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Abstract—This paper presents the first parallel implementation
of pointer analysis with Context-Free Language (CFL) reacha-
bility, an important foundation for supporting demand queries in
compiler optimisation and software engineering. Formulated as a
graph traversal problem (often with context- and field-sensitivity
for desired precision) and driven by queries (issued often in batch
mode), this analysis is non-trivial to parallelise.

We introduce a parallel solution to the CFL-reachability-based
pointer analysis, with context- and field-sensitivity. We exploit
its inherent parallelism by avoiding redundant graph traversals
with two novel techniques, data sharing and query scheduling.
With data sharing, paths discovered in answering a query are
recorded as shortcuts so that subsequent queries will take the
shortcuts instead of re-traversing its associated paths. With query
scheduling, queries are prioritised according to their statically
estimated dependences so that more redundant traversals can
be further avoided. Evaluated using a set of 20 Java programs,
our parallel implementation of CFL-reachability-based pointer
analysis achieves an average speedup of 16.2X over a state-of-
the-art sequential implementation on 16 CPU cores.

I. INTRODUCTION

Pointer (or alias) analysis, which is an important compo-
nent of an optimising or parallelising compiler, determines
statically what a pointer may point to at runtime. It also plays
an important role in debugging, verification and security anal-
ysis. Much progress has been made to improve the precision
and efficiency of pointer analysis, across several dimensions,
including field-sensitivity (to match field accesses), context-
sensitivity (to distinguish calling contexts) and flow-sensitivity
(to consider control-flow). In the case of object-oriented pro-
grams, e.g., Java programs, both context- and field-sensitivity
are considered to be essential in achieving a good balance
between analysis precision and efficiency [5].

Traditionally, Andersen’s algorithm [2] has been frequently
used to discover the points-to information in a program (e.g., in
C and Java). Andersen’s analysis is a whole-program analysis
that computes the points-to information for all variables in the
program. This algorithm has two steps: finding the constraints
that represent the pointer-manipulating statements and propa-
gating these constraints until a fixed point is reached.

For many clients, such as debugging [17], [18], [19] and
alias disambiguation [21], however, the points-to information
is needed on-demand only for some but not all variables in the
program. As a result, there has been a recent focus on demand-
driven pointer analysis, founded on Context-Free Language
(CFL) reachability [15], which only performs the necessary
work to compute the points-to information requested in a graph
representation of the program [6], [16], [17], [18], [19], [26],

[27]. By computing the points-to information of some (instead
of all variables as in whole-program Andersen’s analysis),
demand-driven analysis can be performed both context- and
field-sensitively to achieve better precision more scalably than
Andersen’s analysis, especially for Java programs.

However, precise CFL-reachability-based analysis can still
be costly when applied to large programs. In the sequential
setting, there are efforts for improving its efficiency for Java
programs by resorting to refinement [18], [19], summarisa-
tion [17], [26], incrementalisation [6], [16], pre-analysis [25]
and ad-hoc caching [18], [25]. However, multicore platforms,
which are ubiquitous nowadays, have never been exploited for
accelerating the CFL-reachability-based analysis.

There have been a few parallel implementations of Ander-
sen’s pointer analysis on multi-core CPUs [3], [8], [9], [14],
GPUs [7], [10], and heterogeneous CPU-GPU systems [20],
as compared in detail in Table II. As Andersen’s analysis is a
whole-program pointer analysis, these earlier solutions cannot
be applied to parallelise demand-driven pointer analysis.

Despite the presence of redundant graph traversals both
within and across the queries, parallelising CFL-reachability-
based pointer analysis poses two challenges. First, parallelism-
inhibiting dependences are introduced into its various analysis
stages since processing a query involves matching calling
contexts and handling heap accesses via aliased base variables
(e.g., p and q in x = p.f and q.f = y). Second, the new points-
to/alias information discovered in answering some queries
during graph traversals is not directly available to other queries
on the (read-only) graph representation of the program.

In this paper, we describe the first parallel implementation
of this important analysis for Java programs (although the
proposed techniques apply equally well to C programs [27]).
We expose its inherent parallelism by reducing redundant
graph traversals using two novel techniques, data sharing and
query scheduling. With data sharing, we recast the original
graph traversal problem into a graph rewriting problem. By
adding new edges to the graph representation of the program
to shortcut the paths traversed in a query, we can avoid re-
traversing (redundantly) the same paths by taking their short-
cuts instead when handling subsequent queries. With query
scheduling, we prioritise the queries to be issued (in batch
mode) according to their statically estimated dependences so
that more redundant graph traversals can be further reduced.

While this paper focuses on CFL-reachability-based pointer
analysis, the proposed techniques for data sharing and schedul-
ing are expected to be useful for parallelising other graph-



reachability-based analyses (e.g., bug detection [22], [23]).
In summary, this paper makes the following contributions:
• The first parallel implementation of context- and field-

sensitive pointer analysis with CFL-reachability;
• A data sharing scheme to reduce redundant graph traver-

sals (in all query-processing threads) by graph rewriting;
• A query scheduling scheme to eliminate unnecessary

traversals further, by prioritising queries according to
their statically estimated dependences; and

• An evaluation with a set of 20 Java benchmarks, showing
that our parallel solution achieves an average speedup of
16.2X over a state-of-the-art sequential implementation
(with 16 threads) on 16 CPU cores.

The rest of this paper is organised as follows. Section II
introduces the intermediate representation used for analysing
Java programs and reviews CFL-reachability-based pointer
analysis. Section III describes our parallel solution in terms
of our data sharing and query scheduling schemes. Section IV
evaluates and analyses our solution. Section V discusses the
related work. Section VI concludes the paper.

II. BACKGROUND

Section II-A describes the intermediate representation used
for analysing Java programs. Section II-B reviews the standard
formulation of pointer analysis in terms of CFL-reachability.

