | workshare construct

| sync construct
par construct ::= #pragma omp parallel [data clause]

newline block
workshare ::= for construct | section construct
construct | single construct
for construct ::= #pragma omp for [data clause]

newline for statement
section ::= #pragma omp section
construct newline block
single ::= #pragma omp single [data clause]
construct newline block
sync ::= #pragma omp barrier |
construct critical | atomic | ordered |

master | [newline statement]
data clause ::= private (var,) |

firstprivate (var,) |
[lastprivate (var,)] |
[default (shared | none)] |
[shared (var,)] |
[reduction(reduction op:var,)]

lock routines ::= omp init lock(lk var) |
omp set lock(lk var) |
omp unset lock(lk var) |
omp test lock(lk var)

type ::= int | double | float | type∗ | type[]

Figure 3. Simplified Grammar of OpenMP C Programs.

A. Encoding OpenMP Constructs

The encoding of OpenMP programs mainly translates par-
allel constructs, including parallel regions, worksharing,
synchronization directives, data environment clauses, as well
as sequential statements within parallel constructs. We use
the ROSE compiler to parse OpenMP C programs and
generate abstract syntax trees (AST) , then traverse ASTs
and translate each construct into SMT formulae.

Static Single Assignment: There are neither control flow
nor variable scoping in first order logic formulae. There-
fore the variables involved in multiple assignments in an
OpenMP program must be differentiated. We use Static
Single Assignment (SSA) form to track variable updating.
In SSA, variable at each assignment is renamed by adding
different subscripts. Figure 4 depicts how to encode basic
statements into logical formulae. We assume that the sub-
script of every variable starts with 0. The formula i.op =W
denotes that the associated operation with i is write. Without
explicit indication, the default operation is read.

int k,i = 0; k0 = i0 = 0∧
int a[2] ={0,0}; → a0[0] = a0[1] = 0∧
a[0] = i*k; a1[0] = i0 × k0
i++; ∧i1 = i0 + 1

Figure 4. Encoding of OpenMP basic statement

With SSA the data flow can be explicitly encoded. However,
problem may arise when a variable is defined in a branch,
as we need to merge the definitions after the branch. As
shown in Figure 5, variables j and k are assigned in one
branch while i is assigned in the other. In such case, we
consider that i is assigned in then branch as well and the
assignment is to keep the value of i. That is, we are adding
an assignment i=i in the branch where the value has not
been assigned originally. It is the same for j and k. By
inserting assignments, the subscripts for an assigned variable
become the same, so any read to the variable after the branch
can refer to the same variable name.

if (i>0){ (i0 > 0
j = i*10; ∧j1 = i0 × 10
k = j - i; → ∧k1 = j1 − i0

} ∧i1 = i0)
else{ ∨(i0 <= 0∧
i = j+k; ∧i1 = j0 + k0

} ∧j1 = j0 ∧ k1 = k0)

Figure 5. Encoding of OpenMP Branches

OpenMP Parallel Region: Data races and deadlocks can
only happen in parallel regions, as OpenMP code outside
of the parallel regions run serially. Parallel regions can
include both iterative and non-iterative segments of OpenMP
program code. Since the number of threads cannot be
determined statically, in this paper, we assume that there
are two threads in the OpenMP parallel execution for the
efficiency of our analysis. In real execution, by default,
the number of forked threads is determined by the number
of processor or CPU scores. Although OpenMP provides
functions to fork a given number of threads, however, which
is rarely used. OpenMP usually runs in the SPMD (single
program, multiple data) way, i.e., every thread runs the
same code but different dataset. Hence, two threads are
usually enough to detect race conditions. Encoding OpenMP

programs using more threads will significantly affect the
efficiency and scalability of analysis.

Figure 6 illustrates the encoding of OpenMP parallel con-
structs, where a special superscript is used to indicate the
thread id. The expression omp.par = T states that the
current region is in parallel region. Suppose v is a shared
variable, then our approach has an approach to detect the
read and write order to simulate execution order, that is the
value of read equals to the value of latest write.

