
HAL Id: hal-01576973
https://hal.science/hal-01576973

Submitted on 24 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Cloud as an OpenMP Offloading Device
Hervé Yviquel, Guido Araújo

To cite this version:
Hervé Yviquel, Guido Araújo. The Cloud as an OpenMP Offloading Device. The 46th International
Conference on Parallel Processing (ICPP-2017), Aug 2017, Bristol, United Kingdom. �hal-01576973�

https://hal.science/hal-01576973
https://hal.archives-ouvertes.fr


The Cloud as an OpenMP Offloading Device
Hervé Yviquel and Guido Araújo

Institute of Computing
University of Campinas (UNICAMP)

Campinas, Brazil
{herve.yviquel,guido}@ic.unicamp.br

Abstract—Computation offloading is a programming model in
which program fragments (e.g. hot loops) are annotated so that
their execution is performed in dedicated hardware or acceler-
ator devices. Although offloading has been extensively used to
move computation to GPUs, through directive-based annotation
standards like OpenMP, offloading computation to very large
computer clusters can become a complex and cumbersome task.
It typically requires mixing programming models (e.g. OpenMP
and MPI) and languages (e.g. C/C++ and Scala), dealing with
various access control mechanisms from different clouds (e.g.
AWS and Azure), and integrating all this into a single application.
This paper introduces the cloud as a computation offloading
device. It integrates OpenMP directives, cloud based map-
reduce Spark nodes and remote communication management
such that the cloud appears to the programmer as yet another
device available in its local computer. Experiments using LLVM,
OpenMP 4.5 and Amazon EC2 show the viability of the proposed
approach and enable a thorough analysis of the performance and
costs involved in cloud offloading. The results show that although
data transfers can impose overheads, cloud offloading can still
achieve promising speedups of up to 86x in 256 cores for the
2MM benchmark using 1GB matrices.

I. INTRODUCTION

Parallelizing loops is a well-known research problem that
has been extensively studied. Most of the approaches to
this problem use DOALL [1], DOACROSS [2], DSWP [3],
vectorization [4], data rearrangement [5] and algebraic and
loop transformations [6] to improve program performance. On
the other hand, the combination of large data-center clusters
and Map Reduce based techniques, like those found in Internet
search engines [7], has opened up opportunities for cloud-
based parallelization, which could eventually improve program
performance.

Although there is a number of approaches to loop par-
allelization, in general-purpose computers this is typically
achieved through message passing programming models like
MPI [8] or multi-threading based techniques such as those
found in the OpenMP standard [9]. OpenMP is a directive-
based programming model in which program fragments (e.g.
hot loops) are annotated to ease the task of parallelizing
code. The last version of the OpenMP standard [10] (Release
4.5) introduces new directives that enable the transfer of
computation to heterogeneous computing devices (e.g. GPUs).
From the programmer viewpoint, a program starts running on
a typical processor host, and when an OpenMP annotated code
fragment is reached, the code is transferred to the indicated

device for execution, returning the control flow to the host
after completion, a technique called offloading.

Although OpenMP offloading has been extensively used
in combination with powerful computing devices like GPUs,
offloading computation to very large clusters can become a
complex and cumbersome task. It typically requires mixing
different programming models (e.g. OpenMP and MPI) and
languages (e.g. C/C++ and Scala), dealing with access control
mechanisms from distinct cloud services, while integrating all
this together into a single application. This task can become a
major programming endeavor that can exclude programmers
who are not parallel programming experts from using the huge
computational resources available in the cloud [11].

To address such problem, this paper integrates OpenMP
directives, cloud based map-reduce Spark and remote commu-
nication management into a single OpenMP offloading device
which can be seen by the programmer as available in its
local computer. To achieve that, it relies on the OpenMP
accelerator model to include the cloud as a new device target.
The cloud resources (e.g. execution nodes, data storage) are
identified using a specific configuration file and a runtime
library allows the programmer to get rid of all glue code
required for the interaction with the cloud infrastructure. The
main contributions of this paper are the following:

• It introduces the cloud as an OpenMP computation de-
vice making the task of mapping local source code to
the cloud transparent to the programmer, a useful tool
specifically for those programmers who do not master
parallel programming skills and cloud computing;

• It proposes a new cloud-based parallel programming
model which combines traditional parallelization tech-
niques with map-reduce based computation to enable the
generation of parallel distributed code;

The remainder of this paper is organized as follows. First,
we start by introducing the basic concepts involved in directive
based programing and cloud computing (Section II). We then
describe the proposed approach in Section III. Section IV
presents and analyzes the experimental results, and Section
V discusses the related works. Finally, we conclude in Sec-
tion VI.

II. BACKGROUND

Cloud computing has been considered a promising platform
which could free users from the need to buy and maintain
expensive computer clusters, while enabling a flexible and



pay-as-needed computational environment. Although it has
been successfully used to handle the rise of social media
and multimedia [12], all such systems have been designed
using a programming abstraction that clearly separates the
input/output of local data from cloud computation. This goes
against a clear tendency in computing to easy the integration
of data collection to the huge resources available in the
cloud, as demanded by modern mobile devices and Internet-of-
Things (IoT) networks. For example, by collecting data from a
cellphone and transparently sending it to the cloud, one could
use expensive Machine Learning (ML) algorithms to identify
the best device parameters, thus tunning its operation to the
user usage profile. Easing the integration of local code with
the cloud is central to enable such type of applications.

The MapReduce [7] programming model associated with
the Hadoop Distributed File System (HDFS) [13] has become
the de facto standard used to solve large problems in the
cloud [14], [15]. A generalization of the MapReduce model,
Spark [16] has enabled the design of many complex cloud
based applications and demonstrated very good performance
numbers [17], [18], [19], [20]. To achieve such performance,
the Spark runtime relies on an innovative data structure, called
Resilient Distributed Dataset (RDD) [16], which is used to
store distributed data collections with the support of parallel
access and fault-tolerance.