A. Program Representation

We focus on Java although this work applies equally well to
C [27]. A Java program is represented as a Pointer Assignment
Graph (PAG), as defined in Fig. 1.

A node n represents a variable v or an object o in the
program, where v can be local (l) or global (g). An edge e
represents a statement in the program oriented in the direction
of its value flow. An edge connects only to local variables (l1
and/or l2) unless it represents an assignment involving at least
one global variable (assigng). Let us look at the seven types
of edges in detail. l1

new←−− o captures the flow of object o to

variable l1, indicating that l1 points directly to o. l1
assignl

←−−−− l2
represents a local assignment (l1 = l2). A global assignment
is similar except that one or both variables at its two sides
are static variables in a class (i.e. g). l1

ld(f)←−− l2 represents a
load of the form l1 = l2.f and l1

st(f)←−− l2 represents a store
of the form l1.f = l2. l1

parami←−−−− l2 models parameter passing,
where l2 is an actual parameter and l1 is its corresponding
formal parameter, at call site i. Similarly, l1

reti←−− l2 indicates
an assignment of the return value in l2 to l1 at call site i.

Fig. 2 gives an illustrating example and its PAG repre-
sentation. Note that oi denotes the object created at the
allocation site in line i and vm represents variable v declared
in method m. Loads and stores to array elements are modeled
by collapsing all elements into a special field, denoted arr.

B. CFL-Reachability-based Pointer Analysis

CFL-reachability [15] is an extension of traditional graph
reachability. Let G be a directed graph with edges labelled

n := v | o Node
v := l | g Variable
e := l1

new←−− o Allocation

| l1
assignl←−−−− l2 Local Assignment

| g
assigng←−−−− v | v assigng←−−−− g Global Assignment

| l1
ld(f)←−− l2 Load

| l1
st(f)←−− l2 Store

| l1
parami←−−−− l2 Parameter

| l1
reti←−− l2 Return

l ∈ Local g ∈ Global o ∈ Object
i ∈ CallSite f ∈ Field

Fig. 1: Syntax of PAG (pointer assignment graph).

by letters over an alphabet Σ and L be a CFL over Σ. Each
path p in G is composed of a string s(p) in Σ∗, formed by
concatenating in order the labels of edges along p. A path p
is an L-path iff s(p) ∈ L. Node x is L-reachable to y iff a
path p from x to y exists, such that s(p) ∈ L. For a single-
source reachability analysis, the worst-case time complexity is
O(Γ3N3), where Γ is the size of a normalised grammar for
L and N is the number of nodes in G.

1) Field-sensitivity: Let us start with a field-sensitive for-
mulation without context-sensitivity. When calling contexts
are ignored, there is no need to distinguish the four types
of assignments, assignl, assigng , parami and reti; they are
all identified as assignment edges of type assign.

For a PAG G with only new and assign edges, the CFL
LFT (FT for flows to) is a regular language, meaning that a
variable v is LFT-reachable from an object o in G iff o can
flow to v. The rule for LFT is defined as:

flowsTo → new (assign)∗ (1)

with flowsTo as the start symbol. If o flowsTo v, then v is LFT-
reachable from o. For example, in Fig. 2(b), since o15

new−−→

v1main
param15−−−−−→ thisVector, o15 flows to thisVector.

When field accesses are also handled, the CFL LFS (FS for
field-sensitivity) is defined as follows:

flowsTo → new ( assign | st(f) alias ld(f))∗

alias → flowsTo flowsTo
flowsTo → ( assign | ld(f) alias st(f))∗ new

(2)

The rule for flowsTo matches fields via st(f) alias ld(f),
where st(f) and ld(f) are like a pair of parentheses [19]. For
a pair of statements q.f = y (st(f)) and x = p.f (ld(f)),
if p and q are aliases, then an object o that flows into y
can flow first through this pair of parentheses (i.e. st(f) and
ld(f)) and then into x. For example, in Fig. 2(b), as o15

new−−→

v1main
param15−−−−−→ thisVector and o15

new−−→ v1main
param18−−−−−→ thisget, we

have thisVector alias thisget. Thus o6
new−−→ tVector

st(elems)−−−−−→ thisVector

alias thisget
ld(elems)−−−−−→ tget, indicating that o6 flows to tget.

To allow the alias relation in the language, flowsTo is
introduced as the inverse of the flowsTo relation. For a flowsTo-
path p, its corresponding flowsTo-path p can be obtained using



1 class Vector {

2 Object[] elems;

3 int count;

4 Vector(){

5 count = 0;

6 t = new Object[MAXSIZE];

7 this.elems = t;}

8 void add(Object e){

9 t = this.elems;
10 t[count++] = e;} // W t.arr

11 Object get(int i){

12 t = this.elems;
13 return t[i];} // R t.arr

14 static void main(String[] args){

15 Vector v1 = new Vector();

16 String n1 = new String("N1");

17 v1.add(n1);

18 Object s1 = v1.get(0);

19 Vector v2 = new Vector();

20 Integer n2 = new Integer(1);

21 v2.add(n2);

22 Object s2 = v2.get(0);}}

(a) Java code

thisadd

tadd

eadd

n1main n2main

o16 o20

thisget

tget

retget

s1main s2main

v1main

v2main

thisVector

tVector

o6

o15

o19

ret18 ret22

ld(arr)

ld(elems)

param17 param21

st(arr)

ld(elems)

new new

param18

param17

param21

param22

param15param19

new

new

st(elems)

new

(b) PAG

Fig. 2: A Java example and its PAG.

inverse edges, and vice versa. For each edge x
e←− y in p,

its inverse edge is y e←− x in p. Therefore, o flowsTo x iff
x flowsTo o, indicating that flowsTo actually represents the
points-to relation. To find the points-to set of a variable, we
use the CFL given in (2) with flowsTo as the start symbol.