100 #pragam omp parallel omp.parbegin = 100
∧omp.par = T

101 {v = v + 1;} → ∧v[vt11] = v[vt10] + 1
∧v[vt21] = v[vt20] + 1
∧v[vt10] = v[vt10 − 1] ∨ v[vt20] = v[vt20 − 1]
∧omp.parend = 101

Figure 6. Encoding of OpenMP Parallel Constructs

Worksharing Construct: Within an OpenMP for loop and
section regions, an access by one thread to a shared
variable may conflict with accesses from other threads to the
same variable. Individual shared variables can be handled
in the same way as the aforementioned parallel regions.
We need to handle array specially. Although different loop
scheduling policies are allowed, we assume that the iter-
ations of omp for in OpenMP will roughly be equally
partitioned and distributed to all threads, for simplicity.
Similarly, as before, we use a superscript to identify the
accessing thread. Single is another worksharing directive,
which indicates that the enclosed code is executed by only
one thread during the execution of the parallel region. The
examples are shown in Figures 7, 8, and 9.

For omp for construct, OAT first normalizes the loops,
then uses SMT-solver to check the constraints rather than
executes all the iterations in the loop. To handle multiple-
dimension array, we translate it to be one-dimension ar-
ray. For example, in Figure 8, there is a two-dimension
array[1D][2D], each element array[i][j] is translated to be
array[i*2D +j]. Instead of considering every array element
individually, we generate constraints based on array index,
which is one kind of abstraction for array.

100 #pragma omp section {
101 array[i+1]=array[i]+1;
102 }

→
omp.sectionbegin = 100 ∧ omp.par = T
∧array[it1 + 1] = array[it1] + 1
∧omp.sectionend = 102

Figure 7. Encoding of OpenMP section Construct

Data Clauses: Data environment clauses are used to define

99 int array[1D][2D];
100 #pragma omp for
101 for(int i=lb;i<ub;i++) {
102 for(int j = lb; j < ub; j++)
103 array[i+1][j]=array[i][j]+1;
104 }

→
omp.forbegin = 100 ∧ omp.par = T
∧it1 ∈ [lb, d(ub− lb)/2e+ lb] ∧ it2 ∈ [d(ub− lb)/2e+ 1, ub]
∧array[(it1 + 1) ∗ 2D + jt1] = array[it1 ∗ 2D + jt1] + 1
∧array[(it2 + 1) ∗ 2D + jt2] = array[it2 ∗ 2D + jt2] + 1
∧omp.forend = 104

Figure 8. Encoding of OpenMP for Construct

100 #pragma omp parallel
101 {
102 # pragma omp single
103 j = j + 1;
104 }

→
omp.par = T ∧ omp.parbegin = 100 ∧ omp.singlebegin = 102
∧j1 = j0 + 1 ∧ omp.singleend = 103
∧omp.parend = 104

Figure 9. Encoding of OpenMP single Constructs.

the properties of data-sharing and other specific operations.
The data environment clauses handled by OAT include
private, firstprivate, lastprivate, shared,
default, and reduction. For example, reduction
specifies that one or more variables that are private to
each thread are the subject of a reduction operation at
the end of the parallel region. We have extended ROSE
to have an OpenMP normalization phase that makes all
data-sharing attributes explicit so that the encoding process
can easily distinguish between shared and private variables.
As shown in Figure 10, properties are added to each vari-
able, corresponding to the data clauses such as shared
and reduction. The default(none) is analyzed and
removed by the normalization phase of ROSE, so it is
not encoded into SMT formulae. By default, variables are
shared, so we do not need to encode shared(n,x) in
SMT formulae.

Synchronization Directives are used to control threads.
OAT handles the synchronization directives related to race
conditions and deadlocks, including master, critical,
barrier, atomic, and ordered. The synchronization
directives manage the execution order of each thread.
Given an OpenMP construct blk, we use omp.master,
omp.critical, omp.atomic, omp.ordered to indicate that
block is within a parallel region enforced by the synchro-
nization directives, master, critical, atomic, and
ordered, respectively. The beginning and ending of these
synchronization directives determine what kinds of threads

100 int sum = 0;
101 #pragma omp parallel shared(n,x) {
102 #pragma omp for private(i) reduction(+:sum)
103 for(i = 0; i <n; i++)
104 sum = sum + x[i];
105 }

→
sum0 = 0 ∧ omp.parbegin = 103 ∧ omp.par = T
∧omp.forbegin = 102 ∧ i.shared = F
∧it1 ∈ [0, dn/2e] ∧ it2 ∈ [dn/2e+ 1, n] ∧ sum.redc = ADD
∧sumt1

1 = sumt1
0 + x0[i

t1]
∧sumt2

1 = sumt2
0 + x0[i

t2]
∧omp.forend = 104 ∧ omp.parend = 105

Figure 10. Encoding of Data Clauses.