1 void MatMul(float *A, float *B, float *C) {
2 // Offload code fragment to the cloud
3 #pragma omp target device(CLOUD)
4 #pragma omp map(to: A[:N*N], B[:N*N]) map(

from: C[:N*N])
5 // Parallelize loop iterations on the cluster
6 #pragma omp parallel for
7 for(int i=0; i < N; ++i)
8 for (int j = 0; j < N; ++j)
9 C[i * N + j] = 0;

10 for (int k = 0; k < N; ++k)
11 C[i * N + j] += A[i * N + k] * B[k * N

+ j];
12 // Resulted matrix ’C’ is available locally
13 }

Listing 1: Cloud offloading of matrix multiplication
using the OpenMP accelerator model

Although it has been used to solve many large-scale
problems, the combination of MapReduce and HDFS has
not become a programming model capable of turning the
cloud into a computing device easily used by non-expert
programmers. On the other hand, the emergence of multicore
computing platforms has enabled the adoption of directive-
based programming models which have simplified the task of
programming such architectures. In directive-based program-
ming, traditional programming languages are extended with a
set of directives (such as C pragma) that informs the compiler
about the parallelism potential of certain portions of the code,
usually loops but also parallel sections and pipeline fragments.
OpenACC [21] and OpenMP [9] are two examples of such
language extensions which rely on thread-level parallelism.
Due to its simplicity and seamless mode, OpenMP is probably

Worker Node 0

Worker Node 1

Worker Node N

::

Spark Node
Driver/Manager

Cloud storage
(HDFS or S3)

Cloud 
OMP 
kernel

Spark
Driver Node

Application

:
:
:

:
:
:
:
:

Cloud target deviceHost device

1

2

3

4

6

4

6

4

6

5

5

5

7

8

Fig. 1: Workflow of the offloading of a kernel execution to a
cloud device

the most popular directive-based programming interface in use
today.

Listing 1 presents a simple program loop describing a matrix
multiplication which was annotated with OpenMP directives
in order to offload the computation to an accelerator. In the
OpenMP abstract accelerator model, the target clause defines
the portion of the program that will be executed by the
target device. The map clause details the mapping of the data
between the host and the target device: inputs (A and B) are
mapped to the target, and the output (C) is mapped from the
target. While typical target devices are DSP cores, NVIDIA
GPUs, Xeon Phi accelerators, etc., this paper introduces the
cloud as yet another target device available from the local
computer, giving the programmer the ability to quickly expand
the computational power of its own computer to a large-scale
cloud cluster.

III. CLOUD OFFLOADING INFRASTRUCTURE FOR OPENMP
Instead of parallelizing program fragments across heteroge-

neous cores within a single computer, our runtime automati-
cally parallelizes loop iterations by offloading kernels from the
local computer across multiple machines of a cloud cluster.
To achieve that it uses the Apache Spark framework, while
transparently providing desirable features like fault tolerance,
data distribution and workload balancing.

As shown in Figure 1, the execution of the local OpenMP
annotated code on the remote cloud device has the following
workflow. First, the programmer configures the credentials of
a Spark cluster previously deployed using its favorite cloud
service. The program is then started by the programmer in
its own local machine and runs locally until the OpenMP
annotated code fragment is reached. A method is then called to
initialize the cloud device 1 . Offloading is done dynamically,
and thus if the cloud is not available the computation is
performed locally. The runtime sends the input data required
by the kernel as binary files to a cloud storage device (e.g.
AWS S3 or any HDFS server) 2 . After all the input data
has been transmitted, the runtime submits the job to the Spark
cluster and blocks until the end of the job execution. The driver
node which is in charge of managing the cluster reads the



GPU code
DSP code

GPU

DSP

AWS
— EC2 / S3 —

Host CPU

Cloud

Local computer

Microsoft Azure
— HDInsight / Storage —

GPU plugin

DSP plugin

Cloud plugin
Target

agnostic
wrapper ...

...

libomptarget.so

Fat ELF binary

Private Cloud
 — SSH / HDFS —

Google Cloud

conf
file

Spark code

Cloud code

1

2

3

4

JAR binary

CPU
Host code

LLVM
JNI_region(…)

omp_set_default_device(…)
omp_get_number_devices(…)
_tgt_target(…)
…

main(…)

spark_submit(…)

cuda_region(…)

_tgt_init(…)
_tgt_data_submit(…)
_tgt_data_retrieve(…)
_tgt_run_region(…)
…

ppc_region(…)

Fig. 2: Modular implementation of the OpenMP accelerator
model; in gray is what we implemented to enable the cloud
as a novel device

input data from the cloud file system 3 , transmits the input
data and distributes the loop iterations across the Spark worker
nodes 4 , which are in charge of the computations. Next, the
worker nodes run the mapping function that compute the loop
body in parallel 5 . The output of the loop is then collected,
reconstructed by the driver 6 and stored into the cloud
storage 7 to be transmitted back to the local program 8 ,
which then continues the execution on the local machine.