2) Context-sensitivity: When context-sensitivity is consid-
ered, parami and reti are treated as assign as before in LFS.
However, assignl and assigng are now distinguished.

A context-sensitive CFL requires parami and reti to be
matched, also in terms of balanced parentheses, by ruling out
the unrealisable paths in a program [18]. The CFL RCS (CS
for context-sensitivity) for capturing realisable paths is:

c → entryi c exiti | c c | ε
entryi → parami | reti

exiti → reti | parami

(3)

When traversing along a flowsTo path, after entering a
method via parami from call site i, a context-sensitive anal-
ysis requires exiting from that method back to call site i, via
either reti to continue its traversal along the same flowsTo path
or parami to start a new search for a flowsTo path. Traversing
along a flowsTo path is similar except that the direction of
traversal is reversed. Consider Fig. 2(b). s1main is found to
point to o16 as o16 reaches s1main along a realisable path
by first matching param17 and param17 and then param18

and ret18. However, s1main does not point to o20 since o20
cannot reach s1main along a realisable path.

Let LPT (PT for points-to) be the CFL for computing
the points-to information of a variable field- and context-
sensitively. Then LPT is defined in terms of (2) and (3):
LPT = LFS ∩RCS, where flowsTo is the start symbol.

3) Algorithm: With CFL-reachability, a query that requests
for a variable’s points-to information can be answered on-
demand, according to Algorithm 1. This algorithm makes use
of three variables: (1) E represents the edge set of the PAG
of the program, (2) B is the (global) budget defined as the
maximum number of steps that can be traversed by any query,
with each node traversal being counted as one step [19], and
(3) steps is query-local, representing the number of steps that
has been traversed so far by a particular query.

Given a query (l, c), where l is a local variable and c is

Algorithm 1 CFL-reachability-based pointer analysis,
where POINTSTO computes flowsTo and FLOWSTO is
analogous to its inverse POINTSTO and thus omitted.

Global E; Const B; QueryLocal steps; // initially 0

Procedure POINTSTO(l, c)
begin

1 pts← ∅;
2 W ← {<l, c>};
3 while W 6= ∅ do
4 <x, c>←W.pop();
5 steps← steps+ 1;
6 if steps > B then OUTOFBUDGET (0);
7 foreach x

new←−− o ∈ E do pts← pts ∪ {<o, c>};

8 foreach x
assignl←−−−− y ∈ E do W.push(<y, c>);

9 foreach x
assigng←−−−− y ∈ E do W.push(<o, ε>) ;

10 foreach <y, c′> ∈ REACHABLENODES(x, c) do
11 W.push(<y, c′>);

12 foreach x
parami←−−−− y ∈ E do

13 if c = ∅ or c.top() = i then
14 W.push(<y, c.pop()>); // ε.pop() ≡ ε

15 foreach x
reti←−− y ∈ E do W.push(<y, c.push(i)>);

16 return pts;

Procedure REACHABLENODES(x, c)
begin

17 rch← ∅;
18 foreach x

ld(f)←−− p ∈ E do
19 foreach q

st(f)←−− y ∈ E do
20 alias← ∅;
21 foreach <o, c′> ∈ POINTSTO(p, c) do
22 alias← alias ∪ FLOWSTO(o, c′);

23 foreach <q′, c′′> ∈ alias do
24 if q′ = q then rch← rch ∪ {<y, c′′>};

25 return rch;

Procedure OUTOFBUDGET(BDG)
begin

26 exit();



a context, POINTSTO computes the points-to set of l under
c. It traverses the PAG with a work list W maintained for
variables to be explored. pts is initialised with an empty set
and W with <l, c> (lines 1 – 2). By default, steps for this
query is initialised as 0. Each variable x with its context c,
i.e., <x, c> obtained from W is processed as follows: steps is
updated, triggering a call to OUTOFBUDGET if the remaining
budget is 0 (lines 5 – 6), and the incoming edges of x are
traversed according to (2) and (3) (lines 7 – 15).

Field-sensitivity is handled by REACHABLENODES(x, c),
which searches for the reachable variables y to x in context
c, due to heap accesses by matching the load (x = p.f ) with
every store (q.f = y), where p and q are aliases (lines 17 –
25). Both POINTSTO and FLOWSTO are called (recursively)
to ensure that p and q are aliased base variables.

To handle context-sensitivity, the analysis stays in the same
context c for assignl (line 8), clears c for assigng as global
variables are treated context-insensitively (line 9), matches
the context (c.top() = i) for parami but allows for partially
balanced parentheses when c = ∅ since a realizable path may
not start and end in the same method (lines 12 – 14), and
pushes call site i into context c for reti (line 15).

III. METHODOLOGY

CFL-reachability-based pointer analysis is driven by queries
issued by application clients. There are two main approaches
to dividing work among threads, based on different levels of
parallelism available: intra-query and inter-query.

To exploit intra-query parallelism, we need to partition and
distribute the work performed in computing the points-to set
of a single query among different threads. Such parallelism
is irregular and hard to achieve with the right granularity. In
addition, considerable synchronisation overhead that may be
incurred would likely offset the performance benefit achieved.

To exploit inter-query parallelism, we assign different
queries to different threads, harnessing modern multicore pro-
cessors. This makes it possible to obtain parallelism without
incurring synchronisation overhead unduly. In addition, some
clients may issue queries in batch mode for a program. For
example, the points-to information may be requested for all
variables in a method, a class, a package or even the entire
program. This provides a further optimisation opportunity. The
focus of this work is on exploiting inter-query parallelism.