100 #pragma omp parallel
101 #pragma omp critical
102 block
103 #pragma omp master
104 block
105 #pragma omp atomic
106 block

→
omp.parbegin = 100 ∧ omp.par = T∧
omp.criticalbegin = 101 ∧ F(block)
∧omp.criticalend = 102 ∧ omp.masterbegin = 103
∧F(block) ∧ omp.masterend = 104 ∧ omp.barrier = T
∧omp.atomicbegin = 105 ∧ F(block)
∧omp.atomicend = 106 ∧ omp.parend = 106

Figure 11. Encoding of Synchronization Directives.

will execute the code in the block. Figure 11 shows an exam-
ple of encoding synchronization directives, where F(block)
indicates the entire formulae of block.

Synchronization using omp lock and barrier: The
encoding of lock and barrier is similar to other syn-
chronization directives. A thread is granted ownership of a
lock when it becomes available.

100 omp_lock_t lockA;
101 omp_init_lock(&lockA);
102 #pragma omp parallel
103 {
104 omp_set_lock(&lockA);
105 x = x + 1;
106 omp_unset_lock(&lockA);
107 #pragma omp barrier
108 }
109 omp_destroy_lock(&lockA);

→
omp.par = T ∧ omp.parbegin = 102 ∧ lockA.begin = 104
omp.barrier.numSetLocks = 1∧
∧xt1

1 = xt1
0 + 1 ∧ x0.lock = T ∧ x1.lock = T

∧omp.barrier.numUnsetLocks = 1
lockA.end = 106 ∧ omp.barrier = T
∧omp.parend = 107

Figure 12. Encoding of Lock.

Pointers, Aliases, and Function Calls: We design a basic
intraprocedural alias/pointer analysis to find out all aliases
for each variable in ROSE. Thus we avoid encoding alias,
which can improve both accuracy and efficiency of our
analysis. In following example, variables *p and *q are alias
of a, and c is alias of b. Hence we do not need to encode
*p, *q, and c. For function calls within OpenMP constructs,
we do a basic inline operation instead of employing more
complex interprocedural pointer analysis, which is enough
for our experiments on real-world OpenMP benchmarks of
Section V.

int *p, *q;
int a = 0; p = &a; q = &a;

*p = *p + 2; *q = *q + 1;
int c;
int &b =c;

Figure 13 shows how to encode pointers, aliases, and func-
tion calls. In this example, there are two functions involved.
According to the call graph, the scope of the function call
is 1, and the scope of the function definition is 2. Thus,
2array0 indicates the first array variable in the scope 2.

scope 2:
100 void print_results(float array[], int t,

int N){
101 int i;
102 int *p = array;
103 for(i = 0; i < N; i++){
104 printf("%e %d", *p, t);
105 p++;
106 }
107 }

scope 1:
108 if(t==0)
109 print_result(array,t,N);

→
¬(t0 == 0) ∨ (t0 == 0) ∧ 2array0 = 1array0
∧2t0 = 1t0 ∧ 2N0 = 1N0 ∧ fun.begin = 100
∧p.pointer = 2array0 ∧ i0 ∈ [0, N − 1] ∧ printf(2array0[ik])
∧printf(2t0) ∧ p.pointer = 2array0[ik + 1]
∧k ∈ [0, N − 1] ∧ fun.end = 107

Figure 13. Encoding of Pointer, Alias, and Function Call.

III. DETECTING CONCURRENCY ERRORS

A. Data Race

After encoding OpenMP constructs into SMT formulae,
we detect data races using Yices [2]. Given an OpenMP
parallel construct c, let F(c) denote the corresponding
SMT formulae. Based on OpenMP memory model [8], we
design symbolic execution for detecting data races. The

OpenMP memory model is based on weak ordering, which
can prohibit overlapping a synchronization operating with
any other shared memory operations of different threads,
while synchronization operations of different threads are
sequentially consistent. Thus, OpenMP memory model can
guarantee the following ordering among synchronization
operations and accesses to shared variables: S → W,S →
R,R → S,W → S, S → S, where S, W , R denote
synchronization, write, and read, respectively. Based on SSA
notation, we can encode all ordering relationships between
different threads.