A. Offloading to the cloud cluster
Our workflow relies on a flexible implementation of the

OpenMP accelerator model, presented in Figure 2. Such an
implementation was developed by Jacob et al. within the
OpenMP offloading library [22] (known as libomptarget) and
the LLVM compiler [23]. Their implementation relies on
runtime calls made by the host device for the execution of the
offloaded code on the target device. In the initial implementa-
tion, offloading was implemented only for typical devices like
general-purpose processors (x86 and PowerPC) and NVIDIA
GPUs (running CUDA code). In this paper, we extended
the LLVM compiler to generate code for Spark-based cloud
devices and the libomptarget library to allow the offloading
of data and code to such devices1, shown in gray in Figure
2. In order to ease the implementation of new accelerators,
Jacob et al. [22] decomposed their implementation in distinct
components:

1 Fat binary generated by LLVM – which contains host
and target codes. While host code (contained in the
main (...) function) and target codes (such as function
ppc_region(...)) are typically embedded in the same fat
binary using the ELF format, our cloud target requires an

1Our cloud offloading workflow is implemented within an open-source
toolset which is freely available at http://ompcloud.github.io

additional file to be generated: the Scala code describing
the Spark job (compiled to JAR binary). When submit-
ting the job to the cluster, the driver node runs the Scala
program and distributes the loop iteration among the
worker nodes. Then, the workers natively run (in C/C++)
the function describing the loop body (JNI_region(...))
through the Java Native Interface (JNI) so as to avoid
the translation of C/C++ code to Scala. Obviously, this
code had to be compiled to a binary format compatible
with the architecture of the cloud processors;

2 Target-agnostic offloading wrapper – which is responsi-
ble for the detection of the available devices, the creation
of devices’ data environments, the execution of the right
offloading function according to the device type. The
wrapper implements a set of user-level runtime routines
(such as omp_get_num_devices(...)) and compiler-
level runtime routines (such as _tgt_target(...)) which
allow the host code to be independent of the target
device type;

3 Target-specific offloading plug-ins – which performs the
direct interaction with the devices, according to their
architecture and provides services such as the initial-
ization and transmission of input and output data, and
the execution of offloaded computation. In our case, the
cloud-specific plugin is used to initialize the cluster, to
compress and transmit the offloaded data through the
cloud file storage (HDFS or S3), and to submit the Spark
jobs through SSH connection.

There are some major differences when using the cloud
to offload computation when compared to other traditional
target devices, such as GPUs. For instance, the host-target
communication overhead might be reduced by compressing
offloaded data, and transmitting them in parallel. Our cloud
plugin automatically creates a new thread for transmitting each
offloaded data (possibly after gzip compression if the data
size is larger than a predefined minimal compression size).
Additionally, the user can choose to print the log messages
of Spark to the standard output of the host computer to
check the current state of the computation. Another remarkable
difference is that cloud devices cannot be detected auto-
matically since they are not physically hosted at the local
computer. As a matter of fact, the user has to provide an
identification/authentication information (e.g. login) to allow
the connection of the current application to the cloud service
which will be used for offloading. Our cloud plugin reads at
runtime a configuration file 4 to properly set up the cloud
device and to avoid the need to recompile the binary (assuming
compatible instruction-sets). Besides the login information, the
configuration file also contains the address of the Spark driver
as well as the address of the cloud file storage.

To allow an easy portability over existing cloud services,
our cloud plugin was implemented as a modular infrastructure
where the communication with the cloud can be customized
for each existing cloud service by taking into account their
specificities (e.g. storage services, security mechanisms, etc.).



For now, our plugin supports computation offloading to Spark
clusters running within a private cloud, Amazon Elastic Com-
pute Cloud (EC2), or Microsoft Azure HDInsight. We also
support data offloading to HDFS, Amazon Simple Storage
Service (S3) and Microsoft Azure Storage. This approach can
be easily extended to support other commercial cloud services
like Cloudera, or Google Cloud. Moreover, during offloading
our library is also able to (on-the-fly) start and stop virtual
machines from the EC2 service. In other words, the EC2
instance can be started when offloading the code and stopped
after it ends its execution. As a result, the programmer can
automatically control the usage of the cloud infrastructure, thus
allowing him/her to pay for just the amount of computational
resources used.

B. Extending OpenMP for distributed data partitioning

One central issue in distributed parallel execution models
is to enable a data partitioning mechanism that assigns a
specific data block to the worker node containing the kernel
code that will use it. By doing so, programs can consid-
erably benefit from locality, thus reducing the overhead of
moving data around interconnecting networks. Nevertheless,
automatically data partitioning is a hard task which cannot
typically be achieved solely by the compiler or runtime. In
most applications the programmer knowledge is essential to
enable an efficient data allocation. Unfortunately, the OpenMP
standard does not have directives specifically designed for
data partitioning within offloaded regions. As a result, the
programming model proposed in this paper extends the use
of the OpenMP directive target data map so as to allow the
programmer to express the data distribution to the cloud Spark
nodes. No syntax modification was required in this directive;
it was only used in a way which is mentioned as undefined
behavior by the current OpenMP specification. To do that,
the programmer should indicate after the to/from specifier of
the map directive the first element of the partitioned data block
followed by colon and the last element of the corresponding
block.

1 #pragma omp target device(CLOUD)
2 #pragma omp map(to: A[:N*N], B[:N*N]) map(from:

C[:N*N])
3 #pragma omp parallel for
4 for(int i=0; i < N; ++i)
5 #pragma omp target data map(to: A[i*N:(i+1)*N])

map(from: C[i*N:(i+1)*N])
6 for (int j = 0; j < N; ++j)
7 C[i * N + j] = 0;
8 for (int k = 0; k < N; ++k)
9 C[i * N + j] += A[i * N + k] * B[k * N +

j];

Listing 2: Extending OpenMP data map directive to
enable dynamic data partitioning

