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Abstract—Matrix multiplication is a very important computa-
tion kernel both in its own right as a building block of many
scientific applications and as a popular representative forother
scientific applications.

Cannon’s algorithm which dates back to 1969 was the first
efficient algorithm for parallel matrix multiplication pro viding
theoretically optimal communication cost. However this algo-
rithm requires a square number of processors. In the mid-1990s,
the SUMMA algorithm was introduced. SUMMA overcomes the
shortcomings of Cannon’s algorithm as it can be used on a non-
square number of processors as well. Since then the number
of processors in HPC platforms has increased by two orders
of magnitude making the contribution of communication in the
overall execution time more significant. Therefore, the state of the
art parallel matrix multiplication algorithms should be re visited
to reduce the communication cost further.

This paper introduces a new parallel matrix multiplication al-
gorithm, Hierarchical SUMMA (HSUMMA), which is a redesign
of SUMMA. Our algorithm reduces the communication cost of
SUMMA by introducing a two-level virtual hierarchy into the
two-dimensional arrangement of processors. Experiments on an
IBM BlueGene/P demonstrate the reduction of communication
cost up to 2.08 times on 2048 cores and up to 5.89 times on
16384 cores.

I. I NTRODUCTION

Matrix multiplication is a very important computation kernel
both in its own right as a building block of many scientific
applications and as a popular representative for other scientific
applications.

Cannon’s algorithm [1] which was introduced in 1967 was
the first efficient algorithm for parallel matrix multiplication
providing theoretically optimal communication cost. However
this algorithm requires a square number of processors which
makes it impossible to be used in a general purpose library.
Later introduced Fox’s algorithm [2] has the same restriction.

The 3D algorithm [3] which dates back to the 1990s orga-
nizes thep processors asp

1

3×p
1

3×p
1

3 3D mesh and achieves
a factor of p

1

6 less communication cost than 2D parallel
matrix multiplication algorithms. However, in order to getthis
improvement the 3D algorithm requiresp

1

3 extra copies of
the matrices. That means that on one million cores the3D
algorithm will require100 extra copies of the matrices which
would be a significant problem on some platforms. Therefore,
the 3D algorithm is only practical for relatively small matrices.

One implementation of Fox’s algorithm on a generalP×Q

processor grid is PUMMA [4] which was designed for block-
cyclic distributed matrices. PUMMA consists ofQ− 1 shifts
for matrix A, LCM(P,Q) broadcasts for matrixB and
the number of local multiplications isLCM(P,Q). Here
LCM(P,Q) is the least common multiple ofP andQ. The
main shortcomings of PUMMA come from the fact that it
always tries to use the largest possible matrices for both
computation and communication. In this case, large memory
space is required to store them temporarily, the effect of the
block size is marginal and the most important it is difficult to
overlap computation with communication.

In the mid-1990s SUMMA [5] was introduced. Like
PUMMA, SUMMA was designed for a generalP×Q pro-
cessor grid. Unlike PUMMA it does not require the largest
possible matrices for computation and communication and
therefore allows to pipeline them. In addition, SUMMA was
implemented in practice in ScaLAPACK [6]: the most popular
parallel numerical linear algebra package.

Recently introduced 2.5D algorithm [7] generalizes the 3D
algorithm by parametrizing the extent of the third dimension of

the processor arrangement:
p

c

1

2×p

c

1

2×c, c ∈ [1, p
1

3 ]. However,
the 2.5D algorithm is efficient only if there is free amount
of extra memory to storec copies of the matrices. On the
other hand, it is expected that exascale systems will have a
dramatically shrinking memory space per core [8]. Therefore,
the 2.5D algorithm can not be scalable on the future exascale
systems.

Matrix multiplication is a problem known to be very com-
pute intensive. On the other hand, as HPC moves towards
exascale, the cost of matrix multiplication will be dominated
by communication cost. Therefore, the state of the art parallel
matrix multiplication algorithms should be revisited to reduce
the communication cost further.