According to OpenMP Programming Model, an OpenMP
program is partitioned into segments that are a sequence of
instructions ending with a synchronization instruction. In our
symbolic analysis, we use an event e to represent a write or
a read instruction on a variable. Let π(s) = {e1, ..., en} be a
concrete execution order for a segment s. Each variable has
an SSA form. Then we define that the variable value read
by an event is always the value written by the most recent
write in π(s). The SMT-solver checks whether there exists
a variable v in π(s) that can cause a non-deterministic and
unexpected results. A solution to these SMT constraints in-
dicates that a race condition is revealed in feasible symbolic
execution.

B. Deadlock

Barrier synchronization is a common cause for deadlocks
in OpenMP programs. The semantics of OpenMP requires
that all threads involved in a parallel region execute the
same barrier point; otherwise, a deadlock will occur.
In addition, lock/unlock can also incur deadlocks. Figure
14 illustrates a deadlock occurring for unreleased lock vari-
able &lock a, where only one thread executes lock region
without releasing lock variable. One technique implemented
in OAT based on ROSE is called path feasibility [6], to
determine whether a code block can be reachable by all
threads.

100 int x=A, y=B; // assuming A > B
101 if(x> y){ // (A > B) evaluates to be true
101 omp_set_lock(&lock_a);
102 x =x + y; //x = A+B;
103 y = x -y; //y = A;
104 x = x -y; //x = B;
105 }
105 if(x > y){ //(B > A) evaluates to be false
106 omp_unset_lock(&lock_a);
107 } // no path feasibility in SMT solver

Figure 14. Example of Deadlock Detection.

After encoding OpenMP constructs into SMT formulae,
we use Yices [2] to solve the formulae in order to detect
deadlocks. OAT uses dataflow and control flow analyses to

OAT Detecting Algorithm
Given OpenMP program p
MakeDataSharingExplicit(p)
if(Error Injection is needed)

ErrorInjection(p)
ASTp = ROSE Parser(p)
F(p) = ∅
∀ constructs c ∈ ASTp{
F(p) = F(p) ∪ F(c) // encoding

}
Report = SMT Solver(F(p))

Figure 15. The Workflow of OAT.

establish constraints for F(c) to check whether all threads
may access barrier directive br and lock region. If br is not
shown on some paths, then some threads may not call br
during execution, which indicates a deadlock. In addition,
OAT can detect whether some lock variables are still held
when some other threads try to access them, which also
indicates a deadlock.

IV. IMPLEMENTATION

Our symbolic encoding is built on top of the ROSE [23],
which is an open source compiler infrastructure for building
source-to-source translators, and supports instrumentation in
source code level. ROSE can parse the source code of an
OpenMP program and generate an intermediate represen-
tation in the form of Abstract Syntax Tree (AST). ROSE
currently supports OpenMP 3.0 and has dedicated AST
nodes for all OpenMP directives [18]. By traversing the AST
nodes using ROSE, OAT produces quantifier free first order
logic formulae for Yices [2]. OAT translates all OpenMP
regions into SMT constraints.

Figure 15 shows the analysis procedure of OAT. Variables
used in OpenMP parallel regions have default data-sharing
attributes (e.g., private or shared) based on their defini-
tion places if not explicitly specified. We extended ROSE to
automatically identify the data-sharing attributes of all vari-
ables, which is called MakeDataSharingExplicit().

Our experiments are conducted on real-world OpenMP
benchmarks. However, they are mainly for testing perfor-
mance, hence are mostly free of data races and deadlocks.
To our best knowledge, there is a lack of good benchmarks
supporting OpenMP error detection. Hence, to test the
accuracy and scalability of our tool, we automatically inject
errors into OpenMP programs, which is discussed in details
below.

A. Error Injection

There are two major software error injection methods
based on when the errors are inserted: compile-time or
runtime. OAT utilizes compile-time error injection, which
injects errors into the source code of the target program.
OAT employs two ways to inject data races. The first
way is to flip the data-sharing attributes of variables, as
shown in the Case-1 of Figure 16. Specifically, flipping
attributes includes exchanging private/shared and
firstprivate/lastprivate, and removing variables
from reduction clause. Our algorithm randomly chooses
variables from data-sharing attribute variable list and flips
its attributes. The other way is to add random write-read
statements as shown in the Case-1 of Figure 16. To be
simple, OAT randomly chooses a variable u in data-sharing
attribute variable list to execute u = u ∗ 2. A dummy write
u = u will not work here because the value of u is not
really changed. Our race detection is based on checking
nondeterministic values of shared variables. Note that both
error injection methods may change the semantics of the
programs, however, our purpose is to inject errors and test
our tool.

