
Efficient Parallel Algorithms for k-Center Clustering

Jessica McClintock
Department of Computing and Information Systems

The University of Melbourne
jmcclintock@unimelb.edu.au

Anthony Wirth
Department of Computing and Information Systems

The University of Melbourne
awirth@unimelb.edu.au

Abstract

The k-center problem is one of several classic NP-hard clustering questions. For contemporary mas-
sive data sets, RAM-based algorithms become impractical. And although there exist good sequential
algorithms for k-center, they are not easily parallelizable.

In this paper, we design and implement parallel approximation algorithms for this problem. We
observe that Gonzalez’s greedy algorithm can be efficiently parallelized in several MapReduce rounds;
in practice, we find that two rounds are sufficient, leading to a 4-approximation. We contrast this with
an existing parallel algorithm for k-center that runs in a constant number of rounds, and offers a 10-
approximation. In depth runtime analysis reveals that this scheme is often slow, and that its sampling
procedure only runs if k is sufficiently small, relative to the input size. To trade off runtime for approx-
imation guarantee, we parameterize this sampling algorithm, and find in our experiments that the algo-
rithm is not only faster, but sometimes more effective. Yet the parallel version of Gonzalez is about 100
times faster than both its sequential version and the parallel sampling algorithm, barely compromising
solution quality.

Keywords Clustering, k-center, approximation algorithms, parallel algorithms.

1 Introduction

Clustering is a fundamental task in interpreting data sets in contexts such as social networking, event recog-
nition and bioinformatics. For many applications, the data sets can be prohibitively large, and there may
be insufficient RAM to perform the necessary calculations efficiently, even when seeking approximate solu-
tions. There are parallel-computing schemes such as MapReduce [7] that offer the ability to overcome the
memory obstacle.

The k-center problem is a famous clustering problem, is NP-hard, and has well known (sequential)
polynomial-time algorithms that offer essentially the best approximation possible. We describe a multi-
round parallel algorithm for k-center, analyze in detail several parallel algorithms and compare them with
one of these sequential methods. Inspired by theoretical guarantees and evaluation, we run comprehensive
experiments, including trading off approximation for running time.

1

ar
X

iv
:1

60
4.

03
22

8v
1

 [
cs

.D
C

]
 1

2
A

pr
 2

01
6

1.1 Clustering algorithms

Generally, clustering problems involve optimizing some function that indicates how well the clusters portray
underlying structures in the data. In a metric clustering problem, the weights, representing the similarity
between objects, observe the triangle inequality. The best-known example is of course the Euclidean metric.
In the context of clustering, points in a metric space can be modelled as vertices in a complete graph. Each
vertex stands for a data point, and each edge is weighted to indicate the distance (or dissimilarity) between
the two adjacent points. The k-center problem is one of the fundamental NP-hard clustering problems on a
metric input.

Definition (k-CENTER). Find a set of at most k centers — here we assume they are a subset of the vertices —
such that the maximum distance from a vertex to its assigned center is minimized. The key task is to choose
the optimum set of k centers, as each of the remaining vertices would be assigned to its nearest center. For
a set of points V , solution set S containing at most k vertices, and a distance function d, the objective of this
problem can be considered as minimizing the objective minv∈V maxs∈S d(v,s).

This objective has many applications, from vehicle routing to document clustering, in which it relates to
concepts such as the furthest traveling time, or the least “similar” document. It can alternatively be consid-
ered to be minimizing the (maximum) covering radius of the clusters. Related classic NP-hard clustering
questions include k-median, k-means, and facility location problems.

Via a reduction from the DOMINATING SET problem, Hsu and Nemhauser proved that, for all ε > 0, it
is NP-hard to guarantee approximations within a factor 2− ε of optimum for k-center [11]. Also exploiting
the connection with the dominating set problem, Hochbaum and Shmoys gave a 2-approximation algorithm
for the k-center problem [10]. Gonzalez introduced an greedy 2-approximation algorithm for the k-center
problem [9]. Each of these k-center algorithms is inherently sequential, none admitting a simple parallel
implementation.

1.2 Parallel algorithms

While approximation algorithms provide guaranteed performance with polynomial-time complexity, often
data sets are large enough that running these algorithms efficiently requires prohibitively large amounts of
RAM. For such instances, we can instead design algorithms that split the data across multiple machines, and
process each part in parallel before aggregating the results. One important paradigm for parallel computing
is MapReduce [7]. There are several fast approximation algorithms for famous clustering problems, such
as k-center and k-median, in MapReduce [3, 6, 8]. Karloff et al. [13] introduced a theoretical model of
computation for the MapReduce paradigm that is often applied to the analysis of MapReduce algorithms [2,
14]. They offered a comprehensive method for theoretically structuring algorithms for MapReduce, and
defined a family of classes for MapReduce algorithms.

A MapReduce algorithm consists of a series of interleaving rounds of sequential mappers and parallel
reducers. A map round assigns each data point independently to some reducer(s); the reducers run in paral-
lel, each performing some procedure on the subset of points it has been assigned. A program in MapReduce
may consist of several iterations of mappers and reducers, each involving potentially different map and
reduce functions.

Both the k-means [2] and k-median [8] problems have been adapted to the MapReduce framework.

1.3 Our contribution

We provide a very careful and detailed examination both of the best-known MapReduce approximation
algorithm for k-center [8], based on sampling, and a parallel implementation of Gonzalez’s algorithm (that

2

typically gives a 4-approximation). The 2-round special case of the latter approach was recently considered
by Malkomes et al. [17], although their analysis and experiments differ considerably from ours. We describe
in depth the performance and computational requirements of these approaches, and detail how this procedure
can be adapted to allow for cases where RAM is insufficient even for the 2-round parallel solution. Based
in part on a careful calculation of its running time, we generalize the sampling MapReduce scheme of Ene
et al. [8], to trade off approximation guarantee for speed.