A. A Naive Parallelisation Strategy

A naive approach to exploiting inter-query parallelism is
to maintain a lock-protected shared work list for queries and
let each thread fetch queries (to process) from the work list
until the work list is empty. While achieving some good
speedups (over the sequential setting), this naive strategy is
inefficient due to a large number of redundant graph traversals
made. We propose two schemes to reduce such redundancies.
Section III-B describes our data sharing scheme, while Sec-
tion III-C explains our query scheduling scheme.

x p

q1 y1. . .

qi yi. . .

qN yN

ld(f)

st(f)

st(f)

st(f)

alias 3

alias 7

alias 3

jmp(s)

<c, c1>

jmp(s)

<c, cN>

(a) Within budget: all N stores analysed completely in s steps from (x, c)

x p

q1 y1. . .

qi yi. . .

qN yN
O

ld(f)

st(f)

st(f)

st(f)
jmp(s)

<c, ε>

(b) Out of budget: fewer than N stores analysed in s steps from (x, c)

Fig. 3: Adding jmp edges by graph rewriting, for a single
iteration of the loop in line 18 of REACHABLENODES(x, c).

In (a), x
jmp(s)⇐======
<c, ck>

yk is introduced for each (yk, ck) added

to rch in line 24 of REACHABLENODES(x, c) when p and qk
are aliases. In (b), a special x

jmp(s)⇐=====
<c, ε>

O edge is introduced.

B. Data Sharing

Given a program, we are motivated to add edges to its PAG
to serve as shortcuts for some paths traversed in a query so
that subsequent queries may take the shortcuts instead of re-
traversing their associated paths (redundantly). The challenge
here is to perform data sharing context- and field-sensitively.
Section III-B1 formulates data sharing in terms of graph
rewriting. Section III-B2 gives an algorithm for realising data
sharing in the CFL-reachability framework.

1) Data Sharing by Graph Rewriting: We choose to share
paths involving heap accesses, which tend to be long (time-
consuming to traverse) and common (repeatedly traversed
across the queries). As illustrated in Fig. 3, we do so by avoid-
ing making redundant alias tests in REACHABLENODES(x, c).
For its loop at line 18, each iteration starts with a load
x = p.f and then examines all the N matching stores q1.f =
y1, . . . , qN .f = yN at line 19. For each qk.f = yk accessed in
context ck such that qk is an alias of p, (yk, ck) is inserted into
rch, meaning that (x, c) is reachable from (yk, ck) (lines 20
- 24). Note that during this process, mutually recursive calls
to POINTSTO(), FLOWSTO() and REACHABLENODES() for
discovering other aliases are often made.

There are two cases due to the budget constraint. Fig. 3(a)
illustrates the case when an iteration of line 18 is completely
analysed in s steps starting from (x, c) within the pre-set

budget. A jmp edge, x
jmp(s)⇐======
<c, ck>

yk, is added for each qk

that is an alias of p. Instead of rediscovering the path from



(x, c) to (yk, ck), a subsequent query will take this shortcut.
Fig. 3(b) explains the other case when an iteration of line 18

is only partially analysed since the analysis runs out of budget
after s steps have elapsed from (x, c). A special jmp edge,

x
jmp(s)⇐=====
<c, ε>

O, is added to record this situation, where O is

a special node added and ε is a “don’t-care” context. A later
query will benefit from this special shortcut by making an
early termination (ET) if its remaining budget is smaller than
s.

Therefore, we have formulated data sharing as a graph
rewriting problem by adding jmp edges to the PAG of a
program, in terms of the syntax given in Fig. 4.

l := . . . | O Extended Local Variable
e := . . .

| l1
jmp(s)⇐=======

<c1, c2>
l2 Jump (or Shortcut)

O is Unfinished c1, c2 ∈ Context

Fig. 4: Syntax of extended PAG.

As described below, jmp edges are added on the fly during
the analysis. Given a PAG extended with such jmp edges, the
CFL given earlier in (2) is modified to:

flowsTo → new ( assign | jmp(s) | st(f) alias ld(f))∗

alias → flowsTo flowsTo
flowsTo → ( assign | jmp(s) | ld(f) alias st(f))∗ new

(4)

By definition of jmp, this modified CFL generates the same
language as the original CFL if all jmp edges of the type
illustrated in Fig. 3(b) (for handling OUTOFBUDGET) in the
PAG of a program are ignored, since the jmp edges of the other
type illustrated in Fig. 3(a) serve as shortcuts only. Two types
of jmp edges are exploited in our parallel implementation to
accelerate its performance as described below.

2) Algorithm: With data sharing, REACHABLENODES(x, c)
in Algorithm 1 is revised as shown in Algorithm 2. There are
three cases, the original one plus the two shown in Fig. 3:
• In the if branch (line 2) for handling the scenario depicted

in Fig. 3(b), the analysis makes an early termination
by calling REACHABLENODES() if its remaining budget
at (x, c), B − steps, is smaller than s. Otherwise, the
analysis moves to execute the second else.

• In the first else branch for handling the scenario in
Fig. 3(a), the analysis takes the shortcuts identified by
the jmp(s) edges instead of re-traversing its associated
paths. The same precision is maintained even if we do not
check the remaining budget B−steps against s, since the
source node of a jmp edge is a variable (not an object).
When this variable is explored later, the remaining budget
will be checked in line 6 of Algorithm 1 or line 3 of
Algorithm 2.

• In the second else branch, we proceed as in
REACHABLENODES(x, c) given in Algorithm 1 except
that we will need to add the jmp edge(s) as illustrated in

Algorithm 2 REACHABLENODES with data sharing.