The Case-2 in Figure 16 shows how to inject errors regarding
deadlocks. If there exists a lock variable, OAT creates the
same lock variable without releasing operating on this lock
variable. Another error injection is to insert #pragma omp
barrier to synchronization or worksharing constructs
such as omp critical, omp single, omp atomic,
omp section, omp for, and omp master to syn-
chronize threads, which may prevent other threads from
accessing the above regions .

V. EXPERIMENTS

This section discusses our experimental evaluation of OAT.
The experiment was done on a workstation with Intel
Xeon Quad-core E5160 3.0GHz, 16GB memory, and GCC
v. 4.4.1. We conduct experiments on the real-world NAS
Parallel OpenMP Benchmarks [21] in NPB2.3 (C version,
with Class A as input), OpenMP Source Code Repository
[22], and as well as student homework assignments on the
course of High Performance Computing in the University
of Wyoming. We use the approach introduced in Section
IV-A to inject errors into the benchmarks. Three student
homework assignments were chosen with typical race con-
ditions. Since problems already exist in the student code,
OAT analyzes the code directly without error injection.

We compare our tool OAT with two commercial tools, Intel
Thread Checker 3.1 [9] and Sun Thread Analyzer in Oracle
Studio 12.0 [26]. Both are runtime tools to check multi-

//Ccase-1: Original code
#pragma omp parallel private(a) shared (b,c){

a = a * 2;
b = b * a;

}
// After data race injection:
#pragma omp parallel shared (a, b,c)
{// private a is flipped to be shared.

a = a * 2;
b = b * 3;
b = b * 2;// statement of b are inserted.

}
// Case-2: Origin code
#pragma omp parallel shared (a, b,c) {

a = a + b;
c = c * a
#pragma omp critical{
c = c +1;
}

}
// After deadlock injection:
#pragma omp parallel shared (a, b, c){

omp_set_lock(lock_t1)
a = a + b;
c = c * a
#pragma omp critical{

c = c +1;
#pragma omp barrier;

}
}

Figure 16. Example of Error Injection In OpenMP Program.

threaded programs. According their manuals, Sun Thread
Analyzer has incorporated some OpenMP features, but Intel
Thread Checker lacks of such functionality.

A. Data Race Detection

In Table I, “CG”, “BT”, “EP”, “FT”, “LU”, “IS”, “MG”,
and “SP” are from the NAS Parallel OpenMP benchmark
package [21], “c *” benchmarks are from OpenMP Source
Code Repository [22]. “Stu.*” are student homework assign-
ments. “LOC” is short for Lines of Code. “Base Time” is
the real execution time of the programs using two threads
without any error checking. The “Number of Error Injection”
represents the number of errors injected for testing. The last
three columns give the number of data races reported by the
three tools, followed by the total execution time in seconds.

We use a small dataset (i.e., Class A) for all NAS Parallel
Computing benchmarks. We found that the large input data
size, such as Class S, will incur a very high overhead for
the two dynamic commercial tools, which cannot terminate
even after several hours of execution.

As shown in Table I, the OAT tool utilizes symbolic
execution, which significantly reduces memory locations

Code LOC Base Time # of Injected OAT Intel Thread Checker Sun Thread Analyzer
data races

CG class A 922 3.69s 2 2 (2.30s) 2 (4.01s) 2 (6.18s)
BT class A 3617 243.27s 1 1 (10.97s) 2 (578.89s) 1 (920.11s)
EP class A 269 42.50s 2 2 (5.45s) 2 (121.10 s) 2 (131.22s)
FT class A 1143 8.47s 0 0 (3.90s) 0 (30.21s) 0 (40.71s)
LU class A 3482 47.86s 0 0 (14.43s) 0 (515.5s) 0 (719.23s)
IS class A 707 1.76s 5 5 (4.01s) 6 (52.09s) 5 (64.99s)
MG class A 1255 3.86s 2 2 (5.09s) 2 (26.00s) 2 (34.98s)
SP class A 2986 150.82s 3 3 (20.12s) 2 (2501.12s) 3 (3202.10s)
c fft 258 2.13s 1 1 (2.09s) 2 (20.19s) 1 (25.43s)
c pi 83 0.99s 1 1 (1.28s) 1 (10.91s) 1 (14.46s)
c Jacobi 295 2.98s 1 1 (1.56s) 1 (31.09s) 1 (43.09s)
c quicksort 168 1.01s 2 2 (2.99s) 2 (3.01s) 2 (5.09s)
c mandel.c 142 0.91s 1 1 (2.01s) 1 (3.09s) 1 (4.98s)
Stu.1 98 0.99s 3 3 (3.09s) 3 (10.11s) 3 (11.09s)
Stu.2 109 1.08s 1 1 (2.09s) 1 (10.90s) 1 (10.80s)
Stu.3 123 1.07s 2 2 (2.15s) 2 (11.03s) 2 (14.72s)