Consider, for example, the code fragment in Listing 2
extracted from the matrix multiplication example in Listing 1.
It is well-known that matrix multiplication C = A⇥B implies
in multiplying the rows of A by the columns of B storing
the result as elements of C. Hence, in order to improve

locality the programmer can insert line 5 of Listing 2 to
specify the partitioning of the matrices during the iterations
of the parallel loop. For example, in line 5 of Listing 2 the
rows of matrix A are indexed using variable i2. By using
map(to:i*N:(i+1)*N) the programmer states that all el-
ements of row i of A range from index i*N to (i+1)*N and
should be allocated into the same Spark node. Please notice
that B is deliberately not partitioned because its partition
interval depends on the internal loop counter j (indexing
the column). In our implementation, the partitioning which
reduces the amount of data moved on the network is performed
by the Spark driver node, but Spark only knows the values
taken by the loop counter of the outer loop (i.e. the parallel
for). Partitioning B would require to coalesce the internal loop
into the external one which would increase the number of
iterations, thus reducing the granularity of the parallelization,
therefore increasing scheduling and communication overhead.
For this reason, each worker node will receive a full copy
of B to perform its part of the computation. In reality the
communication overhead will be limited by the efficiency of
BitTorrent protocol used by Spark to broadcast variables.

C. Matching Spark execution model
As said before and shown in Figure 2, Spark clusters

are composed by one driver node associated with a set of
worker nodes (or simply workers). The driver is in charge of
communication with the outside world (i.e. host computer),
resource allocation and task scheduling. The workers perform
computation by applying operations, mostly map and reduce,
in parallel on large datasets. In our programming model, given
that the loop has been annotated using a parallel for clause,
the programmer assumes that it is a DOALL loop. Thus, the
different iterations can be distributed and computed in parallel
among cloud cores without any restriction, as no loop-carried
dependence exists between iterations.

To achieve such a parallelism, Spark relies on a specific
data structure called Resilient Distributed Dataset (RDD) [16].
An RDD is basically a collection of data that is partitioned
among the workers which apply parallel operations to them.
In order to allow the parallel execution of a DOALL loop with
N iterations, we build an initial RDD such that:

RDDIN =
N 1[

i=0

{i, VIN (i)} (1)

VIN (i) = {VIN0(i), ..., VINK�1(i)} (2)

where i2{0, ..., N 1} are the values taken by the loop index
during loop execution and VIN (i) is the set of K input
variables (i.e. r-values) read during the execution of the loop
body at iteration i. For any iteration i, each input VINk(i) with
k2{0, ...,K 1} can be either a full variable or a portion of it
depending if the programmer has described the partitioning of
the variable as presented in Listing 2.

RDDIN is divided automatically by the driver in equal
parts and distributed among the workers w 2 {0, 1, ...,W 1}

2Matrices A, B and C in Listing 2 are represented in their linearized forms.



such that:

RDDIN (w) =

(w+1)⇤bN/Wc 1[

m=w⇤bN/Wc

{m,VIN (m)} (3)

A map operation (Eq. 4) is then applied to the RDD that
passes the values taken by the loop index and the input
variables through a function describing the loop body (Eq.
5) and returns a new RDDOUT such that:

RDDOUT = MAP (RDDIN , loopbody) (4)
VOUT (i) = loopbody(i, VIN (i)) (5)

VOUT (i) = {VOUT 0(i), ..., VOUTL�1(i)} (6)

RDDOUT =
N 1[

i=0

{i, VOUT (i)} (7)

where VOUT (i) (Eq. 6) is the set of L output variables (i.e.
l-values) produced at iteration i by the workers. In fact, each
call to the loopbody function produces a partial value of the
output variables VOUT since each iteration accesses a different
part of the output variables in DOALL loops. Similarly to the
input variables, each output VOUT l(i) with l2{0, ..., L 1} can
be either a full variable or a portion of it depending if the
programmer has described the partitioning of the variable. As
a result, the loopbody function will only partially compute
output variables at each call, even if we know they are not
partitioned. Thus, we need to reconstruct the complete outputs
VOUT from those partial output values VOUT (i) as expected
by the host computer such that:

VOUT l =

(
Reconstruct(RDDOUT , l)

REDUCE(RDDOUT , l, bitor)
(8)

V

0
OUT l

(u, v) = bitor(VOUT l(u), VOUT l(v)) (9)
VOUT = {VOUT 0 , ..., VOUTL�1} (10)

where V

0
OUT l

(u, v) is the partial output value obtained by
combining VOUT l(u) and VOUT l(v) (Eq. 9). If the loop
body has several outputs (Eq. 10), RDDOUT will simply be
composed of tuples which are reconstructed separately before
being written back in different binary files. Thus, we consider
the set of all partial values of each output variable VOUT l(i)
as arrays of bytes. If the variable was partitioned, the driver
allocates the full variable and writes each value at the right
index. If the programmer has not detailed the partitioning,
we simply apply a bitwise-or reduction (Eq. 8) to join them
together. Additionally, if one of the outputs has been defined
as a reduction variable by the OpenMP clause, Spark just
performs the reduction using the predefined function instead
of the bitwise-or.

To illustrate this process, let us consider the matrix mul-
tiplication C = A⇥B presented previously in Listing 1. As
shown in Figure 3, the Spark driver node gets the files 1
representing the input data from the cloud storage (HDFS or
S3), loads them as ByteArray objects. It then generates Rdd(I)
which contains the successive values taken by the loop index
i (0, .., 15 in our case), splits A according to the partitioning

A B C

Map

Driver Node
i

B

0
1
2
3

B

4
5
6
7

Reconstruct

C0
C1
C2
C3

C4
C5
C6
C7

B

8
9

10
11

C8
C9
C10
C11

Worker Node 3
B

12
13
14
15

C12
C13
C14
C15

Distribute

Broadcast

A B C Cloud Storage

JNI_
MatMul(i, A, B)

Worker Node 2

Worker Node 1

Worker Node 0

1

2

4

3

5

7

8

Map

JNI_
MatMul(i, A, B)

5

Map

JNI_
MatMul(i, A, B)

