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Abstract—Matrix multiplication is a very important computa- One implementation of Fox’s algorithm on a genefat @

tion kernel both in its own right as a building block of many  processor grid is PUMMA[]4] which was designed for block-
scientific applications and as a popular representative forother cyclic distributed matrices. PUMMA consists f — 1 shifts

scientific applications. . .
Cannon’s algorithm which dates back to 1969 was the first for matrix A, LCM(P,Q) broadcasts for matrix3 and

efficient algorithm for parallel matrix multiplication pro viding the number of local multiplications iS.C'M (P, Q). Here
theoretically optimal communication cost. However this ajo- LCM (P,Q) is the least common multiple d? and Q. The
rithm requires a square number of processors. In the mid-198s, main shortcomings of PUMMA come from the fact that it
the SUMMA algorithm was introduced. SUMMA overcomes the  g\ways tries to use the largest possible matrices for both

shortcomings of Cannon’s algorithm as it can be used on a non- computation and communication. In this case. large memor
square number of processors as well. Since then the number P ) , 1arg y

of processors in HPC platforms has increased by two orders SPace is required to store them temporarily, the effect ef th
of magnitude making the contribution of communication in the block size is marginal and the most important it is difficalt t
overall execution time more significant. Therefore, the st of the overlap computation with communication.

art parallel matrix multiplication algorithms should be re visited In the mid-1990s SUMMA [[5] was introduced. Like

to reduce the communication cost further. )
This paper introduces a new parallel matrix multiplication al- PUMMA, SUMMA was designed for a generdtxQ pro-

gorithm, Hierarchical SUMMA (HSUMMA), which is a redesign ~ ¢€ssor grid. Unlike PUMMA it does not require the largest
of SUMMA. Our algorithm reduces the communication cost of possible matrices for computation and communication and

SUMMA by introducing a two-level virtual hierarchy into the  therefore allows to pipeline them. In addition, SUMMA was

two-dimensional arrangement of processors. Experimentsroan  ; ; PR .
IBM BlueGene/P demonstrate the reduction of communication implemented 'r.] praptlce in ScaLAPACKI[6]: the most popular
parallel numerical linear algebra package.

cost up to 2.08 times on 2048 cores and up to5.89 times on . - )
16384 cores. Recently introduced 2.5D algorithrn|[7] generalizes the 3D

algorithm by parametrizing tlhe e>1<tent of the third dimengib
I. INTRODUCTION the processor arrangemegt:i <22 Xc¢, ¢ € [1,p%]. However,

. . C. C . .
both in its own right as a building block of many scientifi®f €xtra memory to store copies of the matrices. On the
applications and as a popular representative for othentifoe other hand, it is expected that exascale systems will have a
applications. dramatically shrinking memory space per care [8]. Themsfor

Cannon’s algorithm[1] which was introduced in 1967 wathe 2.5D algorithm can not be scalable on the future exascale
the first efficient algorithm for parallel matrix multipliian ~SYStéms.
providing theoretically optimal communication cost. Hwee  Matrix multiplication is a problem known to be very com-
this algorithm requires a square number of processors whigite intensive. On the other hand, as HPC moves towards
makes it impossible to be used in a general purpose |ibra@%ascale, the cost of matrix multiplication will be domigct
Later introduced Fox’s algorithm [2] has the same resticti Oy communication cost. Therefore, the state of the art fgral
The 3D algorithm[[3] which dates back to the 1990s Orgénatrlx mult|p_I|ca_t|on algorithms should be revisited tauee
nizes thep processors ags xp3 xp? 3D mesh and achievesth® communication cost further.
a factor of p¢ less communication cost than 2D parallel The contributions of this paper are as follows:
matrix multiplication algorithms. However, in order to gbis « We introduce a new design to parallel matrix multiplica-
improvement the 3D algorithm requir@§ extra copies of tion algorithm by introducing a two-level virtual hierar-
the matrices. That means that on one million cores 3he chy into the two-dimensional arrangement of processors.
algorithm will require100 extra copies of the matrices which We apply our approach to SUMMA which is a state
would be a significant problem on some platforms. Therefore, of the art algorithm. We call our algorithm hierarchical
the 3D algorithm is only practical for relatively small mats. SUMMA(HSUMMA).
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« We model the performance of SUMMA and HSUMMAFigure[1 shows the communication pattern at the third step
and theoretically prove that HSUMMA reduces the comwith one block per processor.
munication cost of SUMMA. Then we provide experi-
mental results on a cluster of Grid5000 and BlueGene/P Nz
which are reasonable representative and span a good
spectrum of loosely and tightly coupled platforms. We vd
use SUMMA as the only competitor to our algorithm v