Table I
COMPARISON OF DATA RACE DETECTION FOR OAT, SUN THREAD ANALYZER, AND INTEL THREAD CHECKER.

and synchronizations to monitor during runtime execution.
Hence the OAT tool has a much lower overhead compared
to Sun Thread Analyzer and Intel Thread Checker, which
have an average 950% times and 890% times overhead,
respectively. our OAT tool can successfully detect all in-
jected data races and accurately report the race condition
locations and scenarios. Our OAT tool is as accurate as Sun
Thread Analyzer tool, where both report the same number
of race conditions. However, the accuracy of Intel Thread
Checker is less than the other two tools. Three false positives
and one false negative are reported by the Intel Thread
Checker. Specifically, Intel Thread Checker cannot fully
support #pragma omp critical, some false positives
are reported. The false negative occurs because some data
dependencies in #pragma omp sections cannot be de-
termined. The experiment on student homework assignments
shows that all of three tools can detect the data races, which
are mainly incurred by the indices in the nested loop of
#pragma omp for worksharing region. Students ignore
the data-sharing attributes of indices in loop initialization
statement.

B. Deadlock Detection

In OpenMP, deadlock is not so common as race condi-
tion. There are no existing benchmarks with deadlock. The
error injection of OAT introduced several different kinds
of deadlock errors by inserting barrier into parallel
regions using critical, atomic, master, ordered,
section. In addition, some lock variables are inserted
using omp_set_lock() into if-then-else state-
ments. OAT can successfully detect all of injected deadlocks
and accurately report the deadlock locations and scenarios.

Code LOC # of Injected OAT Intel Sun
Deadlocks

BT Class A 3617 2 2 2 2
CG Class A 922 1 1 1 1
LU Class A 3482 2 2 2 2
c fft 258 1 1 1 1
c pi 83 1 1 1 1
c quicksort 168 2 2 2 2

Table II
COMPARISON OF DEADLOCK DETECTION OF THE THREE TOOLS.

Due to the specific feature of OpenMP, deadlocks in
OpenMP usually do not depend on scheduling. Hence dead-
lock in OpenMP is relatively easy to detect and fix. Table
II compares the number of injected errors and reported
results, all the three tools can report all deadlocks. However,
unlike the other two runtime tools, our OAT tool can detect
deadlock without running the program.

C. False Positive and False Negative Analysis

The symbolic execution in our OAT tool is an approximation
to real execution. Hence, there is potential to report false
positives and false negatives. One reason is that the values
in real execution are unavailable to our analysis. To keep the
OAT tool efficient, our analysis takes approximation to avoid
expensive simulations. For example, if a value of variable
depends on the number of iterations in real execution, it
is possible that our constraints cannot make the correct
solution, therefore some false positives and negatives may
be reported. Another reason is due to SMT solver itself.
False positives may exist due to the facts that SMT solver
is not able to precisely model all software artifacts. For
example, Yices cannot solve nonlinear logic, hence our OAT

tool handles the nonlinear operating using bitvector type in
Yices, it may cause false positives. However, all the above
possibilities appear very rarely in practice. According to our
experiments, the OAT tool can detect all injected data races
and deadlocks.