5

Map

JNI_
MatMul(i, A, B)

5 6

6

A4
A5
A6
A7

A8
A9
A10
A11

A0
A1
A2
A3

6

A12
A13
A14
A15

6

Fig. 3: Using map-reduce computational model to perform
matrix multiplication C = A⇥B in Spark cluster

bound defined by the user (in function of i), distributes them
equitably to the worker cores 4 while broadcasting B 2 to
all worker nodes. Notice that Spark automatically compresses
all data transmitted through the network and use the BitTor-
rent protocol for broadcasting efficiently. The driver orders
a map transformation that applies the MatMult function
corresponding to the loop body (through JNI) for each loop
iteration using partitions of A, and copies of B. The workers
decompress the input data and perform in parallel the mapping
tasks assigned to their cores 5 . As a result, they produce
an RDD containing sixteen versions of C which needs to be
collected so as to produce the final result for array C. To
achieve that the workers compress and send the values to the
driver 6 . Then, the driver starts by allocating variable C to
its full size, before sequentially writing at the right index the
values contained by each piece of the array C, until obtaining
its final format 7 . The driver finally writes out the final
values of C to a new file into the cloud storage 8 (line 20),
after which the local computer is able to read them back and
continue its execution.

In addition, our compiler automatically adjusts the iteration
number of the outer-loop according to the cluster size using
loop tiling to reduce JNI overhead, such as presented in
Algorithm 1 (with C the number of worker cores). Indeed,
since each iteration will require one call to JNI, the closer
the number of iterations is to the number of cores, the smaller
will be the overhead. The total number of cores C is passed as



Algorithm 1 Reducing overhead by tiling the loop to the
cluster size

1: // Original parallel for
2: for i = 0 to N 1 do
3: loopbody

4: end for

1: // Transformed for where C is the number of worker cores
2: for ii = 0 to N 1 by bN/Cc do
3: for i = ii to min(ii+ bN/Cc � 1, N 1) do
4: loopbody

5: end for
6: end for

an argument when Spark is calling the map functions to avoid
any recompilation when executing on different clusters. In case
some of the input/output variables are partitioned, the lower
and upper bounds of the partitions will also be readjusted
dynamically according to the tiling size, hence increasing their
granularity.

D. Application domain and model limitations
Before moving into the details of the application domain,

it is important to highlight that the goal of the programming
model proposed herein is to make the resources of the cloud
transparently available to the common non-expert programmer
who uses a regular laptop and wants to run large workloads. A
typical example is a user that locally collects a large amount of
data from a scientific experiment, an IoT sensor network or a
mobile device and wants to perform some heavy computation
on it. It is not a goal of this work to claim a programming
model that can deliver HPC type of speedups on a complex
specialized scientific application (e.g. ocean simulation): there
is already a huge amount of work and programming models
(e.g. MPI) that work well in this area [24].

Of course, this specific solution does not match well the
computation requirements of any kind of application. First,
the problem to be solved has to be sufficiently complex to
allow the application to take advantage of the large parallel
processing capabilities of the cloud when compared to the
overhead cost of the data offloading task. Nevertheless, one
might run his application directly from the driver node of
the Spark cluster, thus removing the overhead of host-target
communication. Second, applications should be described in
C/C++ and annotated using directives defined by the OpenMP
accelerator model. While this paper presents a matrix multi-
plication annotated with just one target clause, one target map
and one parallel for, our approach also supports more complex
OpenMP constructs such as those using several parallel for
loops within the same target region. This is implemented by
performing successive map-reduce transformations within the
Spark job. Moreover, similar techniques also allow one to
implement the offloading of sequential code kernels or nested
parallel loops.

Finally, our cloud device does not support the synchroniza-
tion constructs of the OpenMP model since Spark relies on a
distributed architecture. Thus, offloaded OpenMP regions that
use atomic, flush, barrier, critical, or master directives are

not supported. A full implementation of OpenMP on cloud
clusters would require a distributed shared memory mechanism
[25], [26] which has not yet been proved to be efficient and
is incompatible with the map-reduce model. Alternatively,
a more restricted programming model suited for distributed
nodes could be employed but we believe that the popularity
of OpenMP makes it a better choice.

IV. EXPERIMENTAL RESULTS

In our experiments, the local machine is a simple laptop
(Intel core i7 and 16GB of RAM) which interacts with an
AWS cluster through an Internet connection. Our experiments
intend to be a realistic test-case where the client computer
is far away from the cloud data-center. The cloud instances
were acquired and configured using a third-party script called
cgcloud3. This script allowed us to quickly instantiate a fully
operational and highly customizable Spark cluster within AWS
infrastructure. For now, the size of the cluster is predefined
by the user when running the script but the parallel loop
is tiled dynamically to use all instances with the minimal
overhead. Our experimental Spark cluster was composed of
1 driver node and 16 worker nodes, all of them running
Apache Spark 2.1.0 on top of Ubuntu 14.04. Each node of
the cluster is an EC2 instance of type c3.8xlarge which have
32 vCPU (executing on Intel Xeon E5-2680 v2) and 60GB
of RAM. Each worker is configured to run one Java Virtual
Machine (commonly called Spark executor) that manages all
32 vCPUs and a heap size of 40GB. Since each EC2 vCPU
corresponds to one hyper-threaded core according to Amazon
description (e.g. 1 dedicated CPU core corresponds 2 vCPUs),
we configured Spark to assign two vCPUs to each map and
reduce task we need to run (spark.task.cpus=2). Thus, the
following benchmark results are presented according to the
number of dedicated CPU cores used by all workers (from 8
to 256 cores which is configured thanks to spark.cores.max
and spark.default.parallelism parameters).