Our experiments show that the parallelized Gonzalez approach is often 100 times faster than the alter-
natives, while being almost as effective. These are the first experimental results for the k-center algorithm
of Ene et al. [8]. Our results conform with the findings of Malkomes et al. [17], regarding the performance
of their greedy approach.

2 Related work

2.1 Approximations

The k-center problem was first adapted to the MapReduce scheme by Ene et al. [8]. Their algorithm selects
a uniformly random sample of the points, S, and adds points to S until most vertices of the graph are within
a bounded distance of the sample. Finally, it adds remaining unrepresented vertices to S. A sequential
k-center algorithm, with approximation factor α ′, is then run on S. With high probability, the k resulting
centers constitute a 5α ′-approximation for the k-center instance. When implemented using one of the 2-
approximation algorithms described above, with high probability, this results in a 10-approximation overall.
Ene et al. [8] apply a similar scheme to the k-median problem, with an 11α∗-approximation (where α∗ is a
the factor of the standard approximation for k-median).

Recently, there has been increased interest in adapting k-center to MapReduce. Ceccarello et al. [5] gave
a MapReduce diameter-approximation procedure with low parallel depth. From this, they derive a k-center
solution for graphs with unit-weight edges: for k ∈ Ω(log2 n), with high probability, this is a O(log3 n)-
approximation. Im and Moseley [12] have described a randomized 3-round 2-approximation algorithm that
requires prior knowledge of the value of the optimal solution. Although they have announced that this leads
to a 4-round 2-approximation without the requirement, the details have yet to be outlined. Very recently,
Malkomes et al. [17] gave a 2-round approach similar to ours.

2.2 Experiments

Ene et al. [8] reported that their k-center MapReduce scheme performs poorly due to the sensitivity of
k-center to sampling. Unfortunately, there are no results nor implementation details to confirm this. In
combination with another simpler algorithm, we investigate the empirical performance their k-center scheme
in greater detail.

Conversely, their k-median implementation performs significantly better than the worst-case guarantee.
Solutions are comparable to sequential algorithms with much better bounds. Ene et al.’s results were based
on the 3-approximation algorithm from Arya et al. [1]. There have been recent advances in k-median ap-
proximation algorithms, by Byrka et al. [4], as well as by Li and Svensson [15], and including these might
improve the approximation bound.

3 Parallel k-center

We describe and analyze an approximation algorithm for the k-center problem that, for most practical cases,
achieves a 4-approximation in only two MapReduce rounds. The intuition is that a sequential k-center algo-
rithm finds in the first round a sample from each of the reducers such that the distance to all of the unsampled

3

points is bounded. Running a standard factor-2 algorithm on the sample reveals a factor-4 solution to the
whole instance. Additional rounds can be performed in cases where even the sample is too large for a single
machine: this would usually occur for very large values of k. Experiments show that this approach is often
as good as that of the baseline sequential algorithm. The 2-round case of our algorithm is similar to the
approach of Malkomes et al. [17]. Along with generalizing to larger instances, we analyze the run time
of these algorithms in more detail, and provide an alternative, shorter proof of the two-round factor-four
approximation.

3.1 Description

In this paper, the standard k-center approach is the factor-2-approximation of Gonzalez [9], which we refer
to as GON. This algorithm chooses an arbitrary vertex from the graph, and marks it as a center. At each
following step, the vertex farthest from the existing centers is marked as a new center, until k centers have
been chosen. As the edge weights comprise a metric, the triangle inequality ensures that the resulting set of
centers comprises a 2-factor approximation.

Parallelized version Given a point set V and a metric d, with OPT representing the optimal covering
radius, Algorithm 1 obtains a set of centers {ci} for which all points in Vi – where {Vi} partitions V – are
within radius 2 ·OPT from ci. Running GON on C = ∪ici obtains k centers whose covering radius for C
is 2 ·OPT . Assume that we have m machines each with capacity c. If n/m≤ c and k ·m≤ c then, due to the
triangle inequality, this results in a 4-approximation MapReduce algorithm for k-center. If the sample is too
large to fit onto the final machine, further iterations of the first round can be run on the sample until there
are few enough points. Each additional round increases the approximation ratio by 2.

We dub this multi-round scheme for k-center MRG, for “MapReduce Gonzalez”, as shown in Algo-
rithm 1.

Algorithm 1 MRG(V,k,m)

1: S←V
2: while |S|> c do
3: The mapper arbitrarily partitions V into sets V1, . . . ,Vm such that ∪iVi =V and |Vi| ≤ dn/me, and each set Vi is

sent to a reducer ρi.
4: In parallel, each reducer ρi runs GON on Vi, and returns a set Ci containing the k centers found.
5: S←∪iCi
6: The mapper sends all points in S to a single reducer.
7: This reducer runs GON on S, and returns the set of centers CG.
8: return CG.

3.2 Approximation

Algorithm MRG clearly runs in polynomial time; to prove the four approximation of the 2-round case, we
prove the following intermediate result. For an arbitrary subset S of the vertex set V , let SG denote the set of
points in the solution obtained by running GON on S, and let SOLS denote the value, the covering radius, of
this solution.

Lemma 1. For each S⊆V , SOLS ≤ 2 ·OPT.

Proof. Let V ∗ be an optimal set of centers. The vertex set V can be partitioned into k sets {V ∗i }m
i=1 such that

all points in set V ∗j are within OPT of some center j ∈V ∗.

4

First, assume every set SG ∩V ∗j has exactly one point. This point, s j, can serve as the center for every
point in V ∗j . Then every point x in V ∗j , and hence in V ∗j ∩S, is within 2 ·OPT of s j, as both x and s j are within
OPT of j ∈V ∗.

However, if there is some partition V ∗j with |SG ∩V ∗j | > 1, then points in the same partition are within
2 ·OPT from each other. GON adds a new center to SG only when it is the farthest from the points previously
added to SG. The presence of two centers within 2 ·OPT implies that all points in S are within 2 ·OPT of SG

(if there were some point farther, it would be in SG instead).
Therefore, for every subset S of V , the value of the k-center solution returned by GON on S is at most

twice the optimal solution for V .