K]

7
t

N

because it is the most general and scalable parallel
matrix multiplication algorithm, which decreases its per-
processor memory footprint with the increase of the
number of processors for a given problem size, and is
used in the most famous parallel numerical linear algebggy 1. communication Pattern of SUMMA for the third step wibur
packages such as ScaLAPACK. In addition, because of jiscessors and one block per processor

practicality SUMMA plays a starting point to implement

parallel matrix multiplications on specific platforms. As 8. MPI Broadcast Algorithms

matter of fact, the most used parallel matrix multiplicatio

. Collective communications are fundamental tools to par-
algorithm for heterogeneous platforms [9][10] was base P

o . lelize matrix multiplication algorithms. We have alrgad
on SUMMA as well. Therefore, despite it was mtroduce@een that the communication pattern of SUMMA is based

in the mid-1990s SUMMA is still a state of the art
algorithm.

on broadcast and an improvement in the broadcast algorithm
can improve the communication cost of SUMMA as well.
Therefore it is worth to outline existing broadcast aldaris.
A lot of research have been done into MPLI[11] collective
In this section, we detail SUMMA algorithm which is thecommunications and especially into MPI broadcast algorith
motivating work for our algorithm. Then, we outline and12] [13] [14]. Early implementations of broadcast algbnits
discuss the existing broadcast algorithms which can be usetumed homogeneous and fully connected networks. They

II. PREVIOUS WORK

inside SUMMA to improve its communication cost. are based on simple binary or binomial trees. On the other
hand, some algorithms have been introduced in order to be
A. SUMMA algorithm more effective for large message sizes and use the benefits

SUMMA [5] implements the matrix multiplicatiorC’ = of hierarchical networks by using pipelined trees or reivers
A x B over a two-dimensiongh = s x ¢ processor grid. For halving algorithms[[12]. However, neither the broadcastsAP

simplicity, let us assume that the matrices are squasen 0" NUMerous broadcast algorithms are application specific

matrices. These matrices are distributed over the procgago @nd most of the time improvements come from platform
by block-distribution. parameters and very often they are for specific architesture

We can see the size of the matrices.as - by introducing such as mesh, hypercube and fat tie€ [15].

. . . In the next section we introduce hierarchical SUMMA
a block of sizeb. Then each element i, B, andC is a square X on We | " I I

bxb block. and th it of ion is th dati ¢ algorithm. Our algorithm is neither an improvement of an
x Dlock, an the u_n|t 0 c_ompu_tatlon 'S.t € up _atmg_o OnSxisting broadcast algorithm nor a new broadcast algorithm
block, that is, a matrix multiplication of sizie For simplicity,

) . . HSUMMA is an application specific but platform independent
we assume thap is a multiple O_fb' The a_'gor;%hm can be hierarchical matrix multiplication algorithm which redes
formulated as follows: The algorithm consists ?fsteps. At communication cost of SUMMA and allows better overlapping
each step of communications and computation. Indeed, HSUMMA can
« Each processor holding part of the pivot column of these any of the existing optimized broadcast algorithms &fhd s
matrix A horizontally broadcasts its part of the pivoreduce the communication cost of SUMMA as demonstrated
column along processor row. in Section 1V-C.
« Each processor holding part of the pivot row of the matrix
B vertically broadcasts its part of the pivot row along 1l HIERARCHICAL SUMMA
processor column. Let us assume we haye = s x t processors distributed
« Each processor updates each block irfiteectangle with over the same two-dimensional virtual processor grid as in
one block from the pivot column and one block from th&UMMA, the matrices are square x n matrices,b is the
pivot row, so that each block;;, (i,5) € (1,..., %) of block size. The distribution of the matrices is the same as in
matrix C will be updated as;; = ¢;; + a: xbx;. SUMMA. HSUMMA partitions the virtuals x ¢ processor
' ' grid into a higher levell x J arrangement of rectangular

n
« After — steps of the algorithm, each bloek; of matrix L .
b P ¢ K groups of processors, so that inside each group there is a

n

s two-dimensional® x - grid of Figurel 2 gi
C will be equal toz aik X bij wo-dimensional- x — grid o prgcesso.rs. igu gives
1 an example of such two-level hierarchical arrangement of



processors. In this example @x6 grid of processors is e T T T T
arranged into two-leveBx3 grids of groups an®x2 grid s S R\ S
of processors inside a group. : \