We used benchmarks from the Polyhedral Benchmark suite
[27] and the MgBench [28] suite which were previously
adapted for the OpenMP accelerator model. We selected for
our experiments the set of benchmarks which contains only
the supported OpenMP constructs and which could benefit
the most of cloud offloading: SYRK, SYR2K, COVAR, GEMM,
2MM and 3MM from Polybench; and Mat-mul and Collinear-
list from MgBench. All data used in the benchmarks consisted
of 32-bit floating point numbers (simple precision). The di-
mension of the datasets used by the benchmarks has been
scaled to benefit from the Spark distributed execution model.
As an example, most matrices used by the benchmarks have
been scaled to about 1GB. Moreover, in order to evaluate
the impact of the compression on performance, we have
deliberately executed the benchmarks using two types of input
data: sparse and dense matrices. Indeed, sparse matrices are
compressed faster with better compression rate.

3cgcloud is freely available at http://github.com/BD2KGenomics/cgcloud/



(a) SYRK (b) SYR2K (c) COVAR

(d) GEMM (e) 2MM (f) 3MM

(g) Mat-mul (h) Collinear-list

OmpThread

OmpCloud-computation

OmpCloud-spark

OmpCloud-full

Fig. 4: Average speedup of multicore over single core execution for cloud offloading, and for multi-threaded OpenMP as
reference.

Figure 4 presents the execution speedup obtained with the
benchmarks parallelized using OpenMP both with traditional
multi-threading and cloud offloading (noted OmpThread and
OmpCloud respectively). Cloud-based speedups were com-
puted for the whole offloading time noted OmpCloud-full in
the Figure, but also detailed for Spark job execution time
(without the host-target communication) noted OmpCloud-
spark, and for the computation time only (i.e. parallel exe-
cution of the mapping tasks) noted OmpCloud-computation.
Only speedups with 8 and 16 threads are presented for
OmpThread since the largest AWS EC2 instances of type
c3 has 16 cores. Comparing to the speedups obtained with
OmpThread on 8 and 16 cores, the speedup of OmpCloud
on 8 and 16 cores (i.e. one worker node) revealed small

execution time overheads: (a) just 1.8% when considering
only OmpCloud-computation which confirms the efficiency
of JNI to run native code kernels; (b) 8.8% when consid-
ering OmpCloud-spark which demonstrates the competitive
performance of the Spark execution model with respect to
multi-threading, even with a driver-worker infrastructure; and
(c) 13.6% when considering OmpCloud-full which shows the
limited cost of offloading data to the cloud even without
huge computational power. Globally, all speedups of Om-
pCloud tend to increase with the number of cores (up to
143x/97x/86x respectively with 256 cores for 3MM on Chart
4f). If we compare the result of OmpCloud-computation with
OmpCloud-spark (which includes Spark overhead like intra-
cluster communication and task scheduling), the speedups



continue to scale with the number of cores but with an
increasing overhead. This is the case of collinear-list (Chart
4h) which shows the smaller overheads varying from 0.1%
on 8 cores to 15% on 256 cores, or SYRK which shows the
larger ones varying from 17% to 69%. Interesting enough,
for all benchmarks, the host-target communications account
for a small share of the total overhead indicating that the
most relevant bottleneck comes in fact from one of the phases
internal to the cloud cluster, especially when the cluster size
increases.

The execution times of cloud offloading are presented in
Figure 5. They were measured when running the benchmarks
on both sparse and dense matrices to explore the impact
of the data type on the performance. Results show that: (a)
2 benchmarks are executed on 8 cores in between 10 and
25min; (b) 5 in between 30min to 1h; and (c) 1 in about
1h30. Although offloading to a larger cluster could probably
benefit from even longer execution times, we were limited by
the maximal size of the arrays supported by the Java Virtual
Machine. As shown in Figure 5, the distribution of the execu-
tion time of all benchmarks were broken into 3 parts: Host-
target communication including compression and transmission
overhead between the local computer and the cloud device,
Spark overhead including scheduling and communication
within the cluster, and computation time (i.e. the loop iterations
executed in parallel through JNI). Such decompositions show
that while the computation time decreases as the number of
cores increases, the overhead induced by cloud offloading
and Spark distributed execution stays constant. Moreover,
both overheads increase substantially when processing dense
matrices (in comparison with sparse ones) but the variation is
negligible for the computation time. This demonstrates that the
data type (and especially its compressibility) can have a huge
impact on performance because of the host-target and intra-
cluster communications. Additionally, results of collinear-list
presented in Chart 5h show a negligible overhead of the
communication and scheduling. In fact, collinear-list processes
a much smaller amount of data than the other benchmarks,
showing that cloud offloading scales well when the dataset
size stays small according to the computation (i.e. High
computation to communication ratio).

V. RELATED WORKS

Cloud offloading has been largely studied for mobile com-
puting in order to increase the computational capabilities of
cellphones [29]. Some frameworks have been proposed to
facilitate the development of mobile applications using cloud
resources [30], [31], [32]. Contrary to our approach which
relies on C/C++, they mostly rely on .NET or Java which are
the most popular environments for mobile device. One of the
key feature of those offloading framework, not treated in this
paper, is to dynamically determine if it worth offloading the
computation in term of communication overhead and energy
consumption [33]. Some of those frameworks even explore the
parallelization of the execution by providing multi-threading
support, or virtual machine duplication, but it requires a

considerable programming effort for non programming expert
and their result do not present very large speedups (up to 4x).
Additionally, older works used a similar offloading execution
model to accelerate spreadsheet processing in grid comput-
ing [34], [35].