The contributions of this paper are as follows:

• We introduce a new design to parallel matrix multiplica-
tion algorithm by introducing a two-level virtual hierar-
chy into the two-dimensional arrangement of processors.
We apply our approach to SUMMA which is a state
of the art algorithm. We call our algorithm hierarchical
SUMMA(HSUMMA).

http://arxiv.org/abs/1306.4161v1


• We model the performance of SUMMA and HSUMMA
and theoretically prove that HSUMMA reduces the com-
munication cost of SUMMA. Then we provide experi-
mental results on a cluster of Grid5000 and BlueGene/P
which are reasonable representative and span a good
spectrum of loosely and tightly coupled platforms. We
use SUMMA as the only competitor to our algorithm
because it is the most general and scalable parallel
matrix multiplication algorithm, which decreases its per-
processor memory footprint with the increase of the
number of processors for a given problem size, and is
used in the most famous parallel numerical linear algebra
packages such as ScaLAPACK. In addition, because of its
practicality SUMMA plays a starting point to implement
parallel matrix multiplications on specific platforms. As a
matter of fact, the most used parallel matrix multiplication
algorithm for heterogeneous platforms [9] [10] was based
on SUMMA as well. Therefore, despite it was introduced
in the mid-1990s SUMMA is still a state of the art
algorithm.

II. PREVIOUS WORK

In this section, we detail SUMMA algorithm which is the
motivating work for our algorithm. Then, we outline and
discuss the existing broadcast algorithms which can be used
inside SUMMA to improve its communication cost.

A. SUMMA algorithm

SUMMA [5] implements the matrix multiplicationC =
A× B over a two-dimensionalp = s× t processor grid. For
simplicity, let us assume that the matrices are squaren × n

matrices. These matrices are distributed over the processor grid
by block-distribution.

We can see the size of the matrices as
n

b
×n

b
by introducing

a block of sizeb. Then each element inA, B, andC is a square
b×b block, and the unit of computation is the updating of one
block, that is, a matrix multiplication of sizeb. For simplicity,
we assume thatn is a multiple of b. The algorithm can be
formulated as follows: The algorithm consists of

n

b
steps. At

each step

• Each processor holding part of the pivot column of the
matrix A horizontally broadcasts its part of the pivot
column along processor row.

• Each processor holding part of the pivot row of the matrix
B vertically broadcasts its part of the pivot row along
processor column.

• Each processor updates each block in itsC rectangle with
one block from the pivot column and one block from the
pivot row, so that each blockcij , (i, j) ∈ (1, ...,

n

b
) of

matrix C will be updated ascij = cij + aik×bkj .
• After

n

b
steps of the algorithm, each blockcij of matrix

C will be equal to

n

b
∑

k=1

aik × bkj

Figure 1 shows the communication pattern at the third step
with one block per processor.

Fig. 1. Communication Pattern of SUMMA for the third step with four
processors and one block per processor

B. MPI Broadcast Algorithms

Collective communications are fundamental tools to par-
allelize matrix multiplication algorithms. We have already
seen that the communication pattern of SUMMA is based
on broadcast and an improvement in the broadcast algorithm
can improve the communication cost of SUMMA as well.
Therefore it is worth to outline existing broadcast algorithms.

A lot of research have been done into MPI [11] collective
communications and especially into MPI broadcast algorithms
[12] [13] [14]. Early implementations of broadcast algorithms
assumed homogeneous and fully connected networks. They
are based on simple binary or binomial trees. On the other
hand, some algorithms have been introduced in order to be
more effective for large message sizes and use the benefits
of hierarchical networks by using pipelined trees or recursive
halving algorithms [12]. However, neither the broadcast APIs
nor numerous broadcast algorithms are application specific,
and most of the time improvements come from platform
parameters and very often they are for specific architectures,
such as mesh, hypercube and fat tree [15].

In the next section we introduce hierarchical SUMMA
algorithm. Our algorithm is neither an improvement of an
existing broadcast algorithm nor a new broadcast algorithm.
HSUMMA is an application specific but platform independent
hierarchical matrix multiplication algorithm which reduces
communication cost of SUMMA and allows better overlapping
of communications and computation. Indeed, HSUMMA can
use any of the existing optimized broadcast algorithms and still
reduce the communication cost of SUMMA as demonstrated
in Section IV-C.