With sufficient space for C, the consequence of Lemma 1 is a factor-four approximation.

Lemma 2. If n/m≤ c and k ·m≤ c, then the k-center algorithm can be implemented in MapReduce in two
rounds with a 4-approximation guarantee.

Proof. Let Vi refer to the points mapped to reducer ρi. Since we run GON on Vi, every point in Vi is within
2 ·OPT of a center in Ci and hence in C.

According to Lemma 1, running GON on C arrives at a set of centers CG that is a 2 ·OPT solution on C.
By the triangle inequality, it then follows that every vertex in the graph is within

2 ·OPT +2 ·OPT = 4 ·OPT

of the k centers C∗.

We now describe the properties of the setup and input for when MRG can run effectively in two rounds.
The capacity required is O(max(n/m,k ·m)), based on which of the two rounds receives the most points. We
assume that n > k, otherwise the solution to k-center is trivial. We further assume that n/m > k: if this is not
the case, then we can reduce the number of machines. For small k, we only require that there is sufficient
space across the machines to store the data set: that is, m ·c≥ n. We could also exploit external memory, for
example by running multiple instances of our MapReduce algorithm and using a k-center algorithm on the
disjoint union of the solutions; such cases are beyond the scope of this paper.

3.3 Multi-round analysis

If k ·m > c, we lack the required memory to store the sample on a single machine, and therefore run fur-
ther iterations of the while loop. In such instances, MRG uses more MapReduce rounds, loosening the
approximation guarantee.

Lemma 3. If n/m ≤ c and k ·m ≥ c, then the k-center problem can be implemented in i rounds with a
2(i+1)-approximation, where i is chosen such that inequality 1 is satisfied.

During each round, the number of centers is decreased, ending when they fit on a single machine: each
additional round adds two to the approximation factor. As k ·m > c and m ≥ 1, it follows that k > c. Even
relaxing the requirement that k ·m ≤ c, it is still necessary that k ≤ c. Without this condition, selecting k
centers from a single machine seems to require incorporating external memory in some manner.

Assuming that n/m ≤ c, after the first round we have k ·m centers, so we send them to m′ = d(k ·
m)/ce ≤ (k ·m)/c+ 1 machines. After the second round, we have k ·m′ centers, which we can send to
m′′ ≤ d(k ·m′)/ce ≤ m · k2/c2 + k/c+ 1 machines. In general, the number of machines required after i
rounds observes the bound

m(i) ≤ m · (k/c)i +
1− (k/c)i

1− k/c
, (1)

5

and we can run the final round when m(i) < 2. As i increases, the second term in the inequality approaches
1/[1− (k/c)], which itself will be less than 2 only if 2k < c. Intuitively, during each round we select k
centers from each of the machines, so if k is close to c then the reduction in the number of centers in each
round will be small.

4 Revisiting the sampling approach

In this section, we introduce a generalization of Ene et al.’s [8] iterative-sampling procedure. As we show
below, their algorithm is slower, but is more effective on the whole, than the sequential and parallel versions
of Gonzalez’s algorithm. So that we can trade off runtime with approximation ratio, we add a new parameter
to the iterative-sampling approach, and call this generalization EIM. Before this, we make some alterations
to the scheme to prevent eccentric behaviors that sometimes occur.

4.1 Termination

The core of Ene et al.’s scheme is shown as Algorithm 2. Our implementation this algorithm adjusts the re-
moval of points from R to ensure that the size of the set decreases in every iteration. For our implementation
of line 8, we remove vertices whose distance from S is equal to that from v to S. In the original presentation
such a vertex would remain in R, which might lead to iterations in which no vertices are removed from R,
and the procedure looping indefinitely.

Algorithm 2 EIM-MapReduce-Sample(V,E,k,ε)
1: S← /0,R←V
2: while |R|> (4/ε)knε logn do
3: The mappers partition R, and uniquely map each set Ri to a reducer i.
4: Reducer i independently adds each point in Ri to set Si with probability 9knε(logn)/|R|, and to set H i with

probability 4nε(logn)/|R|.
5: Let H :=

⋃
1≤i≤dnε eH

i and S := S∪ (
⋃

1≤i≤dnε e S
i). The mappers assign H and S to one machine, along with all

edge distances between H and S.
6: The reducer sets v← Select(H,S).
7: The mappers arbitrarily partition R, with Ri denoting these sets. Let v, Ri, S, and the distances between Ri and S

be assigned to reducer i.
8: For x ∈ Ri, remove x from Ri if d(x,S)≤ d(v,S).
9: Let R :=

⋃
i Ri.

10: Output C := S∪R.

With relatively small graphs, there is a non-trivial probability that the point v ∈ H will also be in S. In
such cases, the vertex v will be at equal distance to S as the points prior to it in the ordering given in line 2
of Select() (Algorithm 3). This would mean that even points added to the sample might not be removed
from R. This increases the relative size of R ∩ S, also increasing the probability of no vertices being removed
from R in subsequent rounds, as H is sampled from R. If all points in R are eventually added to S then the
algorithm cannot terminate. Therefore we assume that sampled points should always be removed from R,
and as such have adapted the algorithm to reflect this.

Algorithm 3 Select(H,S), with our parameter φ .
1: For each point x ∈ H, find d(x,S)
2: Order the points in H according to their distance to S from farthest to smallest.
3: Let v be the point in position φ(logn)th in the ordering.
4: return v

6

4.2 Trade-off

Ene et al. [8] prove that with high probability their MapReduce procedure runs in O(1/ε) rounds. To
decrease the number of rounds, we introduce parameter φ to Select(), which trades off approximation for
running time. The original algorithm effectively fixed φ to be 8.