Global E; Const B; QueryLocal steps, S;

Procedure REACHABLENODES(x, c)
begin

1 rch← ∅;
2 if ∃ x jmp(s)⇐======

<c, ε>
O ∈ E then

3 if B − steps < s then OUTOFBUDGET(s);

4 else if ∃ x jmp(s)⇐======
<c, c′>

y ∈ E then

5 steps← steps+ s;

6 foreach x
jmp(s)⇐======
<c, c′>

y ∈ E do

7 rch← rch ∪ {<y, c′>};
8 return rch;

9 else
10 s′ = steps;
11 S ← S ∪ {<x, c, s′>};
12 foreach x

ld(f)←−− p ∈ E do
13 foreach q

st(f)←−− y ∈ E do
14 alias← ∅;
15 foreach <o, c′> ∈ POINTSTO(p, c) do
16 alias← alias ∪ FLOWSTO(o, c′);

17 foreach <q′, c′′> ∈ alias do
18 if q′ = q then
19 rch← rch ∪ {<y, c′′>};
20 E ← E ∪ {x jmp(steps−s′)⇐=========

<c, c′′>
y};

21 S ← S \ {<x, c, s′>};
22 return rch;

Procedure OUTOFBUDGET(BDG)
begin

23 foreach <x, c, s> ∈ S do
24 E ← E ∪ {x jmp(min(B,BDG+steps−s))⇐==================

<c, ε>
O};

25 exit();

either Fig. 3(a) (line 20) or Fig. 3(b) (line 24).
OUTOFBUDGET(BDG) is called from line 6 (by passing 0)

in Algorithm 1 or line 3 in Algorithm 2 (by passing s). In
both cases, let n be the node visited before the call. With
a remaining budget no larger than BDG on encountering n,
the analysis will surely run out of budget eventually. For each
(x, c, s) ∈ S, the analysis first reaches (x, c) and then n in

steps−s steps. Thus, x
jmp(min(B,BDG+steps−s))⇐==================

<c, ε>
O is added.

C. Query Scheduling

The order in which queries are processed affects the number
of early terminations made, due to B − steps < s tested in
line 3 of Algorithm 2, where s appears in a jmp(s) edge that
was added in an earlier query and steps is the number of
steps already consumed by the current query. In general, if
we handle a variable y before those variables x such that x is
reachable from y, then more early terminations may result.



To increase early terminations, we organise queries (avail-
able in batch mode) in groups and assign a group of queries
rather than a single query to a thread at a time to reduce
synchronisation overhead on the shared work list for queries.
We discuss below how the queries in a group and the groups
themselves are scheduled. Section III-C1 describes how to
group queries. Section III-C2 discusses how to order queries.
Section III-C3 gives an illustrating example.

1) Grouping Queries: A group contains all possible vari-
ables such that every member is connected with at least another
member in the PAG of the program via the following relation:

direct → ( assignl | assigng | parami | reti)∗ (5)

Both l1
ld(f)←−− l2 and l1

st(f)←−− l2 edges are not included since
there is no reachability between l1 and l2.

2) Ordering Queries: For the variables in the same group,
we use their so-called connection distances (CDs) to deter-
mine their issuing order. The CD of a variable in a group
is defined as the length of the longest path that contains the
variable in the group (modulo recursion). For the variables in a
group, the shorter their CDs are, the earlier they are processed.

For different groups, we use their so-called dependence
depths (DDs) to determine their scheduling order. For exam-
ple, computing POINTSTO(x, c) for x in Algorithm 1 depends
on the points-to set of the base variable p in load x = p.f
(line 21). Preferably, p should be processed earlier than x.

To quantify the DD of a group, we estimate the depen-
dences between variables based on their (static) types. We
define the level of a type t (with respect to its containment
hierarchy) as:

L(t) =

{
maxti∈FT (t) L(ti) + 1 isRef(t)
0 otherwise

where FT (t) enumerates the types of all instance fields of
t (modulo recursion) and isRef(t) is true if t is a reference
type. The DD of a variable of type t is defined to be 1/L(t).
Note that the DD of a static variable is also approximated
heuristically this way. The DD of a group of variables is
defined as the smallest of the DDs of all variables in the group.

During the analysis, groups are issued (sorted) in increasing
values of their DDs. Let M be the average size of these groups.
To ensure load balance, groups larger than M are split and
groups smaller than M are merged with their adjacent groups,
so that each resulting group has roughly M variables.

3) An Example: In Fig. 5, we focus on its three variables
x, y, and z, which are assumed to all run out of budget B.
According to (5), as shown in Fig. 5(a), x and y (together
with w) are in one group and z (together with p) is in another
group. The CDs of x, y and z are 100, 200 and 300 steps,
respectively. As both x and y depend on z, the latter group will
be scheduled before the former group. As a result, our query
scheduling scheme will likely cause x, y and z to be processed
sequentially according to O3 (in some thread interleaving)
among the three orders, O1, O2 and O3, listed in Fig. 5(b).

For O1, y is processed first, which takes B steps (i.e., the

x

y

w p z q . . . O

direct

100

direct

200

ld(f) direct

300

ld(g)

jmp(sz)

< , >

jmp(sw)

< , >

(a) PAG with the direct relation

Order
Traversed #Steps jmp(s)

#ETs
x y z sz sw

O1 : y, x, z B B B B − 500 B − 200 0

O2 : x, y, z B 200 B B − 400 B − 100 1

O3 : z, x, y 400 200 B B B 2

(b) Three scheduling orders

Fig. 5: An example of query scheduling, where x has a smaller
CD than y and {x, y} has a higher DD than {z}.

maximum budget allowed), with the two jmp edges added as
shown, where sz = B − 500 and sw = B − 200. When x
is processed next, neither shortcut will be taken, since x still
has more budget remaining: B − 400 > B − 500 at z and
B − 100 > B − 200 at w. Similarly, the two shortcuts do not
benefit z either. Thus, no early termination occurs.

For O2, x is issued first, resulting in also the same two jmp
edges added, except that sz = B − 400 and sw = B − 100.
So when y is handled next, an early termination is made at w,
since its budget remaining at w is B−200 (< sw = B−100).