III. H IERARCHICAL SUMMA

Let us assume we havep = s × t processors distributed
over the same two-dimensional virtual processor grid as in
SUMMA, the matrices are squaren × n matrices,b is the
block size. The distribution of the matrices is the same as in
SUMMA. HSUMMA partitions the virtuals × t processor
grid into a higher levelI × J arrangement of rectangular
groups of processors, so that inside each group there is a

two-dimensional
s

I
× t

J
grid of processors. Figure 2 gives

an example of such two-level hierarchical arrangement of



processors. In this example a6×6 grid of processors is
arranged into two-level3×3 grids of groups and2×2 grid
of processors inside a group.

Fig. 2. Hierarchical platform as nine groups, four processors per group

Let P(x,y)(i,j) denote the processor (i,j) inside the group
(x,y). HSUMMA splits the communication phase of the
SUMMA algorithm into two phases and consists of

n

b
steps.

The algorithm can be summarized as follows:
• Horizontal broadcast of the pivot column of the matrix

A is performed as follows:
– First, each processorP(k,y)(i,j), k ∈ (1, ..., I) hold-

ing part of the pivot column of the matrixA hor-
izontally broadcasts its part of the pivot column to
the processorsP(k,z)(i,j), z 6=y, z ∈ (1, ..., I) in the
other groups.

– Now, inside each group(x, y) processorP(x,y)(i,j)

has the required part of the pivot column of the
matrix A and it further horizontally broadcasts it to
the processorsP(x,y)(i,c), c 6=j, c ∈ (1, ...,

s

I
) inside

the group.
• Vertical broadcast of the pivot row of the matrixB is

performed as follows:
– First, each processorP(x,k)(i,j), k ∈ (1, ..., I) hold-

ing part of the pivot row of the matrixB vertically
broadcasts its part of the pivot row to the processors
P(z,k)(i,j), z 6=k, z ∈ (1, ..., I) in the other groups.

– Now, inside each group(x, y) processorP(x,y)(i,j)

has the required part of the pivot row of the matrixB

and it further vertically broadcast it to the processors

P(x,y)(r,j), r 6=j, r ∈ (1, ...,
t

J
) inside the group.

• Each processor inside a group updates each block in itsC

rectangle with one block from the pivot column and one
block from the pivot row, so that each blockcij , (i, j) ∈
(1, ...,

n

b
) of matrix C will be updated ascij = cij +

aik×bkj .

• After
n

b
steps of the algorithm, each blockcij of matrix

C will be equal to

n

b
∑

k=1

aik × bkj

The communication phases described above are illustrated
by Figure 3. In general it is possible to use one block size

Fig. 3. HSUMMA between groups

b
B

B

Fig. 4. HSUMMA inside group

between groups and another block size inside a group. In
this case the size of sent data between the groups is at least
the same as the size of data sent inside a group. Therefore,
the block size inside a group should be less than or equal
to the block size between groups. Let us assume the block
size between groups isB and inside a group isb. Then, the
number of steps in the higher level will be equal to the number
of blocks between groups:

n

B
. In each iteration between the

groups, the number of steps inside a group is
B

b
, so the total

number of steps of HSUMMA,
n

B
×B

b
, will be the same as

the number of steps of SUMMA. The amount of data sent is
the same as in SUMMA. The steps inside a group are shown
in Figure 4. It is clear that SUMMA is a special case of
HSUMMA when the number of groups equals to one or to
the total number of processors.

One may ask why to introduce a new hierarchical al-
gorithm if MPI implementations already provide us with
high-performance broadcast algorithms. As we have already
mentioned before, MPI optimizations of broadcast are plat-
form specific and do not depend on the application. On the
other hand, HSUMMA is an application specific hierarchical
algorithm which optimizes communication cost at the appli-
cation level and is platform independent. A general purpose
broadcast algorithm can not replace the communication pattern
of HSUMMA as in each level it calculates pivot row and pivot
column before broadcasting and it is very application specific.

The pseudocode for HSUMMA is Algorithm 1.



Algorithm 1: Hierarchical SUMMA algorithm
/*The A,B,C matrices are distributed on a

virtual 2-D grid of p = s×t processors.