VI. RELATED WORK

There are a few prior research tools and papers address-
ing error detection issues in OpenMP programs. We [20]
presented the preliminary results on integrating symbolic
analysis and dynamic analysis to detect concurrency errors
in OpenMP programs. This paper introduces a more thor-
ough and accurate approach of symbolic execution without
dynamic analysis. One of the earliest is Intel Thread Checker
[9], which rewrites program binary code with additional
intercepting instructions to monitor a program’s execution
and infer possible parallel traces of the program. However,
it treats OpenMP programs as general multi-threaded pro-
grams and does not consider the particularities of OpenMP
programs, which makes the tool report false positives. Kim
et al. [13] designed a practical tool called RaceStand that
utilizes an on-the-fly dynamic monitoring approach to detect
data races in OpenMP programs. RaceStand also includes
a user-friendly web interface for ease of use and error
reporting. Kang et al. [10] present a tool that focuses on
the detection of first data races that are conflicting accesses
with no explicit happen-before order in OpenMP programs.
They first execute the instrumented program to obtain the
conflicting accesses, then rerun the program with happened-
before analysis to refine the conflicting accesses to those
involved in the first data races. [7] focuses on race verifica-
tion for debugging programs with OpenMP directives. Their
approach is enhanced using a static analysis that identifies
thread escape objects and inlines the instrumentation for
better performance. Our approach differs from theirs in that
OAT conducts a symbolic execution, where approximately
simulates parallel program executions.

A few research tools have been proposed for OpenMP
program analysis. Kim et al. [12] present a thread visual-
ization tool that can visualize the partial order relationship
between the traced threads in OpenMP programs in a three-
dimensional code. This tool makes it more convenient for
programmers to identify and manually confirm data race
reports. However, its usage is limited when the number of
threads increases exponentially, since it is almost impossible
to manually examine the complex and massive intertwined
graphs. Wang et al. [29] present a static analysis approach
to check whether a barrier directive has been invoked by
all threads within a team. Their implementation focuses on
Fortran OpenMP applications.

SMT solvers have been applied to detect various concur-

rency errors. Li et al. [17] used an SMT solver not only to
detect race conditions in GPU programs, but also to detect
incorrect synchronized barriers. Said et al. [24] present an
approach that uses an SMT solver to generate the data race
witnesses that can be used to deterministically replay and
confirm data race errors in multithreaded programs.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a tool named OpenMP Analysis
Toolkit (OAT) for detecting data races and deadlocks in
OpenMP programs. OAT first encodes OpenMP constructs
into SMT formulae, then utilizes an SMT-solver to detect
race condition and deadlock errors. Our experiments on
a few real-world benchmarks show that OAT can detect
concurrency errors in OpenMP programs accurately and
efficiently. Compared to the runtime tools, our tool can
detect errors automatically without actually running the
programs, hence is much more efficient and scalable. In
addition, our tool does not need complete program source
code for checking concurrency errors, therefore it can help
programmers identify potential errors during development
stage.

In the future, we plan to enhance the OAT tool by leveraging
dependence analysis and autoscoping of ROSE [19]. In
the current approach, we just check deadlocks caused by
barrier directives and locks without nested lock variables.
We will implement nested locks to check deadlock errors.
For data races, we will optimize the analysis on conditional
statements and handle more complex constructs.

ACKNOWLEDGEMENT

This work was supported in part by NSF under Grant
1001239.

REFERENCES

[1] OpenMP execersie. https://computing.llnl.gov/tutorials/
openMP/exercise.html.

[2] Yices: An SMT solver. http://yices.csl.sri.com.

[3] C. Cadar, D. Dunbar, and D. Engler. Klee: unassisted and
automatic generation of high-coverage tests for complex sys-
tems programs. In Proceedings of the 8th USENIX conference
on Operating systems design and implementation, OSDI’08,
pages 209–224. USENIX Association, Berkeley, CA, USA,
2008.

[4] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform
for in-vivo multi-path analysis of software systems. SIGPLAN
Not., 46(3):265–278, Mar. 2011. ISSN 0362-1340.

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text
Prepared by LLNL under Contract DE-AC52-07NA27344

bledsoe2
Typewritten Text

bledsoe2
Typewritten Text

[5] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’05, pages 213–223. ACM, New York,
NY, USA, 2005. ISBN 1-59593-056-6.

[6] A. Goldberg, T. C. Wang, and D. Zimmerman. Applications
of feasible path analysis to program testing. In Proceedings
of the 1994 ACM SIGSOFT international symposium on
Software testing and analysis, ISSTA ’94, pages 80–94. ACM,
New York, NY, USA, 1994. ISBN 0-89791-683-2.

[7] O.-K. Ha and Y.-K. Jun. Efficient thread labeling for on-the-
fly race detection of programs with nested parallelism. In
FGIT-ASEA/DRBC/EL, pages 424–436, 2011.