In the original EIM scheme, the expected number of points in R that are farther from S than v is 8 logn ·
|R|/|H|= |R| ·2/nε . By choosing a lower threshold for point v, we decrease the number of points that remain
in R. Since the sampling algorithm terminates when |R| falls below a the threshold defined by v, potentially
this decreases the number of iterations. We introduce a variable φ , and choose v such that it is the φ(logn)th

farthest point in h from S.
To obtain a feasible k-center solution from the sample given by EIM-MapReduce-Sample(), a sequen-

tial k-center procedure is run on the resulting sample in an additional MapReduce round. Note that in
line 3, R is partitioned into d|R|/nεe sets of size at most dnεe, and in line 7 the mappers partition R into
dn1−εe sets of size at most d|R|/n1−εe. In Section 6, we prove that – with weaker bounds, and with appro-
priate values of φ – the probabilistic 10-approximation still holds.

5 Runtime analysis

We now analyze in detail these parallel algorithms for k-center. Ene et al. [8] proved that their sampling
procedure required O(1/ε) rounds with high probability, while MRG can run in two rounds given sufficient
resources. We consider also the computations required in each of the rounds to determine the expected
overall runtime.

5.1 MRG

Assuming that n/m ≤ c and k ·m ≤ c, MRG will run in two consecutive MapReduce iterations. The first
iteration involves running m concurrent k-center algorithms, each on n/m vertices.

The runtime of GON on N points is O(k ·N): each time a new center is selected, we need to find the
distance of that center to all of the other vertices. So the runtime for the first round of MRG is O(k ·n/m),
with a low constant in the O(·) expression. In its second round, MRG runs GON on the k ·m centers
obtained from the first round; this gives a runtime of O(k2 ·m). Therefore the total runtime of MRG is
O(k ·n/m+ k2 ·m), and for larger data sets, we would expect the dominant term to be kn/m.

5.2 EIM

The sampling algorithm, EIM, has, with high probability, T ∈ Θ(1/ε) iterations – each comprising three
MapReduce rounds – followed by a final clean-up round at the end that solves a single k-center instance.
Let R` and S` denote the state of sets R and S, respectively, in iteration ` of the main loop of the algorithm.
Counting from the first iteration, |R0| = n and, with high probability, |R`| = O(n/n`ε). In each iteration,
points in R are added to H with probability 4nε(logn)/|R|, so |H| is expected to be O(nε logn). And in line 5,
|S`| becomes |S`−1|+O(knε logn), so that, starting with |S0|= 0, we expect |S`|= O((`+1)knε logn). We
now analyze each MapReduce round.

Round 1 (Lines 3 & 4). This round involves O(|R`|/m) operations during iteration `, so the total number
of operations is

∑
`<T

|R`|
m
∈ 1

m
O

(
∑
`<T

n
n`ε

)
∈ O

(
1
m
· n

1−n−ε

)
.

7

Round 2 (Lines 5 & 6). This uses O(|H| · |S`|) distance calculations per iteration, which is

O((`+1)k(nε logn)2) ,

for each of the T ∈ O(1/ε) (w.h.p.) iterations. The total runtime is O(k(nε logn)2
∑`<T `), which is in

O((k/ε
2)(nε logn)2) .

Round 3 (Lines 7 & 8). The third round requires O(|R`| · |S`|/m) distance calculations in each iteration,
so summing over all iterations this is

O

(
1
m

kn1+ε logn ∑
`<T

`+1
n`ε

)
⊆ O

(
k
m
· n1+ε logn
(1−n−ε)2

)
.

Final round This sends |ST | points to a single machine, on which, say, GON is run. With high probability,
this takes time

O((k/ε)nε logn · k) = O((k2/ε)nε logn) .

In practice, we find the dominant procedure for EIM is Round 3, in which points are removed from R.
This makes sense, as in most cases k · n1+ε is much larger than k2nε ; the converse inequality implies that
k > n. Furthermore, MRG also has O(k ·n/m) complexity for cases where k ·m < n/m.

Experiments confirmed that the dominant round for each algorithm was linear in k, rather than quadratic.
Comparing the dominant round of EIM to MRG, we expect EIM to be slower by a factor of nε(1−
n−ε)−2 logn.

6 Approximation ratio of EIM

In this section, we prove that the approximation bound for EIM still holds under our changes to the sampling
algorithm. This proof is based on the original analysis, with the necessary details altered for correctness and
relevance. The main impact of the parameter φ is to vary the number of points we consider to be represented
by the existing sample. To analyze this, we first require a formal description of what it means for points to
be well represented (or satisfied) by a sample.

Let Y denote some subset of the vertex set V (that we hope will ‘represent’ V). Each vertex x ∈ V is
assigned to its closest point in Y , breaking ties arbitrarily but consistently. For each x ∈V , let A(x,Y) denote
the point in Y to which x is assigned; if x is in Y we assign x to itself. For y ∈ Y , let B(y,Y) denote the set of
all points assigned to y when Y is the ‘assignment subset’.

For a sample S, Ene et al. say that a point x is satisfied by S with respect to Y if

min
y∈S

d(y,A(x,Y))≤ d(x,A(x,Y)) .

In words, there is a point in the sample that is closer to its Y -assigned point, than x is to its Y -assigned point,
a(x,Y).

Let SOLE denote the set of points returned by EIM-MapReduce-Sample. The set SOLE might not
include every center in Y , but a point x can still be satisfied if a(x,Y) /∈ SOLE by including a point in SOLE

that is closer to x than A(x,Y). If EIM-MapReduce-Sample returns a set that satisfies every point in V ,
then the sample is very representative of the initial data set, and the clustering algorithms based on it should
perform well. However, there is no guarantee that the sample satisfies all points; instead we can only be
guarantee that the number of unsatisfied points is small, and their contribution to the performance of the
clustering algorithms is negligible compared to that of the satisfied points.