Here are the instructions executed by the

processor P(x,y)(i,j) (this is the processor

(i,j) inside the group (x,y)).*/

Data: NBBlock Group: Number of steps in the higher level
Data: NBBlock Inside: Number of steps in the lower level
Data: (M,L,N): Matrix dimensions

Data: A,B: two input sub-matrices of size(
M

s
×

L

t
,
L

s
×

N

t
)

Result: C: result sub-matrix of size
M

s
×

N

t
begin

/* Broadcast A and B */

MPI_Comm group col comm /* communicator

between P(∗,y)(i,j) processors */

MPI_Comm group row comm /* communicator

between P(x,∗)(i,j) processors */

MPI_Comm col comm /* communicator between

P(x,y)(∗,j) processors */

MPI_Comm row comm /* communicator between

P(x,y)(i,∗) processors */

for itergroup = 0; itergroup < NBBlock Group; itergroup ++ do

if i == Pivot inside group col(itergroup) then
if x == Pivot group col(itergroup) then

/* Get direct access to the

iter
th
group group block of A */

Copy Block group( Blockgroup A , A, itergroup )

MPI_Bcast(Blockgroup A, TypeBlock group A,
Pivot group col(itergroup), group row comm)

if j == Pivot inside group row(itergroup) then
if y == Pivot group row(itergroup) then

/* Get direct access to the

iter
th
group group block of B */

Copy Block group( Blockgroup B, B, itergroup )

MPI_Bcast(Blockgroup B, TypeBlock group B,
Pivot group row(itergroup), group col comm)

for iter = 0; iter < NBBlock Inside; iter ++ do
if i == Pivot inside group col(iter) then

/* Get access to the iter
th

block of Blockgroup_A on this

processor */

Copy_Block_A( BlockA, Blockgroup A, iter)

MPI_Bcast(BlockA, TypeBlock A,
Pivot_col(iter), row comm)

if j == Pivot inside group row(iter) then

/* Get access to the iter
th

block of Blockgroup_B on this

processor */

Copy_Block_B( BlockB, Blockgroup B, iter)

MPI_Bcast(BlockB, TypeBlock B,
Pivot_row(iter), col comm)

DGemm(BlockA, BlockB, C)

IV. T HEORETICAL ANALYSIS

In this section SUMMA and HSUMMA are theoretically
analysed and compared. First of all, for simplicity we assume
that the matrices aren × n square matrices. Letb be block
size inside one group andB be block size between groups.
The execution time depends on the communication time (i.e.
the broadcast algorithm and the communication model). As
a communication model we use Hockney’s model [16] which
represents the time of sending of a message of sizem between
two processors asα + mβ. Here,α is the latency,β is the
reciprocal of network bandwidth. In addition, let us assume
that a combined floating point computation(for one addition
and multiplication) time isγ. Binomial tree and Van de Geijn
broadcast algorithms [13] [17] are used to analyse both our
algorithm and SUMMA. It is known that the costs of these
broadcast algorithms are as follows:

• Binomial tree algorithm:log2(p)× (α+m× β)

• Van de Geijn algorithm:(log2(p)+p− 1)α+2
p− 1

p
mβ

A. Analysis of SUMMA

For simplicity let us assume then × n matrices are dis-
tributed over a two-dimensional

√
p×√

p grid of processors

and the block size isb. This algorithm has
n

b
steps. In each

step, processors broadcast pivot row and pivot column. So the

computation cost in each step isO(2 × n2

p
×b). Hence, the

overall computation cost will beO(
2n3

p
).

The broadcasts of each row and column are independent at
each step and they can be done in parallel. For this analysis
the network congestion is neglected. The amount of data
transferred by each broadcast is

n
√
p
× b. The total commu-

nication cost of SUMMA can be computed by multiplying
the communication cost of each step by the number of steps
depending on the broadcast algorithm. The results are:

• Binomial Tree:

log2 (p)×
(

α
n

b
+ β× n2

√
p

)

• Van de Geijn broadcast:

(log2 (p) + 2(
√
p− 1))α

n

b
+ 4(1− 1

√
p
)
n2

√
p
β

B. Analysis of HSUMMA

To simplify the analysis, let us assume there areG groups
arranged as

√
G×

√
G grid of processors groups. LetB denote

the block size between groups(we also call such a block an
outer block),b be block size inside a group, andn×n be the
size of the matrices.

There is one step per outer block, thus there will be
n

B
steps in the highest level called outer steps. Each outer block
belongs to

√
p processors. These processors broadcast the part

of the outer block along the row or column of processor in

parallel. The size of sent data is2
n×B
√
p

per processor which

has a part of the outer block.