[8] J. P. Hoeflinger and B. R. De Supinski. The OpenMP
memory model. In Proceedings of the 2005 and 2006
international conference on OpenMP shared memory par-
allel programming, IWOMP’05/IWOMP’06, pages 167–177.
Springer-Verlag, Berlin, Heidelberg, 2008. ISBN 3-540-
68554-5, 978-3-540-68554-8.

[9] Intel thread checker 3.1 for linux. http://software.intel.com.

[10] M.-H. Kang, O.-K. Ha, S.-W. Jun, and Y.-K. Jun. A tool
for detecting first races in OpenMP programs. In PaCT
’09: Proceedings of the 10th International Conference on
Parallel Computing Technologies, pages 299–303. Springer-
Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-03274-5.

[11] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In
Proceedings of the 9th international conference on Tools
and algorithms for the construction and analysis of systems,
TACAS’03, pages 553–568. Springer-Verlag, Berlin, Heidel-
berg, 2003. ISBN 3-540-00898-5.

[12] Y.-J. Kim, J.-S. Lim, and Y.-K. Jun. Scalable thread visu-
alization for debugging data races in OpenMP programs. In
Proceedings of the 2nd international conference on Advances
in grid and pervasive computing, GPC’07, pages 310–321.
Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 978-3-540-
72359-2.

[13] Y.-J. Kim, M.-Y. Park, S.-H. Park, and Y.-K. Jun. A practical
tool for detecting races in OpenMP programs. In PaCT, pages
321–330, 2005.

[14] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385–394, July 1976. ISSN 0001-0782.

[15] S. K. Lahiri, S. Qadeer, and Z. Rakamarić. Static and precise
detection of concurrency errors in systems code using smt
solvers. In Proceedings of the 21st International Conference
on Computer Aided Verification, CAV ’09, pages 509–524.
Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-642-
02657-7.

[16] L. Lamport. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM, 21(7):558–565, July
1978. ISSN 0001-0782.

[17] G. Li and G. Gopalakrishnan. Scalable smt-based verification
of gpu kernel functions. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of
software engineering, FSE ’10, pages 187–196. ACM, New
York, NY, USA, 2010. ISBN 978-1-60558-791-2.

[18] C. Liao, D. J. Quinlan, T. Panas, and B. R. de Supinski. A
rose-based OpenMP 3.0 research compiler supporting multi-
ple runtime libraries. In M. Sato, T. Hanawa, M. S. Müller,
B. M. Chapman, and B. R. de Supinski, editors, IWOMP,
volume 6132 of Lecture Notes in Computer Science, pages
15–28. Springer, 2010. ISBN 978-3-642-13216-2.

[19] C. Liao, D. J. Quinlan, J. Willcock, and T. Panas. Semantic-
aware automatic parallelization of modern applications using
high-level abstractions. International Journal of Parallel
Programming, 38(5-6):361–378, 2010.

[20] H. Ma, Q. Chen, L. Wang, C. Liao, and D. Quinlan. An
OpenMP analyzer for detecting concurrency errors (poster
paper). In ICPP 2012: Proceedings of the International
Conference on Parallel Processing. IEEE Computer Society,
Washington, DC, USA, 2012.

[21] Nasa advanced supercomputing division.
http://www.nas.nasa.gov/publications/npb.html/.

[22] OpenMP Source Code Repository.
http://sourceforge.net/projects/ompscr/.

[23] The rose compiler. http://www.rosecompiler.org/.

[24] M. Said, C. Wang, Z. Yang, and K. Sakallah. Generating
data race witnesses by an smt-based analysis. In Proceed-
ings of the Third international conference on NASA Formal
methods, NFM’11, pages 313–327. Springer-Verlag, Berlin,
Heidelberg, 2011. ISBN 978-3-642-20397-8.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4):391–411, Nov.
1997. ISSN 0734-2071.

[26] Oracle solaris studio 12.3.
http://www.oracle.com/technetwork/server-
storage/solarisstudio/.

[27] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input
generation with java pathfinder. In Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing
and analysis, ISSTA ’04, pages 97–107. ACM, New York,
NY, USA, 2004. ISBN 1-58113-820-2.

[28] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic
predictive analysis for concurrent programs. In Proceedings
of the 2nd World Congress on Formal Methods, FM ’09, pages
256–272. Springer-Verlag, Berlin, Heidelberg, 2009.

[29] S. Wang and C. Huang. Static detection of deadlocks
in openm p fortran programs. pages 44(3):536543,2007.
Journal of Computer Research and Development, 2007. ISBN
1000.1239—CN 1 1,1777l TP.