Fig. 3. HSUMMA between groups

Fig. 2. Hierarchical platform as nine groups, four procesgmr group

Let P, denote the processor (i) inside the group
(x,y). HSUMMA splits the communication phase of the
SUMMA algorithm into two phases and consists%fsteps.
The algorithm can be summarized as follows:

« Horizontal broadcast of the pivot column of the matrix

A is performed as follows:
— First, each processa?;, . ),k € (1,...,1) hold-
ing part of the pivot column of the matrid hor- Fig. 4. HSUMMA inside group
izontally broadcasts its part of the pivot column to

the processor®; .y ;) 27y, 2 € (1,...,1) in the S
other groups. ' between groups and another block size inside a group. In

— Now, inside each grougz,y) processorP ;.. this case the size pf sent data betvyee.n the groups is at least
has the required part of the pivot column of thdhe same as the size of data sent inside a group. Therefore,
matrix A and it further horizontally broadcasts it toth€ block size inside a group should be less than or equal
the processors, e, c#j,c € (1,.., f) inside [© the block size between groups. Let us assume the block
the group R 1 size between groups |B.and inside a group i8. Then, the

. Vertical broad.cast of the pivot row of the matrig is number of steps in the higher level will be equal to the number

n . .
of blocks between groups:. In each iteration between the
performed as follows: B

. . B.
— First, each processar, i ),k € (1,...,I) hold- groups, the number of steps inside a group4$ so the total

ing part of the pivot row of the math vertlcally

B
broadcasts its part of the pivot row to the processofsimber of steps of HSUMMA, - will be the same as
Py, 272k, 2 € (1, , 1) in the other groups. the number of steps of SUMME Tge amount of data sent is

— Now, inside each groupx y) ProcessorP , i ;) the same as in SUMMA. The steps inside a group are shown
has the required part of the pivot row of the matkix in Figure[4. It is clear that SUMMA is a special case of
and it further vertically broadcast it to the processoldSUMMA when the number of groups equals to one or to

t,. .
Ployyrgy 757 € (1,0 7) inside the group. the total number of processors.

- . One may ask why to introduce a new hierarchical al-
« Each processor inside a group updates each block (i its y y

tanale with block f the pivot col d %orithm if MPI implementations already provide us with
rectangie with one block from the pivot column and on igh-performance broadcast algorithms. As we have already
block from the pivot row, so that each bloek;, (i, j) €

n . i mentioned before, MPI optimizations of broadcast are plat-
(L, 5) of matrix C' will be updated as:j; = ¢i; + form specific and do not depend on the application. On the

@ik X by other hand, HSUMMA is an application specific hierarchical
« After — steps of the algorithm, each bloek; of matrix algorithm which optimizes communication cost at the appli-
b z cation level and is platform independent. A general purpose
C will be equal toz aip X b broadcast algorithm can not replace the communicatioepatt

of HSUMMA as in each level it calculates pivot row and pivot
The communication phases described above are illustratedumn before broadcasting and it is very application djeci
by Figure[3. In general it is possible to use one block size The pseudocode for HSUMMA is Algorithid 1.



Algorithm 1: Hierarchical SUMMA algorithm

/+*The A,B,C matrices are distributed on a
virtual 2-D grid of p = sXt processors.
Here are the instructions executed by the
processor P(x,y)(i,§) (this is the processor
(i,J) inside the group (x,y)) .*/

Data: NBgiock_croup: Number of steps in the higher level
Data: NBgiock_inside: Number of steps in the lower level
Data: (M, L, N): Matrix dimensions

. . M
Data: A, B: two input sub-matrices of sizé— x T
S S

L L N
><_

Result C': result sub-matrix of sizej\ﬁ X g
begin s
/* Broadcast A and B
MPI_Comm group col_comm
between P(,)(,j) Processors */
MPI_Comm group row_comm
between Py .)(i,j) Processors =*/