Inside one group, processors are arranged in a grid of size:√
p√
G

×
√
p√
G

. After the reception of the outer block each group

multiplies the outer block using the SUMMA algorithm inside

the group. Thus there are
B

b
inner steps to execute. The

inner block belongs to
√
p√
G

processors. These processors send

2
n× b
√
p

amount of data per inner step.

The overall communication time is equal to the sum of
the communication times between the groups and inside the
groups.

• Inner Communication cost (inside each group):

– Binomial Tree:

log2

( p

G

)

×
(

α×n

b
+ β× n2

√
p

)

– Van de Geijn broadcast:
(

log2

( p

G

)

+ 2

( √
p√
G

− 1

))

×α×n

b
+ 4(1 −

√
G

√
p
)× n2

√
p
β

• Outer Communication cost (between groups):

– Binomial Tree:log2 (G)×
(

α× n

B
+ β× n2

√
p

)

– Van de Geijn broadcast:
(

log2 (G) + 2
(√

G− 1
))

×α× n

B
+ 4(1 −

1√
G
)× n2

√
p
β

We can summarize the cost of HSUMMA and SUMMA as in
Table I and Table II.

TABLE I
COMPARISON WITH BINOMIAL TREE BROADCAST

Algorithm Comp. Cost Latency Factor Bandwidth Factor
inside groups between groups inside groups between groups

SUMMA
2n3

p
log2 (p)×

n

b
n2× log2 (p)√

p

HSUMMA
2n3

p
log2

( p

G

)

×n

b
log2 (G)× n

B
log2

( p

G

)

× n2

√
p

log2 (G)× n2

√
p

C. Theoretical Prediction

One of the goals of this section is to demonstrate that inde-
pendent on the broadcast algorithm employed by SUMMA,
HSUMMA will either outperform SUMMA or be at least
equally fast. In this section we introduce a general model
for broadcast algorithms and theoretically predict SUMMA
and HSUMMA. In the model we assume no contention and
assume all the links are homogeneous. We prove that even
with this simple model the extremums of the communication
cost function can be predicted.

Again we assume that the time taken to send a message of
size m between any two processors is modeled asT (m) =
α + m×β, whereα is the latency andβ is the reciprocal
bandwidth.

We model a broadcast time for a message of sizem

amongp processors by formula (1). This model generalizes
all homogeneous broadcast algorithms such as pipelined/non-
pipelined flat, binary, binomial, linear, scatter/gather broadcast
algorithms [18] [19] which are used inside state of the art
broadcast implementations like MPICH and Open MPI.

Tbcast(m, p) = L(p)×α+m×W (p)×β (1)

In (1) we assume thatL(1) = 0 and W (1) = 0. It is also
assumed thatL(p) andW (p) are monotonic and differentiable
functions in the interval(1, p) and their first derivatives are
constants or monotonic in the interval(1, p).

With this general model the theoretical communication cost
of SUMMA will be as follows:

TS(n, p) = 2

(

n

b
×L(

√
p)α+

n2

√
p
×W (

√
p)β

)

(2)

In the same way we can express the communication cost of
HSUMMA as the sum of the latency cost and the bandwidth
cost:

THS(n, p,G) = THSl
(n, p,G) + THSb

(n, p,G) (3)

HereG ∈ [1, p] and we takeb = B for simplicity. The latency
costTHSl

(n, p,G) and the bandwidth costTHSb
(n, p,G) will

be given by the following formulas:

THSl
(n, p,G) = 2

n

b
×
(

L(
√
G) + L(

√
p√
G
)

)

α (4)

THSb
(n, p,G) = 2

n2

√
p
×
(

W (
√
G) +W (

√
p√
G
)

)

β (5)

It is clear thatTS(n, p) is a speacial case ofTHS(n, p,G)
whenG = 1 or G = p.

Let us investigate extremums ofTHS as a function ofG for
a fixedp andn. We haveb = B.