Recent works have been proposed to port scientific applica-
tions from various domains to private and public clouds [36],
[37], [38], [39] by using a mixture of MPI and OpenMP; an ap-
proach that benefits from the communication efficiency of MPI
primitives and the easy parallelization of OpenMP annotations.
Experimental results usually show good performance, but they
also reveal the difficulties associated to MPI programming,
which require a level of expertise and platform knowledge that
is far beyond the knowledge of typical programmers. Such
drawbacks keep most programmers away from parallelizing
their applications, constraining the computational power of
the cloud cluster to a small set of expert programmers and
specialized applications [11].

Several other works have proposed to use directive-
based programming for programming computer clusters. First,
Nakao et al. proposed a new directive-based programming
language similar to OpenMP but specialized to HPC clus-
ters [40]. Their directives allow to micromanage parallelization
and communication within the distributed architecture of the
cluster; their custom compiler then translates clauses into MPI
calls. The OpenACC accelerator model is used to offload
computation to the GPU within each node. If on one hand,
their work demonstrates very good scalability, close to hand-
made MPI implementation, on the other hand, their extensions
do not follow the OpenMP standard, and require information
about the cluster architecture (e.g. the number of nodes) which
reduces its portability. Second, Jacob et al. introduced a new
methodology relying on the OpenMP accelerator model to run
applications on a cluster using the MPI infrastructure [22]: the
host code is executed by the master node and the offloaded
kernels by the worker nodes. Offloading to a set of worker
nodes is then achieved by defining the offloaded kernel inside
a parallel loop body. However, this requires various hand-
made modifications to applications, such as programmatically
splitting (and merging) the offloaded data and defining nested
DOALL loop to parallelize the execution on multicore worker
nodes. Finally, Wottrich et al. [41] proposed a set of new
OpenMP directives based on a Hadoop MapReduce framework
to extend the standard towards cloud computing. Similarly to
our work, they consider the offloading from local computer to
the cloud. Although their approach was supported by a set of
proofs-of-concept, their code transformation was performed by
hand and did not include any evaluation of the communication
overhead. Moreover, they defined a new syntax for mapping
variables to the cloud which is not compliant to the OpenMP
and C standards.

Unlike previous works, our approach aims at providing the
cloud as an additional accelerator available directly from the
computer of the programmer while respecting the OpenMP
standard. Next, we fully implemented our approach in existing
tools allowing us to experiment it on a set of benchmarks and



(a) SYRK (b) SYR2K (c) COVAR

(d) GEMM (e) 2MM (f) 3MM

(g) Mat-mul (h) Collinear-list

Computation time (sparse)

Computation time (dense)

Spark overhead (sparse)

Spark overhead (dense)

Host-Target communication (sparse)

Host-Target communication (dense)

Fig. 5: Average load distribution of cloud offloading according to the total number of worker cores and the data type.

to analyze the performance cost involved in cloud offloading.
Last, contrary to most of previous works which rely on MPI,
we rely on Spark a modern framework that has already been
extensively used in the industry and is supported by a very
dynamic community.

VI. CONCLUSION

In this paper, we addressed the problem of offloading
computation to cloud infrastructures so as to benefit from their
quasi-unlimited parallel processing capabilities. We choose
to base our methodology on a directive-based programming
paradigm because of its simplicity. In order to ease the
utilization of the cloud, we designed a runtime that offloads,
maps and schedules computation automatically. Our approach
allows portability over commercial cloud services and private

clouds. Indeed, by using a configuration file, our runtime is
able to easily switch from one infrastructure to another with-
out recompiling the binary (assuming compatible instruction-
sets). The communication with cloud storage service and the
execution within the Spark cluster is handled automatically
according to the given configuration. Experiments were per-
formed on a set of benchmarks described using the OpenMP
accelerator model. Our results show that, because of data
compression, the overhead induced by the offloading and the
distributed computation heavily depends on the type of data
processed by the application. Finally, promising performance
was demonstrated by good speedups, reaching up to 86x on
256 cloud cores for the 2MM benchmark using 1GB matrices.
In the future, we plan to implement data caching to limit the
cost of host-target communications.



ACKNOWLEDGMENTS

This work is supported by CCES CEPID/FAPESP under
process 2014/25694-8. The experiments are also supported by
the AWS Cloud Credits for Research program.

REFERENCES

[1] L. Lamport, “The parallel execution of do loops,” Commun. ACM,
vol. 17, no. 2, pp. 83–93, Feb. 1974.

[2] R. Cytron, “Doacross: Beyond vectorization for multiprocessors,” in
ICPP, 1986.

[3] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread
extraction with decoupled software pipelining,” in MICRO ’38, 2005.

[4] J. R. Allen, “Dependence analysis for subscripted variables and its appli-
cation to program transformations,” Ph.D. dissertation, Rice University,
1983.

[5] M. S. Lam and M. E. Wolf, “A data locality optimizing algorithm,”
SIGPLAN Not., vol. 39, no. 4, pp. 442–459, Apr. 2004.

[6] M. E. Wolf and M. S. Lam, “A loop transformation theory and an
algorithm to maximize parallelism,” IEEE Transactions on Parallel and
Distributed Systems, vol. 2, no. 4, pp. 452–471, Oct 1991.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on
Large Clusters,” in Proceedings of 6th Symposium on Operating Systems
Design and Implementation, 2004, pp. 137–149.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface standard,”
Parallel computing, vol. 22, no. 6, pp. 789–828, 1996.

[9] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[10] OpenMP, “OpenMP Application Program Interface,” Tech. Rep., 2013.
[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A Berkeley view of cloud computing,” University of California,
Berkeley, Tech. Rep., 2009.

[12] I. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. Ullah
Khan, “The rise of ”big data” on cloud computing: Review and open
research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, 2010, pp. 1–10.

[14] C. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun, “Map-reduce for machine learning on multicore,” Ad-
vances in neural information processing systems, vol. 19, p. 281, 2007.