According to O3, the order that is mostly likely induced
by our query scheduling scheme, z is processed first. Only
the jmp(sz) edge at z is added, where sz = B. When x is
analysed next, z is reached in 400 steps. Taking jmp(sz) (since
B−400 < sz = B), an early termination is made. Meanwhile,
the jmp(sw) edge at w is added, where sw = B. Finally, y is
issued, causing w to be visited in 200 steps. Taking jmp(sw)
(since B−200 < sw = B), another early termination is made.
Of the three orders illustrated in Fig. 5(b), O3 is likely to cause
more early terminations, resulting in fewer traversal steps.

IV. EVALUATION

We demonstrate that our parallel implementation of
CFL-reachability-based pointer analysis achieves significant
speedups than a state-of-the-art sequential implementation.

A. Implementations

The sequential one is coded in Java based on the publicly
available source-code implementation of the CFL-reachability-
based pointer analysis [18] in Soot 2.5.0 [24], with its non-
refinement (general-purpose) configuration used. Note that the
refinement-based configuration is not well-suited to certain
clients such as null-pointer detection. Our parallel implemen-
tation given in Algorithms 1 and 2 are also coded in Java.
In both cases, the per-query budget B is set as 75,000 steps,
recursion cycles of the call graph are collapsed, and points-to
cycles are eliminated as described as in [18].



Benchmark #Classes #Methods #Nodes #Edges #Queries TSeq (secs) #Jumps #S (×106) RS Sg #ETs RET
200 check 5,758 54,514 225,797 429,551 1,101 2.88 428 4.14 25.76 16.7 0 1
201 compress 5,761 54,549 225,765 429,808 1,328 3.72 1,210 4.21 8.42 4.6 5 1.00
202 jess 5,901 55,200 232,242 440,890 7,573 121.11 4,755 193.77 42.68 16.1 617 1.15
205 raytrace 5,774 54,681 227,514 432,110 3,240 9.39 2,325 62.02 92.84 7.2 8 0.88
209 db 5,753 54,549 225,994 430,569 1,339 16.98 4,202 10.06 10.02 10.3 18 1.17
213 javac 5,921 55,685 240,406 473,680 14,689 258.34 5,309 467.28 64.60 9.2 76 0.99
222 mpegaudio 5,801 54,826 230,349 435,391 6,389 46.52 2,306 86.17 53.33 3.8 53 3.17
227 mtrt 5,774 54,681 227,514 432,110 3,241 10.38 2,358 62.17 115.70 7.2 7 0.86
228 jack 5,806 54,830 229,482 435,159 6,591 39.54 25,030 79.48 40.03 14.2 100 1.62
999 checkit 5,757 54,548 226,292 431,435 1,473 12.61 2,180 10.14 7.94 16.9 23 0.78

avrora 3,521 29,542 108,210 189,081 24,455 51.16 32,046 47.46 6.18 9.4 24 2.83
batik 7,546 65,899 252,590 477,113 64,467 72.72 14,876 114.57 11.95 10.3 38 1.37
fop 8,965 79,776 266,514 636,776 71,542 118.22 25,418 169.92 19.03 18.6 76 1.20
h2 3,381 32,691 115,249 204,516 44,901 25.50 22,094 91.38 12.39 16.0 283 0.66
luindex 3,160 28,791 108,827 191,126 22,415 23.28 62,457 60.93 8.72 8.2 113 0.71
lusearch 3,120 28,223 109,439 193,012 17,520 57.78 77,153 66.26 7.90 9.3 75 1.52
pmd 3,786 33,432 110,388 195,834 56,833 61.05 77,313 69.10 7.93 9.2 84 1.06
sunflow 6,066 56,673 233,459 447,002 21,339 55.56 20,946 49.04 5.57 7.4 24 2.38
tomcat 8,458 83,092 265,015 574,236 185,810 202.89 24,601 243.90 23.14 13.1 574 1.33
xalan 3,716 33,248 109,317 192,441 56,229 54.11 33,459 60.35 7.90 9.4 82 1.43
Average 5,486 50,972 198,518 383,592 30,624 62.19 22,023 97.62 28.6 10.9 114.0 1.35

TABLE I: Benchmark information and statistics.

In our parallel implementation, we use a
ConcurrentHashMap to manage jmp edges efficiently. We
apply a simple optimisation to further reduce synchronisation
incurred and thus achieve better speedups.

If we create jmp edges exhaustively for all the paths
discovered in Algorithm 2, the overhead incurred by such
operations as search, insertion and synchronisation on the
map may outweigh the performance benefit obtained. As an
optimisation, we will introduce the jmp(s) edges in Fig. 3(a)
only when s ≥ τF and the special jmp(s) edge in Fig. 3(b)
only when s ≥ τU , where τF and τU are tunable parameters.
In our experiments, we set τF = 100 and τU = 10000. Their
performance impacts are evaluated in Section IV-D2.

For the case in Fig. 3(a), the set of all jmp edges is
associated with the key (x, c) when inserted into the map. So
no two threads reaching (x, c) simultaneously will insert this
set of jmp edges twice into the map. For the case in Fig. 3(b),
if one thread tries to insert < (x, c), x

jmp(s1)⇐=====
<c, ε>

O > and

another tries to insert < (x, c), x
jmp(s2)⇐=====
<c, ε>

O > into the map,

only one of the two will succeed. An attempt that selects the
one with the large s value (to increase early terminations) can
be cost-ineffective due to the extra work performed.

B. Experimental Setting

The multi-core system used in our experiments is equipped
with two Intel Xeon E5-2650 CPUs with 62GB of RAM. Each
CPU has 8 cores, which share a unified 20MB L3 cache. Each
CPU core has a frequency of 2.00MHz, with its own L1 cache
of 64KB and L2 cache of 256KB. The Java Virtual Machine
used is the Java HotSpot 64-Bit Server VM (version 1.7.0 40),
running on a 64-bit Ubuntu 12.04 operating system.