∂THS

∂G
=

n

b
×L1(p,G)α+

n2

√
p
×W1(p,G)β (6)

Here,L1(p,G) andW1(p,G) are defined as follows:

L1(p,G) =





∂L(
√
G)

∂
√
G

× 1√
G

−
∂L(

√
p

√
G
)

∂
√
p

√
G

×
√
p

G
√
G



 (7)

W1(p,G) =





∂W (
√
G)

∂
√
G

× 1√
G

−
∂W (

√
p

√
G
)

∂
√
p

√
G

×
√
p

G
√
G



 (8)

It can be easily shown that, ifG =
√
p thenL1(p,G) = 0

and W1(p,G) = 0, thus,
∂THS

∂G
= 0. In addition,

∂THS

∂G
changes the sign in the interval(1, p) depending on the value
of G. That meansTHS(n, p,G) has extremum atG =

√
p for

fixedn andp. The expression of
∂THS

∂G
shows that, depending

on the ratio ofα andβ the extremum can be either minimum
or maximum in the interval(1, p). If G =

√
p is the minimum

point it means that withG =
√
p HSUMMA will outperform



TABLE II
COMPARISON WITH VAN DE GEIJN BROADCAST

Algorithm Comp. Cost Latency Factor Bandwidth Factor
inside groups between groups inside groups between groups

SUMMA
2n3

p
(log2 (p) + 2 (

√
p− 1))×n

b
4

(

1− 1
√
p

)

× n2

√
p

HSUMMA
2n3

p

(

log2

( p

G

)

+ 2

( √
p√
G

− 1

))

×n

b

(

log2 (G) + 2
(√

G− 1
))

× n

B
4

(

1−
√
G

√
p

)

× n2

√
p

4

(

1− 1√
G

)

× n2

√
p

HSUMMA(G =
√
p, b = B)

2n3

p
(log2 (p) + 4 (4

√
p− 1))×n

b
8

(

1− 1
4
√
p

)

× n2

√
p

SUMMA, otherwise HSUMMA withG = 1 or G = p will
have the same performance as SUMMA.

Now lets apply this analysis to the HSUMMA commu-
nication cost function obtained for Van de Geijn broadcast
algorithm (see Table II) and again assumingb = B for
simplicity. We will have:

∂THSV

∂G
=

G−√
p

G
√
G

×
(

nα

b
− 2

n2

p
×β

)

(9)

It is clear that ifG =
√
p then

∂THSV

∂G
= 0. Depending on

the ratio ofα andβ, the communication cost as a function of
G has either minimum or maximum in the interval(1, p).

• If
α

β
> 2

nb

p
(10)

then
∂THSV

∂G
< 0 in the interval(1,

√
p) and

∂THSV

∂G
> 0

in (
√
p, p). ThusTHS has the minimum in the interval

(1, p) and the minimum point isG =
√
p.

• If
α

β
< 2

nb

p
(11)

then THS has the maximum in the interval(1, p) and
the maximum point isG =

√
p. The function gets its

minimum at eitherG = 1 or G = p.

If we takeG =
√
p in the HSUMMA communication cost

function (see Table II) and assume the above conditions the
optimal communication cost function will be as follows:

(log2 (p) + 4 (4
√
p− 1))×n

b
×α+ 8

(

1− 1
4
√
p

)

× n2

√
p
×β

(12)
Thus, we have proved that depending on the ratio ofα and
β HSUMMA will either reduce the communication cost of
SUMMA or in the worst case have the same performance as
SUMMA.

We will use this model to predict the performance of
HSUMMA on Grid5000, BlueGene/P and future exascale
platforms.

V. EXPERIMENTS

Our experiments were carried out on a cluster of Grid5000
and a BlueGene/P (BG/P) platform which are fairly repre-
sentative and span a good spectrum of loosely and tightly
coupled platforms. The details of the platforms are given in
the appropriate sections. The times in our experimental results
are the mean times of30 experiments.