P(z,y)(x,j) Processors =/

P(z,y)(i,%) Processors x/

if i == Pivot_inside_group_col(itergoup) then
if x == Pivot_group_col(itergaup) then

/* Get direct access to the
iteré&mp group block of A

MPI_Bcast (Bl OCkgroup_A, TypeBIock_group_ ,
Pivot_group_col(iter group), group_row_comm)

if j == Pivot_inside_group_row(itergoup) then
if y == Pivot_group_row(itergaup) then

/* Get direct access to the
iteré&mp group block of B

MPI_Bcast ( BI OCkgroup_B, TypeBIock_group_B,
Pivot_group_row(iter group), group_col_comm)

for iter = 0; iter < NBgioginside; iter + + do
if i == Pivot_inside_group_col(iter) then

/+ Get access to the iter®
block of Blockgroup a on this
processor

MPI_Bcast (Blocka, Typesios A,
Pivot_col (iter), row_comm)

if j == Pivot_inside_group_row(iter) then
/% Get access to the iter""

block of Blockgroup s on this
processor

MPI_Bcast (Blocks, Typesios B,
Pivot_row (iter), col_comm)

DGemm (Blocka, Blocks, C)

/* communicator
/* communicator
MPI_COHmICOLCOﬂWn /* communicator between

MPI_Comm rOW_COmm /+ communicator between

for itergroup = O; itergroup < NBBIock_Group; itergroup + + do

Copy_Block_group( Bloclgroup A, A, it€rgroup )

Copy_Block_group( Bloclkoup s, B, it€lgroup )

Copy_Block_A ( Blocka, Blockgoup a, iter)

Copy_Block_B ( Blocks, BlocKgoup_s, iter)

IV. THEORETICAL ANALYSIS

In this section SUMMA and HSUMMA are theoretically
analysed and compared. First of all, for simplicity we assum
that the matrices are x n square matrices. Ldt be block
size inside one group anB be block size between groups.
The execution time depends on the communication time (i.e.
the broadcast algorithm and the communication model). As
a communication model we use Hockney’s model [16] which
represents the time of sending of a message ofrsibetween
two processors as + mf. Here,« is the latencyg is the
reciprocal of network bandwidth. In addition, let us assume
that a combined floating point computation(for one addition
and multiplication) time isy. Binomial tree and Van de Geijn
broadcast algorithms [13] [17] are used to analyse both our
algorithm and SUMMA. It is known that the costs of these
broadcast algorithms are as follows:

 Binomial tree algorithmiog,(p) x (ac+m x ) .
» Van de Geijn algorithm(log,(p) +p — 1)a+2p;mﬂ
p

A. Analysis of SUMMA

For simplicity let us assume the x n matrices are dis-
tributed over a two-dimensiona)/px./p grid of processors

and the block size i$. This algorithm has- steps. In each
step, processors broadcast pivot row an(g pivot column. &o th

computation cost in each step (2 x n—xb). Hence, the

. . 2n3
overall computation cost will b@(i).
The broadcasts of each row andpcolumn are independent at
each step and they can be done in parallel. For this analysis
the network congestion is neglected. The amount of data

transferred by each broadcast-s- x b. The total commu-

p
nication cost of SUMMA can be computed by multiplying
the communication cost of each step by the number of steps
depending on the broadcast algorithm. The results are:

« Binomial Tree: )

log, (p)x a% + Bx n_p)
« Van de Geijn broadcast:
1 . n?

(logz (p) +2(vp — 1))ay +4(1 - %)%ﬂ

B. Analysis of HSUMMA

To simplify the analysis, let us assume there @groups
arranged as/G x VG grid of processors groups. L& denote
the block size between groups(we also call such a block an
outer block),b be block size inside a group, amckn be the
size of the matrices.

There is one step per outer block, thus there will %ze
steps in the highest level called outer steps. Each outekblo
belongs to,/p processors. These processors broadcast the part
of the outer block along the row or column of processor in

. B .
parallel. The size of sent data;isTL per processor which

has a part of the outer block.