8

The sets at the core of EIM-MapReduce-Sample change with every iteration. Denote the state of
sets R, S and H at the beginning of iteration ` by R`, S`, and H` respectively, where R0 =V and S0 =∅. The
set of points that are removed from R during iteration ` is denoted by D`, so R`+1 = R` \D`. Let U` denote
the set of points in R` that are not satisfied by S`+1 with respect to Y . Let U denote the set of all points that
are not satisfied by SOLE (the sample returned by the algorithm) with respect to Y . If a point x is satisfied
by S` with respect to Y , then it is also satisfied by SOLE with respect to Y , and therefore U ⊆

⋃
`≥1U`.

From the analysis of Ene et al. [8] we have the following lemma.

Lemma 4. Let Y be an arbitrary set with no more than k points. In iteration ` of EIM-MapReduce-Sample,
where `≥ 0,

P[|U`| ≥ |R`|/3nε]≤ n−2 .

We now show that our adaptation of the sampling algorithm by Ene et al. retains the same probabilistic
10-approximation guarantee.

Lemma 5. Let Y be a set of no more than k points. In iteration ` of the while loop in
EIM-MapReduce-Sample, let v` denote the threshold in the current iteration: the point in H` that is
the φ log(n)th most distant from S`+1. Then there exist values a and b such that, for some γ > 0,

P
[

a|R`|
nε
≤ |R`+1| ≤

b|R`|
nε

]
≥ 1− 2

n1+γ
.

Proof. Recall that we selected a pivot point v, and discarded the points that are well represented by the
current sample, compared to v. Note that R`+1 is the set of points in R` such that the distance to the sample
S`+1 is greater than the distance between the pivot point and the sample.

Ene et al. introduce these handy definitions. For a vertex t, we refer to the number of points in R
further from S`+1 than the point t as the rankR of t. For some value i, and a set Y ⊆ R, define L(i,Y) =∣∣{x ∈ Y : rankR(x)≤ i}

∣∣ as the number of points in the set Y that have rank smaller than i.
Let r = d|R`|/nε , and let |H`|= c ·nε logn. By design,

E[L(a · r,H`)] = a · r · |H`|/|R`|= acd logn

and
E[L(b · r,H`)] = b · r · |H`|/|R`|= bcd logn .

If a · r ≤ |R`+1| ≤ b · r, then with high probability, the pivot (chosen to be the φ lognth point in H`) will be in
the range [L(a · r,H`),L(b · r,H`)].
By the Chernoff inequality,

P[L(a · r,H`)≥ φ · logn]

= P[L(a · r,H`)≥ (1+δ)E[L(a · r,H`)]]

= P[L(a · r,H`)≥ (1+δ) ·acd logn]

≤ exp
[
−δ 2 ·acd logn

2+δ

]
= n−δ 2·acd/(2+δ).

Choosing δ so that (1+ δ)E[L(a · r,H`)] ≤ φ · logn gives δ ≤ −1+ φ/(acd). Since the Chernoff bound
requires that δ > 0, we insist that φ > acd.

9

The lemma statement requires P[L(a · r,H`) ≥ φ · logn] ≤ n−(1+γ), which we can achieve by finding
values of a, c, d, and φ that for some γ > 0 satisfy

(φ/(acd)−1)2 ·acd
(2+(φ/(acd)−1))

≥ (1+ γ) .

Letting x = 1+ γ , this is equivalent to (acd)2− (2φ + x)acd +(φ 2− xφ)≥ 0, which has real roots at acd =
φ + x/2±

√
2xφ + x2/4. Similarly,

P[L(b · r,H`)≤ φ · logn]

= P[L(b · r,H`)≤ (1−δ)E[L(b · r,H`)]]

= P[L(b · r,H`)≤ (1−δ) ·bcd logn]

≤ exp
[
−δ 2 ·bcd logn

2

]
= n−δ 2bcd/2 ≤ n−x.

Choosing δ so that (1− δ)E[L(b · r,H`)] ≤ φ · logn gives δ ≤ 1−φ/(bcd). Since the Chernoff bound
requires that δ > 0, this gives the constraint φ < bcd.

For the last inequality to hold, we need to find values of b, c, d, and φ such that

(bcd)2− (2φ +2x)bcd +φ
2 ≥ 0 .

This has real roots at bcd = φ + x±
√

2xφ + x2.
This gives feasible solutions for acd ≤ φ +x/2−

√
2xφ + x2/4 and bcd ≥ φ +x+

√
2xφ + x2. For later

results we require that a = 1 and b≤ 5. So for there to exist feasible values of c and d, we have the following
constraint,

φ + x+
√

2xφ + x2

b
≤ φ +

x
2
−
√

2xφ +
x2

4
, (2)

where b≤ 5 and x = 1+ γ . When this bound holds, we can find values of each of the parameters such that
the probability of |r`+1| being outside of the defined bounds is less than 1/nx, and therefore

P
[
|R`|
nε
≤ |R`+1| ≤

5|R`|
nε

]
≥ 1−1/nx−1/nx ,

which is 1−2n−(1+γ). With this probability, the number of points in R` that are further from S than v` (and
hence the size of the set R`+1) is in the range [|R`|/nε ,5|R`|/nε].

Ene et al. [8] prove that with probability 1−O(1/n), it is possible to map each unsatisfied point to a
satisfied point such that no two unsatisfied points are mapped to the same satisfied point. Such a mapping
allows them to bound the cost of the unsatisfied points with regards to the cost of the optimal solution. Their
proof relies on the choice of b = 4, and the bound from Lemma 5 giving a probability greater than 1−2n−2.
However, we use b≤ 5, and only assure a probability of 1−2n−(1+γ). Therefore, we prove that the required
mapping exists with probability 1−O(n−(1+γ)); by setting γ = (log logn)/ logn this gives a probability of
1−O(1/ logn), which is sufficient for large values of n. The choice of b arises from the requirement that
b/nε < 2: for ε = 0.1 and n≥ 10,000, this holds for b≤ 5.

In the original analysis, Ene et al. proved that their results hold with high probability, which they define
as having probability ≥ 1−O(1/n2). We instead bound our confidence in these results with probability
1−O(1/n1+γ) for a variable γ , which we will refer to as with sufficient probability, or w.s.p..