[15] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly et al.,
“The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data,” Genome research, vol. 20, no. 9,
pp. 1297–1303, 2010.

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark : Cluster Computing with Working Sets,” in HotCloud’10
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing, 2010, p. 10.

[17] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J. Franklin,
P. Abbeel, and A. M. Bayen, “Scaling the mobile millennium system
in the cloud,” Proceedings of the 2nd ACM Symposium on Cloud
Computing - SOCC ’11, pp. 1–8, 2011.

[18] H. Zhang, J. Yan, and Y. Kou, Efficient Online Surveillance Video
Processing Based on Spark Framework. Cham: Springer International
Publishing, 2016, pp. 309–318.

[19] D. Teijeiro, X. C. Pardo, P. González, J. R. Banga, and R. Doallo,
Implementing Parallel Differential Evolution on Spark. Springer
International Publishing, 2016, pp. 75–90.

[20] M. S. Wiewiorka, A. Messina, A. Pacholewska, S. Maffioletti,
P. Gawrysiak, and M. J. Okoniewski, “SparkSeq: Fast, scalable and
cloud-ready tool for the interactive genomic data analysis with nu-
cleotide precision,” Bioinformatics, vol. 30, no. 18, pp. 2652–2653,
2014.

[21] OpenACC, “The OpenACC Application Programming Interface,” Tech.
Rep., 2013.

[22] A. C. Jacob, R. Nair, A. E. Eichenberger, S. F. Antao, C. Bertolli,
T. Chen, Z. Sura, K. O’Brien, and M. Wong, “Exploiting fine- and
coarse-grained parallelism using a directive based approach,” in Lecture
Notes in Computer Science, vol. 9342, 2015, pp. 30–41.

[23] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO), no. c, 2004, pp. 75–86.

[24] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996.

[25] J. P. Hoeflinger, “Extending OpenMP to Clusters,” Intel Corporation
white paper, 2006.

[26] Y. C. Hu, H. H. Lu, A. L. Cox, and W. .Zwaenepoel, “{OpenMP} for
networks of {SMP}s,” Journal of Parallel and Distributed Computing,
vol. 60, no. 12, pp. 1512–1530, 2000.

[27] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,”
http://web.cse.ohio-state.edu/~pouchet/software/polybench/, May 2015.

[28] F. Magno Quintao Pereira, D. do Couto Teixeira, K. An-
drade, and G. Souza, “Mgbench: Openacc benchmark suite,”
https://github.com/lashgar/ipmacc/tree/master/test-case/mgBench.

[29] K. Kumar, J. Liu, Y. H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[30] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, 2010, pp. 49–62.

[31] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” Proceedings - IEEE INFOCOM, pp. 945–953,
2012.

[32] M. Gordon, D. Jamshidi, and S. Mahlke, “COMET: code offload by
migrating execution transparently,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, 2012,
pp. 93–106.

[33] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,”
in Proceedings - IEEE INFOCOM, 2013, pp. 1285–1293.

[34] K. Nadiminti, Y. Chiu, N. Teoh, A. Luther, S. Venugopal, and R. Buyya,
“ExcelGrid: A .NET plug-in for outsourcing Excel spreadsheet workload
to enterprise and global grids,” in Proceedings of the 12th International
Conference on Advanced Computing and Communication, 2004.

[35] D. Abramson, J. Dongarra, E. Meek, P. Roe, and Z. Shi, “Simplified
grid computing through spreadsheets and NetSolve,” in Proceedings -
Seventh International Conference on High Performance Computing and
Grid in Asia Pacific Region, HPCAsia 2004, no. August, 2004, pp. 19–
24.

[36] M. Nikolić, M. Hajduković, D. D. Milašinović, D. Goleš, P. Marić, and
Ž. Živanov, “Hybrid MPI/OpenMP cloud parallelization of harmonic
coupled finite strip method applied on reinforced concrete prismatic shell
structure,” Advances in Engineering Software, vol. 84, pp. 55–67, 2015.

[37] M. Hajduković, D. D. Milašinović, D. Goleš, M. Nikolić, P. Marić,
Ž. Živanov, and P. S. Rakić, “Cloud Computing based MPI/OpenMP
Parallelization of the Harmonic Coupled Finite Strip Method applied to
Large Displacement Stability Analysis of Prismatic Shell Structures,”
Proceedings of the Third International Conference on Parallel, Dis-
tributed, Grid and Cloud Computing for Engineering, pp. 1–21, 2013.

[38] V. Nikl and J. Jaros, “Parallelisation of the 3D Fast Fourier Transform
Using the Hybrid OpenMP/MPI Decomposition,” in Mathematical and
Engineering Methods in Computer Science, 2014, vol. 8934, pp. 100–
112.

[39] R. D. Haynes and B. W. Ong, “MPI-OpenMP Algorithms for the
Parallel Space-Time Solution of Time Dependent PDEs,” in Domain
Decomposition Methods in Science and Engineering XXI, 2014, pp. 179–
187.

[40] M. Nakao, H. Murai, T. Shimosaka, A. Tabuchi, T. Hanawa, Y. Kodama,
T. Boku, and M. Sato, “XcalableACC: Extension of XcalableMP PGAS
language using OpenACC for accelerator clusters,” Proceedings of
WACCPD 2014: 1st Workshop on Accelerator Programming Using
Directives, pp. 27–36, 2015.

[41] R. Wottrich, R. Azevedo, and G. Araujo, “Cloud-based OpenMP Paral-
lelization Using a MapReduce Runtime,” in Computer Architecture and
High Performance Computing (SBAC-PAD), 2014 IEEE 26th Interna-
tional Symposium on, 2014, pp. 334–341.