A. Experiments on Grid5000

Some of our experiments were carried out on the Graphene
cluster of Nancy site of Grid5000 platform. We have used
Intel MKL BLAS for sequential operations, MPICH-2 for
MPI implementation and our implementations of the matrix
multiplication algorithms. In addition to MPICH we also did
some experiments with Open MPI on Grid5000 and got similar
results. Thus in this paper we just present the experiments with
MPICH implementation of MPI. The size of matrices in our
experiments on Grid5000 is8192×8192. Figure 5 compares
SUMMA and HSUMMA with block size64. It is clear that
smaller block sizes lead to a larger number of steps and this
in turn will affect the latency cost. It can be seen that in this
case HSUMMA outperforms SUMMA with huge difference.
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Fig. 5. HSUMMA on Grid5000. Communication time in seconds.b = B =

64,n = 8192 andp = 128



Figure 6 represents the same comparision but with block
size 512. This block size is the maximum possible one
with this configuration. In this case the improvement is1.6
times as the minimum communication time of HSUMMA and
SUMMA are 2.81 and4.53 seconds respectively. In addition,
theoretically HSUMMA should has the same performance as
SUMMA whenG = 1 or G = p and the figures verifies that in
practice. That means HSUMMA can never be worse than than
SUMMA. In the worst case it will have the same performance
as SUMMA.
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Fig. 6. HSUMMA on Grid5000. Communication time in seconds.b = B =

512, n = 8192 andp = 128

Figure 7 shows experimental results from scalability point
of view. Here we use the largest possible block size for both
algorithms. If we used block size64 for scalability plot we
would see the significant difference between HSUMMA and
SUMMA. However, even with this configuration which is
optimal for SUMMA it can be seen that on small platforms
both SUMMA and HSUMMA have the same performance,
however, the trend shows that on larger platforms HSUMMA
will outperform SUMMA and therefore is more scalable.
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Fig. 7. HSUMMA and SUMMA on Grid5000. Communication time in
seconds.b = B = 512 andn = 8192

The experiments show that with any number of groups
HSUMMA outperforms SUMMA on Grid5000.

1) Validation of the Anlytical Model on Grid5000: We
take the following approximately real parameters for Graphene
cluster of Grid5000:

• Latency: 1E-4
• Reciprocal bandwidth: 1E-9
• p: 8192
• n: 8192
• b: 64

The algorithmic parameters are the same as in our experiments

on Grid5000. It is clear that
α

β
> 2 ∗ 8192 ∗ 64

128
= 8192 and

therefore according to our theoretical analysis HSUMMA has
minimum in the interval(1, p). We do not have experimental
minimum exactly atG =

√
p as predicted by our theoretical

results. However, this does not downgrade the importance of
our analytical model because the main goal of our analytical
analysis is to predict if HSUMMA will be more efficient than
SUMMA on the target platform or not. If this is the case, the
optimal number of groups can be easily found experimentally
by using only few iterations of HSUMMA with different
values ofG and thus can be incorporated into the algorithm.

B. Experiments on BlueGene/P

Some of our experiments were carried out on Shaheen
BlueGene/P at Supercomputing Laboratory at King Abdul-
lah University of Science&Technology (KAUST) in Thuwal,
Saudi Arabia. Shaheen is a 16-rack BlueGene/P. Each node
is equipped with four 32-bit, 850 Mhz PowerPC 450 cores
and 4GB DDR memory. VN (Virtual Node) mode with torus
connection was used for the experiments on the BG/P. The
Blue Gene/P architecture provides a three-dimensional point-
to-point Blue Gene/P torus network which interconnects all
compute nodes and global networks for collective and interrupt
operations. Use of this network is integrated into the Blue-
Gene/P MPI implementation.

All the sequential computations in our experiments were
performed by using DGEMM routine from IBM ESSL library.
The size of the matrices for all our experiments on the BG/P
is 65536×65536. We use our implementation of SUMMA for
comparison with HSUMMA as the performance of ScaLA-
PACK implementation lingers behind our implementation.

The benefit of HSUMMA comes from the optimal number
of groups. Therefore, it is interesting to see how differentnum-
bers of groups affect the communication cost of HSUMMA
on a large platform. Figure 8 shows HSUMMA on16384
cores. In order to have a fair comparison we use the same
block size inside a group and between the groups. The figure
shows that the execution time of SUMMA is50.2 seconds
and the communication time is36.46 seconds. On the other
hand, the minimum execution time of HSUMMA is21.26 and
the minimum communication time is6.19 when G = 512.
Thus the execution time of HSUMMA is2.36 times and the
communication time is5.89 times less than that of SUMMA
on 16384 cores. On the other hand, HSUMMA achieves2.08
times less communication time and1.2 times less overall
execution time than SUMMA on2048 cores. We also did



experiments on BlueGene/P cores smaller than2048 and
the results showed that on smaller numbers of cores the
performance of HSUMMA and SUMMA was almost the same.