The following results follow from the above analysis and that given by Ene et al [8].

10

Table 1: Theoretical comparison of algorithms: Approximation factor represented by α , run times are
asymptotic, O(· · ·).

Algorithm α Rounds Runtime

GON [9] 2 n/a k ·n

MRG 4 2 kn/m+ k2m

EIM [8] 10 O(1/ε)
kn1+ε logn

m(1−n−ε)2

Lemma 6. For the sample S returned by EIM-MapReduce-Sample, w.s.p. we have OPT(V,S)≤ 5 ·OPT.

Lemma 7. The procedure resulting from running an α-approximation algorithm on the sample returned by
EIM-MapReduce-Sample achieves a 4α +2-approximation for the k-centre problem w.s.p.

When running a 2-approximation algorithm on the sample, this result gives a 10-approximation bound
on the resulting procedure. To achieve a success probability higher than 1−O(1/n), we need x≥ 1: by the
bound in Inequality (2), this implies that φ > 5.15.

7 Experiments

In this section we compare three algorithm (families), both in terms of speed and effectiveness, and contrast
the theoretical properties of these methods (as shown in Table 1 with their empirical performance.

7.1 Setup

We run experiments on three algorithm families, each of which we implement in the C language. First is
the typically 2-round algorithm, MRG; second is (our Section-6 generalization of) the sampling algorithm
of Ene et al. [8], EIM; third is the (standard) sequential algorithm, GON. The latter, with its factor-2
approximation guarantee serves as an effectiveness baseline.

For the sake of consistency with previous literature, our method of implementing these algorithms mim-
ics that of Ene et al. [8] in several ways. In particular, we adopt a MapReduce approach, but do not record
the cost of moving data between machines. (As MRG involves fewer rounds, the expected cost of moving
data between machines would be less than for EIM.) We simulate the parallel machines sequentially on a
single machine, taking the longest processing time of the simulated machines as the processing time for that
MapReduce round. For all parallel implementations, GON is the subprocedure for selecting the final centers.

The experimental system is a ‘commodity’ machine, with 8GB of main memory and an Intel R©
CoreTMi7-2600 CPU @ 3.40GHz.

7.2 Experimental design

Ene et al. [8] generated synthetic data, designed to have a fixed number of similarly sized clusters. Moreover,
they tested their algorithm for values of k equal to the number of clusters. We evaluate the algorithms over
a range of values of k and vary the numbers of inherent clusters. In practice, the number of clusters may not
be known in advance, and the number of clusters required can be independent of the structure of the data. To
better determine how well these algorithms are likely to perform in practice, we extend these experiments
to test on graphs with different underlying structures.

In all of the experiments, the distance is Euclidean, computed as required from the locations of the
points. The k-center algorithm assumes a complete graph as input, and a matrix representation of a graph,

11

0 20 40 60 80 100

k

104

105

106

107

108

109

V
a
lu

e

EIM

GON

MRG

Figure 1: Solution values over k on KDD CUP 1999.

with all distances stored explicitly, might result in a significant proportion of the data sent between machines
being unnecessary. The number of machines, m, is fixed to 50, while n and k vary. Our preliminary experi-
mentation with the EIM algorithm, over a range of values of ε , confirms that Ene et al.’s choice of ε = 0.1
was good.

In Section 6, we introduced a parameter φ to the EIM sampling approach. In our experiments, we test the
effect of lowering φ from its “original” value of 8, both in terms of runtime and effectiveness Corresponding
with our theoretical results in Section 6 we choose φ = 6; and to determine the robustness of the algorithm,
we test with φ = 4 and φ = 1, which are below the bound of φ = 5.15 that was given in Section 6.

7.3 Data sets

We test against a combination of real and synthetic data sets, primarily in two and three dimensions, but
with several real data sets of larger dimension. The data sets have a range of sizes, from 10,000 through to
1,000,000 points, with varying degrees of inherent clustering. Our synthetic data sets have three different
formats, viz.

UNIF The n points are uniformly distributed in a two-dimensional square.

GAU The k′ cluster centers – where k′ might not equal k – are uniformly randomly generated in a unit cube.
The n points are distributed into these clusters uniformly at random, resulting in clusters of roughly
similar size. This helps determine the accuracy with which the procedures can identify different
clusters. Distance from points to the cluster center follows a Gaussian distribution with σ = 1/10.
These data sets mimic those used in the experiments of Ene et al [8].

UNB An unbalanced arrangement, similar to GAU. The distribution of points to inherent clusters is biased
such that around half of the points are in a single (inherent) cluster; the distribution between the
remaining clusters remains uniform.

We generate three graphs of each size and type, and run the algorithms twice over each data set, taking
the average. This gives a total of six results for each type of data set, over three different graphs.

We take real data sets from the UCI Machine Learning Repository [16], over a wide range of sizes,
applications and dimensions. We run four tests over each of the real data sets, and take the average result.
We include results for the 25,010-point training set for the POKER HAND data set, and the 10% sample
from the 4,000,000-point KDD CUP 1999 data set.

12

0 20 40 60 80 100

k

10-4

10-3

10-2

10-1

100

101

102
R

u
n
ti

m
e

EIM

GON

MRG

(a) GAU (n = 1,000,000, k′ = 25).

0 20 40 60 80 100

k

10-4

10-3

10-2

10-1

100

R
u
n
ti

m
e

EIM

GON

MRG

(b) UNIF (n = 100,000).

Figure 2: Runtimes in seconds over a range of values of k. Corresponding with our theoretical analysis, EIM runs
slower than both MRG and the sequential alternative, with MRG being the fastest of the algorithms considered.