Inside one group, processors are arranged in a grid of sizeWe model a broadcast time for a message of size
ﬁ X ﬁ. After the reception of the outer block each grouﬁmongp processors by formul{](_l). This model gengralizes
G. VG _ _ ~all homogeneous broadcast algorithms such as pipelined/no
multiplies the outer block u%ng the SUMMA algorithm insid&,;nelined flat, binary, binomial, linear, scatter/gathevdsicast
the group. Thus there ar% inner steps to execute. Thealgorithms [[18] [19] which are used inside state of the art
broadcast implementations like MPICH and Open MPI.

inner block belongs te@ processors. These processors send
o VG Theast(msp) = L(p)xa+mxW(p)xf (1)
2 amount of data per inner step. In (@) we assume that(1) = 0 and W (1) = 0. It is also

b
he overall communication time is equal to the sum afssumed thak(p) andW (p) are monotonic and differentiable
the communication times between the groups and inside fluactions in the intervall, p) and their first derivatives are

groups. constants or monotonic in the intervdl, p).
« Inner Communication cost (inside each group): With this general model the theoretical communication cost
— Binomial Tree: of SUMMA will be as follows:
log (g)x ax? +B><n—2) n n?
2\@ b NG Ts(n,p) =2 <E xL(\/p)a + —XW(@)[?) 2
— Van de Geijn broadcast: VP
(1og2 (2) +92 (ﬁ _ 1>) xaxﬁ + o401 - In the same way we can express the communication cqst of
G VG HSUMMA as the sum of the latency cost and the bandwidth
VG, n? cost:
N
THS(napa G) :THSL(nvpa G)+THSb(n7pa G) (3)

« Outer Communication cost (between groups):
2

. . ] n n HereG € [1, p] and we také = B for simplicity. The latency
— Binomial Tree:log, (G)x (O‘XE + ﬁx%) costTys, (n, p, G) and the bandwidth codty s, (n, p, G) will
- \(/an de Geijn E)roadcasjtj . be given by the following formulas:
logy (G)+2 (VG —1)) xax—= + 41 - n B
L B Tusi(.6) =25 (LVE) + L) Ja @)
—)x—_ G
\/6 \/ﬁ TL2 \/ﬁ
We can summarize the cost of HSUMMA and SUMMA as in Ty, (n,p, G) = 2— X (W(\/E) + W(—)) B (5)
Tablel] and Tabl&]!. VP e
TABLE | It is clear thatTs(n,p) is a speacial case dfgs(n,p,G)
COMPARISON WITH BINOMIAL TREE BROADCAST whenG =1 or G =p.
Let us investigate extremums B¢ as a function of for
Algorithm | Comp. Cost, Latency Factor Bandwidth Factor a fixedp andn. We haveb = B.
inside groups| between groups inside groups | between group:
o3 _ OTrs n n?
2n n 5 log, (p) — _
sumwa | 2 log, ()< ntx ) oc = 3 <lip,Glat 7 xWi(p, G)B (6)
woomwa | 2 | g, 2| @ | o (E)xﬁ gy (G Here, L (p, G) and W, (p, G) are defined as follows:
p G b B G/ \p N/ \/5
OL(VG) 1 OL(ZE) b
Li(p,G) = Wxﬁ_ NG XG—\/E )
C. Theoretical Prediction aﬁ
One of the goals of this section is to demonstrate that inde- OW (2
pendent on the broadcast algorithm employed by SUMMAW, (p,G) = M R (Vé) ~ VP (8)
HSUMMA will either outperform SUMMA or be at least NG VG 8% GVG

equally fast. In this section we introduce a general model _ .
for broadcast algorithms and theoretically predict SUMMA It can be easily shown that, & = /p then L1(p,G) =0
and HSUMMA. In the model we assume no contention angq Wi(p,G) = 0, thus, s — 0. In addition, Ths

assume all the links are homogeneous. We prove that evs %nges the sign in the intrvél, p) depending on thé value

with this simple model the extremums of the communicatio&
. . G. That meang’ G) has extremum aff = for
cost function can be predicted. us(n,p, G) VP

Again we assume that the time taken to send a messagdixgdn andp. The expression o215 shows that, depending
size m between any two processors is modeledlds:) = on the ratio ofa and 8 the extremum can be either minimum
a + mxp3, wherea is the latency and3 is the reciprocal or maximum in the interva(l, p). If G = ,/p is the minimum
bandwidth. point it means that wittG = /p HSUMMA will outperform