C. Methodology

We evaluate the performance advantages of our parallel
implementation over the sequential one by comparing the

query-processing times taken in both cases. SEQCFL de-
notes the sequential implementation. In order to assess the
effectiveness of our parallel implementation, we consider a
number of variations. PARCFLtm represents a particular parallel
implementation, where t stands for the number of threads used.
Here, m indicates one of the three parallelisation strategies
used: (1) the naive solution described in Section III-A when
m = naive, (2) our parallel solution with the data sharing
scheme described in Section III-B enabled when m = D, and
(3) the parallel solution (2) with the query scheduling scheme
described in Section III-C also enabled when m = DQ.

Table I lists a set of 20 Java benchmarks used, consisting
of all the 10 SPEC JVM98 benchmarks and 10 additional
benchmarks from the DaCapo 2009 benchmark suite. For each
benchmark, the analysed code includes both the application
code and the related library code, with their class and method
counts given in Columns 2 and 3, respectively. The node
and edge counts in the original PAG of a benchmark are
given in Columns 4 and 5, respectively. For each benchmark,
the queries that request points-to information are issued for
all the local variables in its application code, collected from
Soot 2.5.0 as in prior work [17], [25]. Note that more queries
are generated in some DaCapo benchmarks than some JVM98
benchmarks even though the DaCapo benchmarks have smaller
PAGs. This is because the JVM98 benchmarks involve more
library code. The remaining columns are explained below.

D. Performance Results

We examine the performance benefits of our parallel pointer
analysis and the causes for the speedups obtained.

1) Speedups: Fig. 6 shows the speedups of our parallel
implementation over SEQCFL (as the baseline), where the
analysis times of SEQCFL for all the benchmarks are given
in Column 7 of Table I. Note that SEQCFL is 49% faster
than the open-source sequential implementation of [18] in Soot
2.5.0, since we have simplified some of its heuristics and em-
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Fig. 6: Speedups of our parallel implementation (in various configurations) normalised with respect to SEQCFL.

ployed different data structures. When the naive parallelisation
strategy is used, PARCFL1

naive (with one single thread) is as
efficient as SEQCFL, since the locking overhead incurred for
retrieving the queries from the shared work list is negligible.
With 16 threads, PARCFL16

naive attains an average speedup of
7.3X. When our data sharing scheme is used, PARCFL16

D runs
a lot faster, with the average speedup being pushed up further
to 13.4X. When our query scheduling scheme is also enabled,
PARCFL16

DQ, which traverses significantly fewer steps than
SEQCFL, has finally reached an average speedup of 16.2X. The
superlinear speedups are achieved in some benchmarks due to
the avoidance of redundant traversals (a form of caching) in
all concurrent query-processing threads as analysed below.

2) Effectiveness of Data Sharing: Our data sharing scheme,
which enables the traversal information obtained in a query
to be shared by subsequent queries via graph rewriting, has
succeeded in accelerating the analysis on top of the naive
parallelisation strategy (PARCFLtnaive) for all benchmarks.

To understand its effectiveness, some statistics are given
in Columns 8 – 10 in Table I. For a benchmark, #Jumps
denotes the number of jmp edges added to its PAG due to data
sharing, #S represents the total number of steps traversed by
SEQCFL (without data sharing) for all the queries issued from
the benchmark, and RS is the ratio of the number of steps
saved by the jmp edges for the benchmark over the number
of steps traversed across the original edges (when data sharing
is enabled). For the 20 benchmarks used, 22,023 jmp edges
have been added on average per benchmark. The number of
steps saved by these jmp edges is much larger than that of the
original ones, by a factor of 28.6X on average. This implies
that a large number of redundant traversals (#S × RS

RS+1 for
a benchmark) have been eliminated. Thus, PARCFL16

D exhibits
substantial improvements over PARCFL16

naive, with the su-
perlinear speedups observed in _202_jess, _213_javac,
_222_mpegaudio, batik, fop and tomcat.

The optimisation described in Section IV-A for adding
jmp edges selectively to reduce synchronisation overhead is
also useful for improving the performance. Fig. 7 reveals the
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Fig. 7: Histograms of jmp edges (identified by the number of
steps saved). Finished represents jmp edges in Fig. 3(a) and
Unfinished jmp edges in Fig. 3(b). Finishedopt (Unfinishedopt)
is the version of Finished (Unfinished) with the selective
optimisation described in Section IV-A being applied.

histograms of added jmp edges with and without this optimi-
sation. In the absence of such optimisation, many jmp edges
representing relatively short paths are also added, causing
PARCFL16

DQ to drop from 16.2X to 12.4X on average.
3) Effectiveness of Query Scheduling: When query schedul-

ing is also enabled, queries are grouped and reordered to
increase early terminations made. PARCFL16

DQ achieves su-
perlinear speedups in two more benchmarks than PARCFL16

D :
avrora and sunflow. PARCFL16

DQ is faster than PARCFL16
D

as the average speedup goes up from 13.4X to 16.2X.
To understand its effectiveness, some statistics are given in

Columns 11 – 13 in Table I. For a benchmark, Sg gives the
average number of queries in a group, #ETs is the number of
early terminations found without query scheduling, and RET
is the ratio of #ETs obtained with query scheduling over
#ET s obtained without query scheduling. On average, our
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Fig. 8: Speedups of our parallel modes with different numbers of threads normalised with respect to SEQCFL.

query scheduling scheme leads to 35% more early termina-
tions, resulting in more redundant traversals being eliminated.

4) Scalability: To see the scalability of our parallel imple-
mentation, Fig. 8 plots its speedups with a few thread counts
over the baseline. PARCFL1

DQ achieves an average speedup of
8.1X, due to data sharing and query scheduling. Our parallel
solution scales well to 8 threads for most benchmarks. When
moving from 8 to 16 threads, PARCFL16

DQ suffers some per-
formance drops over PARCFL8

DQ in some benchmarks (with
_209_db being the worst case at 31%). However PARCFL16

DQ

is still slightly faster than PARCFL8
DQ on average.