Table 2: Solution value over k for GAU (n = 1,000,000, k′ = 25).
k MRG EIM GON

2 96.04 93.11 95.86
5 61.90 61.58 63.31

10 41.31 39.43 39.72
25 0.961 0.854 0.961
50 0.762 0.683 0.719

100 0.607 0.556 0.573

Table 3: Solution value over k for UNIF (n = 100,000).
k MRG EIM GON

2 91.33 95.80 91.18
5 50.68 50.65 53.14

10 33.35 31.12 32.35
25 18.49 18.01 18.27
50 13.14 12.39 12.36

100 9.144 8.764 8.727

8 Results
Overall MRG is faster than the alternative procedures - often by orders of magnitude, with EIM running
slower than the sequential algorithm despite being parallelized, conforming with the analysis in Section 5.

8.1 Summary
In most cases, despite having worse approximation guarantees, the solutions for the parallelized algorithms
are comparable to those of the baseline, GON, with EIM performing slightly better for synthetic data sets.
Ene et al [8] suggested that their sampling-based algorithm did not perform particularly well, likely due to
the k-center procedure being sensitive to outliers. Our experimental results show otherwise: sampling fewer
points can occasionally provide better results due to the tendency to avoid sampling points that are well
represented, but toward the edge of the cluster. The tendency for GON to favor outliers is often mitigated,
rather than amplified, by sampling. As shown in Table 4, this effect is particularly evident for GAU graphs
where k = k′.

13

0 20 40 60 80 100

k

10-4

10-3

10-2

10-1

100

101

102

R
u
n
ti

m
e

EIM

GON

MRG

(a) GAU (n = 1,000,000, k′ = 50).

0 20 40 60 80 100

k

10-5

10-4

10-3

10-2

10-1

100

R
u
n
ti

m
e

EIM

GON

MRG

(b) GAU (n = 50,000, k′ = 50).

Figure 3: Runtimes in seconds for GAU graphs over a range values of k. When k becomes too large, relative to n,
EIM no longer performs sampling and defaults to the sequential algorithm.

Table 4: Solution value over k for UNB (n = 200,000, k′ = 25). When k = k′, EIM is notably better.
k MRG EIM GON

2 97.96 93.69 93.37
5 64.61 64.28 61.72

10 40.17 40.05 40.39
25 0.932 0.828 0.939
50 0.668 0.643 0.655

100 0.515 0.530 0.500

Table 5: Solution value over k for the POKER HAND data set.
k MRG EIM GON

2 19.41 18.60 18.17
5 18.06 17.07 17.25

10 15.12 14.20 15.03
25 12.13 11.98 11.84
50 10.07 9.418 9.617

100 8.774 9.241 8.396

As illustrated in Tables 2 and 4, for the synthetic data sets, the parallel algorithms are about as effective
as Gonzalez’s algorithm. In general, EIM is slightly more effective than MRG. With the exception of the
EIM results on the KDD CUP 1999 10% sample, for which it performs poorly, the same occurs on the real
data sets, as seen in Figure 1 and Table 5.

8.2 Running time

For the majority of the experiments, EIM ran using two iterations of the main loop, for a total of seven
MapReduce rounds. On certain data sets, EIM sometimes executes one iteration, sometimes two – that is,
four or seven MapReduce rounds – as the number of points removed per round is probabilistic.

From Figures 2b, 3b and 4b, we can see that as the ratio of n to k drops, at some point, EIM merely
sends the entire data set to a single machine, rather than employing the sampling procedure. We can also

14

Table 6: Average solution value over φ , in EIM, for GAU (n = 200,000, k′ = 25). For each k, the lowest
value is in italics.

φ

k 1 4 6 8
2 88.4 80.4 85.5 86.5
5 59.9 60.9 56.5 61.9

10 36.2 35.5 34.7 35.3
25 0.796 0.780 0.826 0.840
50 0.630 0.617 0.610 0.666

100 0.478 0.492 0.505 0.535

Table 7: Average runtime over φ , in EIM, for GAU (n = 200,000, k′ = 25). The lowest runtime in each row
is in italics.

φ

k 1 4 6 8
2 0.050 0.059 0.165 0.135
5 0.080 0.130 0.368 0.314

10 0.283 0.480 0.549 0.552
25 0.588 0.505 1.47 1.42
50 0.693 0.816 2.84 2.24

100 0.726 0.757 3.78 3.59

note that in Figure 4b, MRG displays a different trend from Figure 4a. In Section 5, we showed that the
runtime is O(kn/m+ k2 ·m). For larger values of k and small values of n, the k2 ·m term dominates; as n
grows, the k · n/m term dominates, so the trend becomes similar to that in Figure 4a. From our analysis in
Section 5, both MRG and EIM have a round with a k2 term in the running time. When k is large relative
to n, this can potentially dominate.

8.3 Runtime/Approximation Trade-off

We examine the sensitivity of the EIM algorithm to the φ parameter. As expected, the variability of effec-
tiveness increases as the φ parameter decreases, while the runtimes significantly decrease. Tables 6 and 7
compare the average solution value and runtimes for the different parameters. The algorithm speeds up sig-
nificantly for values of φ below the threshold of 5.15 (above which there is a guaranteed low probability of
poor solutions, see Section 6). Yet, in practice, it still returns acceptable solutions: in some cases solutions
are even better with smaller values of φ .

This seemingly counterintuitive behavior can be explained by the choice of GON as the sub-procedure
for the sample. As noted above, selecting the farthest points as new centers makes it more likely that
points at the perimeter of a cluster are chosen; although each cluster is well represented by some vertex,
the selected center is at the perimeter of the cluster. By sampling fewer points, it is less likely that points
that are extremal to the cluster are present in the subgraph on which GON is run. Therefore in decreasing
the runtime of the algorithm, for appropriate values of k, we can potentially improve the average value of
the solutions obtained. However this behavior is likely to be more volatile: the guaranteed bound on the
performance has lower probability, giving a higher chance that a very poor solution is returned.