The ”zigzags” on the figure can be explained by the fact
that mapping communication layouts to network hardware on
BlueGene/P impacts the communication performance and it
was observed by P. Balaji et al. [20] as well. When we group
processors we do not take into account the platform parame-
ters. However, according to our preliminary observations these
”zigzags” can be eliminated by taking platform parameters
into account while grouping. In addition, the effects of square
versus non-square meshes also a reason for that.
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Fig. 8. SUMMA and HSUMMA on 16384 cores on BG/P. Execution and
communication time.b = B = 256 andn = 65536

Figure 9 represents scalability analysis of SUMMA and
HSUMMA from communication point of view. It can be seen
that HSUMMA is more scalable than SUMMA and this pattern
suggests that the communication performance of HSUMMA
gets much better than that of SUMMA while the number of
cores increases.
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Fig. 9. HSUMMA and SUMMA on BlueGene/P with VN mode. Commu-
nication time in seconds.b = B = 256 andn = 65536

1) Validation of the Anlytical Model on BlueGene/P: The
parameters of the BlueGene/P are as follows:

• Latency: 3E-6

• Bandwidth: 1E-9
• p: 16384
• n: 65536
• b: 256

Here again we use the same values of the algorithmic pa-
rameters as in our experiments. By using these values it can

be shown that
α

β
> 2

nb

p
which proves the communication

function of HSUMMA has the minimum in the interval(1, p).
For some ratios ofn and p the above condition may not
hold. However, in this case the cost of matrix multiplication
will be dominated by computation cost and even in this case
HSUMMA can be used just by using one orp group.

C. Prediction on Exascale

We use the following parameters to predict performance of
HSUMMA on exascale platforms. These platform parameters
are obtained from a recent report on exascale architecture
roadmap [8].

• Total flop rate (γ): 1E18 flops
• Latency:500 ns
• Bandwidth:100 GB/s
• Problem size:n = 222

• Number of processors:p = 220

• Block size:b = 256

Again we have
α

β
> 2

nb

p
which means HSUMMA can be

efficient and outperform SUMMA on exascale platforms and
the theoretical plot is shown in Figure 10.

These analyses show that with any realistic platform param-
eters HSUMMA reduces the communication cost of SUMMA.
However, one of the useful features of HSUMMA is that in
the worst case it can use just one orp group and have exactly
the same performance as SUMMA.
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Fig. 10. Prediction of SUMMA and HSUMMA on Exascale. Execution time
in seconds.p = 1048576

VI. CONCLUSIONS

We can conclude that our two-level hierarchical approach
to parallel matrix multiplication significantly reduces the com-
munication cost on large platforms such as BlueGene/P. Our
experiments show that HSUMMA achieves2.08 times less



communication time than SUMMA on2048 cores and5.89
times less communication cost on16384 cores. Moreover,
the overall execution time of HSUMMA is1.2 times less
than the overall execution time of SUMMA on2048 cores,
and2.36 times less on16384 cores. This trend suggests that,
while the number of processors increases our algorithm will
be more scalable than SUMMA. In addition, our experiments
on Grid5000 show that our algorithm can be effective on small
platforms as well. All these results prove that whatever stand-
alone application-oblivious optimized broadcast algorithms are
made available for exascale platforms, they cannot replace
application specific optimizations of communication cost.

At the moment, we select the optimal number of groups
sampling over valid values. However, it can be easily auto-
mated and incorporated into the implementation by using few
iterations of HSUMMA.

Our algorithm does not change the distribution of the
matrices in SUMMA. Currently, our algorithm was designed
for block-checkerboard distribution of the matrices. However,
we believe that by using block-cyclic distribution the com-
munication can be better overlapped and parallelized and thus
the communication cost can be reduced even further. Thus,
theoretical and practical analysis of our algorithm with block-
cyclic distribution is one of our main future works. In addition,
until now we got all these improvements without overlapping
the communications on the virtual hierarchies.

We also plan to investigate the algorithm with more than
two levels of hierarchy as we believe that in this case it is
possible to get even better performance. In addition, we plan
to apply the same approach to other numerical linear algebra
kernels such as QR/LU factorization.
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