5) Memory Usage: As garbage collection is enabled, it
is difficult to monitor memory usage precisely. By avoiding
redundant graph traversals, PARCFL16

DQ reduces the memory
usage by SEQCFL (the open-source sequential implementation
[18]) by 35% (32%) in terms of the peak memory usage,
despite the extra memory required for storing jmp edges. In the
worst case attained at tomcat (fop), PARCFL16

DQ consumes
103% (118%) of the memory consumed by SEQCFL ([18]).

V. RELATED WORK

A. CFL-Reachability-Based Pointer Analysis

In the sequential setting, there is no shortage of opti-
misations on improving the performance of demand-driven
CFL-reachability-based pointer analysis. To ensure quick re-
sponse, queries are commonly processed under budget con-
straints [17], [18], [19], [26], [27]. In addition, refinement-
based schemes [18], [19] can be effective for certain clients,
e.g., type casting if field-sensitivity is gradually introduced.
Summary-based schemes avoid redundant graph traversals by
reusing the method-local points-to relations summarised stat-
ically [26] or on-demand [17], achieving up to 3X speedups.
Must-not-alias information obtained during a pre-analysis can
be exploited to yield an average speedup of 3X through reduc-
ing unnecessary alias-related computations [25]. Incremental
techniques [6], [16], which are tailored for scenarios where
code changes are small, take advantage of previously com-
puted CFL-reachable paths to avoid unnecessary reanalysis.

Unlike these efforts on sequential CFL-reachability-based
pointer analysis, this paper introduces the first parallel solution
on multicore processors with significantly better speedups.

B. Parallel Pointer Analysis

In recent years, there have been a number of attempts on
parallelising pointer analysis algorithms for analysing C or
Java programs on multi-core CPUs and/or GPUs [3], [7], [8],
[9], [10], [14], [20]. As compared in Table II, all these parallel
solutions are different forms of Andersen’s pointer analysis [2]
with varying precision considerations in terms of context-,
flow- and field-sensitivity. Our parallel solution is the only one
that can be performed on-demand based on CFL-reachability.

Méndez-Lojo et al. [8] introduced the first parallel im-
plementation of Andersen’s pointer analysis for C programs.
While being context- and flow-insensitive, their parallel analy-
sis is field-sensitive, achieving a speedup of up to 3X on eight
CPU cores. The same baseline sequential analysis was later
parallelised on a Tesla C2070 GPU [7] (achieving an average
speedup of 7X with 14 streaming multiprocessors) and a CPU-
GPU system [20] (boosting the CPU-only parallel solution by
51% and the GPU-only parallel solution by 79% on average).

Edvinsson et al. [3] described a parallel implementation of
Andersen’s analysis for Java programs, achieving a maximum
speedup of 4.4X on eight CPU cores. Their analysis is field-
insensitive but flow-sensitive (only partially since it does
not perform strong updates). Recently, both field- and flow-
sensitivity (with strong updates for singleton objects) are han-
dled for C programs on multi-core CPUs [9] and GPUs [10].
The speedups are up to 2.6X on eight CPU cores and 7.8X
(with precision loss) on a Tesla C2070 GPU, respectively.

Putta and Nasre [14] use replications of points-to sets
to enable more constraints (i.e., more pointer-manipulating
statements) to be processed in parallel. Their context-sensitive
implementation of Andersen-style analysis delivers an average
speedup of 3.4X on eight CPU cores.

This paper presents the first parallel implementation
of demand-driven CFL-reachability-based pointer analysis,
achieving an average speedup of 16.2X for a set of 20 Java



Analysis Algorithm On-demand Sensitivity (Precision) Applications PlatformContext Field Flow
[8] Andersen’s [2] 7 7 4 7 C CPU
[3] Andersen’s [2] 7 7 7 3∗ Java CPU
[7] Andersen’s [2] 7 7 4 7 C GPU
[14] Andersen’s [2] 7 4 7 7 C CPU
[9] Andersen’s [2] 7 7 4 4 C CPU
[10] Andersen’s [2] 7 7 4 4 C GPU
[20] Andersen’s [2] 7 7 4 7 C CPU-GPU

this paper CFL-Reachability [15] 4 4 4 7 Java CPU
∗: Partial flow-sensitivity without performing strong updates

TABLE II: Comparing different parallel pointer analysis.

programs on 16 CPU cores. Based on a version of CFL-
reachability-based pointer analysis for C [27], our parallel
solution is expected to generalise to C programs as well.

C. Parallel Graph Algorithms

There are many parallel graph algorithms, including
breadth-first search (BFS) [1], [4], [11], minimum-cost
path [12] and flow analysis [13]. However, parallelising CFL-
reachability-based pointer analysis poses different challenges.
The presence of both context- and field-sensitivity that is
enforced during graph traversals makes it hard to avoid redun-
dant traversals efficiently, limiting the amount of parallelism
exploited (especially within a single query). Exploiting inter-
query parallelism, this work has demonstrated significant per-
formance benefits that can be achieved on parallelising CFL-
reachability-based pointer analysis on multi-core CPUs.

VI. CONCLUSION

This paper presents the first parallel implementation of CFL-
reachability-based pointer analysis on multi-core CPUs. De-
spite the presence of redundant graph traversals, this demand-
driven analysis is non-trivial to parallelise due to the de-
pendences introduced by context- and field-sensitivity during
graph traversals. We have succeeded in parallelising it by
using (1) a data sharing scheme that enables the concurrent
query-processing threads to avoid traversing earlier discovered
paths via graph rewriting and (2) a query scheduling scheme
that allows more redundancies to be eliminated based on
the dependences statically estimated among the queries to be
processed. For a set of 20 Java benchmarks evaluated, our
parallel implementation significantly boosts the performance
of a state-of-the-art sequential implementation with an average
speedup of 16.2X on 16 CPU cores.
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