15

0.0 0.2 0.4 0.6 0.8 1.0

n 1e6

10-4

10-3

10-2

10-1

100

101
R

u
n
ti

m
e

EIM

GON

MRG

(a) k = 10

0.0 0.2 0.4 0.6 0.8 1.0

n 1e6

10-3

10-2

10-1

100

101

102

R
u
n
ti

m
e

EIM

GON

MRG

(b) k = 100

Figure 4: Runtimes in seconds for fixed k over values of n ranging from 10,000 to 1,000,000. For sufficiently small
values of n relative to k, EIM behaves identically to GON. The is caused by the condition on the while loop: if k is
large enough, the condition is never met and no sampling occurs, so GON is run on the entire data set.

9 Conclusion

In this paper, we describe a multi-round parallel procedure for the k-center problem. When it runs in only 2
MapReduce rounds, it is a 4-approximation. We show experimentally that it returns solutions that compare
well to those of a sequential 2-approximation algorithm, while running extremely fast.

We compare this approach to the existing 10-approximation sampling-based MapReduce procedure [8].
It is often slightly more effective, but can be very slow. To support our experimental results, we give the
first detailed runtime analysis for the sampling approach, the proof of which correspond with our empirical
results. We also parameterized the sampling procedure to improve runtimes, sometimes even bringing better
solutions despite the lack of a provable effectiveness bound.

Future work

The approximation factor of four for MRG is tight. There are graphs on which, with adversarial assignment
of points to machines and choice of seedings for GON, MRG gives a 4-approximation. How likely such
cases are in practice? We seek bounds on the probability that this algorithm gives a poor approximation.
And what is the effectiveness when MRG needs more than two rounds?

Recently, Im and Moseley [12] described a 3-round 2-approximation MapReduce procedure for the k-
center problem under the assumption that OPT is known, and announced a 4-round procedure that does not
require prior knowledge of the optimal solution – these details have yet to appear. More recently Malkomes
et al. [17] presented a parallel adaptation of the k-center algorithm comparable to a special case of our
approach. Currently all such approaches rely on the sequential algorithm of Gonzalez [9]. It would be inter-
esting to compare with similar adaptations of alternative sequential algorithms, such as that of Hochbaum
& Shmoys [10].

Acknowledgment Many thanks to Kewen Liao for valued feedback and proofreading.

16

References

[1] V. ARYA, N. GARG, R. KHANDEKAR, A. MEYERSON, K. MUNAGALA, AND V. PANDIT, Local
search heuristics for k-median and facility location problems, SIAM Journal on Computing, 33 (2004),
pp. 544–562.

[2] B. BAHMANI, B. MOSELEY, A. VATTANI, R. KUMAR, AND S. VASSILVITSKII, Scalable k-
means++, Proc. VLDB Endowment, 5 (2012), pp. 622–633.

[3] G. E. BLELLOCH AND K. TANGWONGSAN, Parallel approximation algorithms for facility-location
problems, in SPAA, 2010, pp. 315–324.

[4] J. BYRKA, T. PENSYL, B. RYBICKI, A. SRINIVASAN, AND K. TRINH, An improved approximation
for k-median, and positive correlation in budgeted optimization, in SODA, 2015, pp. 737–756.

[5] M. CECCARELLO, A. PIETRACAPRINA, G. PUCCI, AND E. UPFAL, Space and time efficient parallel
graph decomposition, clustering, and diameter approximation, in SPAA, 2015, pp. 182–191.

[6] F. CHIERICHETTI, R. KUMAR, AND A. TOMKINS, Max-cover in Map-Reduce, in WWW, 2010,
pp. 231–240.

[7] J. DEAN AND S. GHEMAWAT, MapReduce: Simplified data processing on large clusters, Communi-
cations of the ACM, 51 (2008), pp. 107–113.

[8] A. ENE, S. IM, AND B. MOSELEY, Fast clustering using MapReduce, in KDD, 2011, pp. 681–689.

[9] T. F. GONZALEZ, Clustering to minimize the maximum intercluster distance, Theoretical Computer
Science, 38 (1985), pp. 293–306.

[10] D. S. HOCHBAUM AND D. B. SHMOYS, A best possible heuristic for the k-center problem, Mathe-
matics of Operations Research, 10 (1985), pp. 180–184.

[11] W.-L. HSU AND G. L. NEMHAUSER, Easy and hard bottleneck location problems, Discrete Applied
Mathematics, 1 (1979), pp. 209–215.

[12] S. IM AND B. MOSELEY, Brief announcement: Fast and better distributed MapReduce algorithms for
k-center clustering, in SPAA, 2015.

[13] H. KARLOFF, S. SURI, AND S. VASSILVITSKII, A model of computation for MapReduce, in SODA,
2010, pp. 938–948.

[14] S. LATTANZI, B. MOSELEY, S. SURI, AND S. VASSILVITSKII, Filtering: A method for solving graph
problems in MapReduce, in SPAA, 2011, pp. 85–94.

[15] S. LI AND O. SVENSSON, Approximating k-median via pseudo-approximation, in STOC, 2013,
pp. 901–910.

[16] M. LICHMAN, UCI Machine Learning Repository, 2013.

[17] G. MALKOMES, M. J. KUSNER, W. CHEN, K. Q. WEINBERGER, AND B. MOSELEY, Fast dis-
tributed k-center clustering with outliers on massive data, in NIPS, 2015, pp. 1063–1071.

17

	1 Introduction
	1.1 Clustering algorithms
	1.2 Parallel algorithms
	1.3 Our contribution

	2 Related work
	2.1 Approximations
	2.2 Experiments

	3 Parallel k-center
	3.1 Description
	3.2 Approximation
	3.3 Multi-round analysis

	4 Revisiting the sampling approach
	4.1 Termination
	4.2 Trade-off

	5 Runtime analysis
	5.1 MRG
	5.2 EIM

	6 Approximation ratio of EIM
	7 Experiments
	7.1 Setup
	7.2 Experimental design
	7.3 Data sets

	8 Results
	8.1 Summary
	8.2 Running time
	8.3 Runtime/Approximation Trade-off

	9 Conclusion