TABLE Il
COMPARISON WITHVAN DE GEIJN BROADCAST

Algorithm Comp. Cost Latency Factor Bandwidth Factor
inside groups \ between groups inside groups [ between groups
2n3 n 1 n?
SUMMA — log, (p) +2(v/p—1)) x— 4(1— — ) x—
- (o83 () +2 (5~ 1) x 1 (1-%) <%=
2n3 P NG n n VG n? 1 n?
HSUMMA = 1 “V+2(X= 1 — | (log 2 -1 —|4|1- ) x— [4(1-—=—=) x—
SuU » <0g2<G>+ (\/E ))Xb (ogz(G)-‘r (\/5 ))XB 7 Xﬁ ( @)Xﬁ
HSUMMA(G = /5, b = B) 2n? (log, (p) +4 (#/p — 1)) x— 8(1—i> o
D, » g2 (P p b \1/[7 \/p
SUMMA, otherwise HSUMMA withG = 1 or G = p will V. EXPERIMENTS

have the same performance as SUMMA. _ . .
Now lets apply this analysis to the HSUMMA commu- Our experiments were carried out on a cluster of Grid5000

nication cost function obtained for Van de Geijn broadca@f‘d a BlueGene/P (BG/P) platform which are fairly repre-
algorithm (see Tabl&lll) and again assumihg— B for sentative and span a good spectrum of loosely and tightly
simplicity. We will have: coupled platforms. The details of the platforms are given in

the appropriate sections. The times in our experimentaltses
OTus, _ G—\p % (@ _ 2n—2><ﬁ) 9) are the mean times &0 experiments.
oG GVG b P
) ) ITws ) A. Experiments on Grid5000
It is clear that ifG = /p then Y = 0. Depending on

the ratio ofa and 3, the communication cost as a function of S°CMe of our experiments were carried out on the Graphene
G has either minimum or maximum in the interval, p). cluster of Nancy site of Grid5000 platform. We have used

Intel MKL BLAS for sequential operations, MPICH-2 for

- I Q nb MPI implementation and our implementations of the matrix
E > 2? (10) multiplication algorithms. In addition to MPICH we also did

some experiments with Open MPI on Grid5000 and got similar
then OThsy < 0iin the interval(1, \/p) and OThsy ~ (@ results. Thus in this paper we just present the experimeitits w

| MPICH implementation of MPI. The size of matrices in our

0
in (\/ﬁ,]g. ThusTxs has the minimum in the interva ! 8 ) g
experiments on Grid5000 i8192x8192. Figure[5 compares

(1,p) and the minimum point i€ = /p.

. If SUMMA and HSUMMA with block size64. It is clear that
a 2n_b (11) smaller block sizes lead to a larger number of steps and this
8 D in turn will affect the latency cost. It can be seen that irs thi

then Tis has the maximum in the intervdll, p) and case HSUMMA outperforms SUMMA with huge difference.

the maximum point isG = /p. The function gets its :
minimum at eithetG =1 or G = p. 0

If we take G = /p in the HSUMMA communication cost g
function (see Tabl&lll) and assume the above conditions the =20 i
optimal communication cost function will be as follows: 2 sl |
(logy (p) +4 (/P — 1)) x5 X + 8 - L ><n—2><ﬁ : 10| |

b V) P 5

(12)
Thus, we have proved that depending on the ratieavadind
B8 HSUMMA will either reduce the communication cost of S e R TR BT
SUMMA or in the worst case have the same performance as Number of groups
SUMMA: . . —o— HSUMMA —— SUMMA
We will use this model to predict the performance of

HSUMMA on Grid5000, BlueGene/P and future exascal@g. 5. HSUMMA on Grid5000. Communication time in seconblss B —
platforms. 64,n = 8192 andp = 128




Figure[6 represents the same comparision but with blockl) Validation of the Anlytical Model on Grid5000: We
size 512. This block size is the maximum possible on¢ake the following approximately real parameters for Geagh
with this configuration. In this case the improvementli§ cluster of Grid5000:
times as the minimum communication time of HSUMMA and , | atency: 1E-4
SUMMA are 2.81 and4.53 seconds respectively. In addition, , Reciprocal bandwidth: 1E-9
theoretically HSUMMA should has the same performance as, p: 8192
SUMMA whenG = 1 or G = p and the figures verifies thatin , n: 8192
practice. That means HSUMMA can never be worse than than, p: g4

SUMMA. In the worst case it will have the same performanoﬁhe algorithmic parameters are the same as in our expergment

as SUMMA. , ) 8192 % 64
on Grid5000. It is clear thal > 2 172; = 8192 and
57 T therefore according to our theoretical analysis HSUMMA has
* d minimum in the interval1, p). We do not have experimental
ar i minimum exactly atG' = /p as predicted by our theoretical

results. However, this does not downgrade the importance of
our analytical model because the main goal of our analytical
analysis is to predict if HSUMMA will be more efficient than
SUMMA on the target platform or not. If this is the case, the
i i optimal number of groups can be easily found experimentally
by using only few iterations of HSUMMA with different
values ofG and thus can be incorporated into the algorithm.

Communication Time

O | | | | | | | |
1 2 4 8 16 32 64 128
Number of groups

—o— HSUMMA —— SUMMA

B. Experiments on BlueGene/P

Some of our experiments were carried out on Shaheen
Fig. 6. HSUMMA on Grid5000. Communication time in secontis= B = BlueGene/P at Supercomputing Laboratory at King Abdul-
512, n = 8192 andp = 128 lah University of Science&Technology (KAUST) in Thuwal,
Saudi Arabia. Shaheen is a 16-rack BlueGene/P. Each node

, . o .is equipped with four 32-bit, 850 Mhz PowerPC 450 cores
F|_gureD’ shows experimental results_ from scala_1b|llty poulu?nd 4GB DDR memory. VN (Virtual Node) mode with torus
of view. Here we use the largest possible block size for bo . .
: . o connection was used for the experiments on the BG/P. The
algorithms. If we used block sizé4 for scalability plot we

would see the significant difference between HSUMMA antgolfjeo.ﬁ terI;T/Z ggzg;tl:g? Zr?]\g?e(?rl? thr:?ceﬁq:«:?:rzzlr?gggo;|
SUMMA. However, even with this configuration which is pol u u work which 1

optimal for SUMMA it can be seen that on small platformgompute nodes and global networks for collective and infgrr

both SUMMA and HSUMMA have the same performance()perat'ons' Use of this network is integrated into the Blue-

however, the trend shows that on larger platforms HSUMMEeAt:Ie/tEeMSelc;lTepr:E;Te:ctl?r:EStétions in our experiments were
ill outperf SUMMA and therefore i lable. . X .
wilt-outpertorm and therefore Is more scaiable performed by using DGEMM routine from IBM ESSL library.

The size of the matrices for all our experiments on the BG/P
iS 65536 x65536. We use our implementation of SUMMA for
comparison with HSUMMA as the performance of ScalA-
PACK implementation lingers behind our implementation.
3l | The benefit of HSUMMA comes from the optimal number
of groups. Therefore, it is interesting to see how differaimn-
2} y bers of groups affect the communication cost of HSUMMA
on a large platform. Figurgl 8 shows HSUMMA dr6384
Lp ) cores. In order to have a fair comparison we use the same
block size inside a group and between the groups. The figure
06 32 61 128 shows that the execution time of SUMMA .2 seconds
Number of processes and the communication time 6.46 seconds. On the other
—e— HSUMMA —— SUMMA hand, the minimum execution time of HSUMMA 24 .26 and
the minimum communication time i6.19 when G = 512.
Fig. 7. HSUMMA and SUMMA on Grid5000. Communication time in Thus the execution time of HSUMMA i8.36 times and the
secondsb = B = 512 andn = 8192 communication time i$.89 times less than that of SUMMA
on 16384 cores. On the other hand, HSUMMA achie\z88
The experiments show that with any number of groupsnes less communication time and2 times less overall
HSUMMA outperforms SUMMA on Grid5000. execution time than SUMMA 0r2048 cores. We also did

Communication Time




experiments on BlueGene/P cores smaller ti2ad8 and « Bandwidth: 1E-9
the results showed that on smaller numbers of cores the p: 16384
performance of HSUMMA and SUMMA was almost the same. « n: 65536

The "zigzags” on the figure can be explained by the fact« b: 256

that mapping communication layouts to network hardware ¢fere again we use the same values of the algorithmic pa-

BlueGene/P impacts the communication performance andrdineters as in our experiments. By using these values it can
was observed by P. Balaji et al. [20] as well. When we groyp. b own that™

processors we do not take into account the platform parame-

ters. However, according to our preliminary observatitrese function of HSUMMA has the minimum in the intervél, p).

"zigzags” can be eliminated by taking platform parametefgr some ratios of. and p the above condition may not

into account while grouping. In addition, the effects of aguu hold. However, in this case the cost of matrix multiplicatio

versus non-square meshes also a reason for that. will be dominated by computation cost and even in this case
HSUMMA can be used just by using one prgroup.

b .. —
> 2”— which proves the communication

50 . C. Prediction on Exascale

e | We use the following parameters to predict performance of
HSUMMA on exascale platforms. These platform parameters

30| 8 are obtained from a recent report on exascale architecture

Time

roadmap!([8].
« Total flop rate {): 1E18 flops
10l | « Latency:500 ns
« Bandwidth:100 GB/s
S e g g « Problem sizen = 2%
Number of groups « Number of processorgi = 2

HSUMMA overall time  ——  SUMMA overall time + Block size:b = 256 b
AN o . a n .
—e— HSUMMA communication time-+— SUMMA communication time Agam we have > 9 which means HSUMMA can be

Fig. 8. SUMMA and HSUMMA on 16384 cores on BG/P. Execution andfficient and OUtperformpSUMMA on exascale platforms and
communication timeb = B = 256 andn = 65536 the theoretical plot is shown in Figurel10.
These analyses show that with any realistic platform param-

Figure[9 represents scalability analysis of SUMMA andters HSUMMA reduces the communication cost of SUMMA.
HSUMMA from communication point of view. It can be seerHowever, one of the useful features of HSUMMA is that in
that HSUMMA is more scalable than SUMMA and this patterthe worst case it can use just onepogroup and have exactly
suggests that the communication performance of HSUMMihe same performance as SUMMA.
gets much better than that of SUMMA while the number of
cores increases.
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Fig. 10. Prediction of SUMMA and HSUMMA on Exascale. Exeouttime

—e— HSUMMA communication time-=— SUMMA communication tim(% in secondsp = 1048576

Fig. 9. HSUMMA and SUMMA on BlueGene/P with VN mode. Commu-
nication time in secondsh = B = 256 andn = 65536 VI. CONCLUSIONS

We can conclude that our two-level hierarchical approach
1) Validation of the Anlytical Model on BlueGene/P: The o parallel matrix multiplication significantly reducesthom-
parameters of the BlueGene/P are as follows: munication cost on large platforms such as BlueGene/P. Our
o Latency: 3E-6 experiments show that HSUMMA achiev@q)8 times less



communication time than SUMMA 08048 cores and5.89
times less communication cost 6384 cores. Moreover,
the overall execution time of HSUMMA id.2 times less
than the overall execution time of SUMMA 02048 cores,
and2.36 times less orl6384 cores. This trend suggests that,
while the number of processors increases our algorithm Wiﬂs]
be more scalable than SUMMA. In addition, our experiments
on Grid5000 show that our algorithm can be effective on small
platforms as well. All these results prove that whatevendta
alone application-oblivious optimized broadcast aldons are  [7]
made available for exascale platforms, they cannot replace
application specific optimizations of communication cost.

At the moment, we select the optimal number of groups
sampling over valid values. However, it can be easily auto—8]
mated and incorporated into the implementation by using feyg;
iterations of HSUMMA.

Our algorithm does not change the distribution of thig?!
matrices in SUMMA. Currently, our algorithm was designegi )
for block-checkerboard distribution of the matrices. Hoare
we believe that by using block-cyclic distribution the COMe, 5,
munication can be better overlapped and parallelized amsl th
the communication cost can be reduced even further. Thus,
theoretical and practical analysis of our algorithm witbdk-
cyclic distribution is one of our main future works. In addit, [13]
until now we got all these improvements without overlapping
the communications on the virtual hierarchies.

We also plan to investigate the algorithm with more thap4
two levels of hierarchy as we believe that in this case it is
possible to get even better performance. In addition, wa plgg
to apply the same approach to other numerical linear algebra
kernels such as QR/LU factorization.

(4]

(5]

[16]
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