
Parallel Space-Time Kernel Density Estimation

Erik Saule†, Dinesh Panchananam†, Alexander Hohl‡, Wenwu Tang‡, Eric Delmelle‡
† Dept. of Computer Science, ‡Dept. of Geography and Earth Sciences

UNC Charlotte
Email: {esaule,dpanchan,ahohl,wtang4,eric.delmelle}@uncc.edu

August 24, 2021

Abstract

The exponential growth of available data has increased the need for interactive exploratory analysis. Dataset can
no longer be understood through manual crawling and simple statistics. In Geographical Information Systems (GIS),
the dataset is often composed of events localized in space and time; and visualizing such a dataset involves building
a map of where the events occurred.

We focus in this paper on events that are localized among three dimensions (latitude, longitude, and time), and
on computing the first step of the visualization pipeline, space-time kernel density estimation (STKDE), which is
most computationally expensive. Starting from a gold standard implementation, we show how algorithm design and
engineering, parallel decomposition, and scheduling can be applied to bring near real-time computing to space-time
kernel density estimation. We validate our techniques on real world datasets extracted from infectious disease, social
media, and ornithology.

1 Introduction
The rapid propagation of infectious diseases (e.g. zika, Ebola, H1N1, dengue fever) is conducive to serious, epi-
demic outbreaks, posing a threat to vulnerable populations. Such diseases have complex transmission cycles, and
effective public health responses require the ability to monitor outbreaks in a timely manner [EE11]. Space-time
statistics facilitate the discovery of disease dynamics including rate of spread, seasonal cyclic patterns, direction, in-
tensity (i.e. clusters), and risk of diffusion to new regions. However, obtaining accurate results from space-time
statistics is computationally very demanding, which is problematic when public health interventions are promptly
needed. The issues of computational efforts are exacerbated with spatiotemporal datasets of increasing size, diver-
sity and availability [GWM14]. High-performance computing reduces the effort required to identify these patterns,
however heterogeneity in the data must be accounted for [HDTC16].

Epidemiology is only one of the application domains where it is important to understand how events occurring at
different locations and different times form clusters. Political analysis, social media analysis, or the study of animal
migration also require the understanding of spatial and temporal locality of events. The massive amount of data we
see nowadays is often analyzed using complex models. But before these can be constructed, data scientists need to
interactively visualize and explore the data to understand its structure.

In this paper, we present the space-time kernel density estimation application which essentially builds a 3D density
map of events located in space and time. This problem is computationally expensive using existing algorithms. That is
why we developed better sequential algorithms for this problem that reduced the complexity by orders of magnitude.
And to bring the runtime in the realm of near real-time, we designed parallel strategies for shared memory machines.

Section 2 presents the STKDE application along with a reference implementation that uses a voxel-based algorithm
VB to compute STKDE. In Section 3, we investigate the sequential problem and develop a point-based algorithm PB
that significantly reduce the complexity compared to VB. We also identify invariants linked to the structure of the
kernel density estimate function that allows to reduce the computational cost by an additional factor and build the

1

ar
X

iv
:1

70
5.

09
36

6v
1

 [
cs

.D
C

]
 2

5
M

ay
 2

01
7

PB-SYM algorithm based on that observation. We develop two parallelization strategies (PB-SYM-DR and PB-SYM-
DD) in Section 4 that are designed to make the computation pleasingly parallel. However both strategies are not
work-efficient and can cause significant work overhead in some cases. That is why we introduce PB-SYM-PD in
Section 5 that provide a work-efficient decomposition of the points. However that algorithm has internal dependencies
which can induce a long critical path and cause load imbalance; and we develop PB-SYM-PD-SCHED to leverage
alternative ordering of the work to reduce the critical path. To reduce the critical path further, we propose the PB-
SYM-PD-REP algorithm which introduces some work overhead only where is needed to achieve a short critical path.
Section 6 presents experimental results on 4 different datasets and 21 instances extracted from these datasets. The
experiments highlights that the sequential strategies are efficient. The parallel strategies have their pros and cons and
different strategies appear to be best in different scenarios. Section 7 discusses the applicability of related problems
and techniques.

2 Space-Time Kernel Density Estimation

2.1 Description
Space-time kernel density (STKDE) is used for identifying spatiotemporal patterns in datasets. It is a temporal ex-
tension of the traditional 2D kernel density estimation [Sil86] which generates density surface (“heatmap”) from a set
of n points located in a geographic space. The resulting density estimates are visualized within the space-time cube
framework using two spatial (x, y) and a temporal dimension (t) [NY10]. STKDE creates a discretized 3D volume
where each voxel (3D equivalent of a pixel) is assigned a density estimate based on the surrounding points. The
space-time density is estimated using (following the notations of [HDTC16]):

f̂(x, y, t) =
1

nh2sht

∑
i|di<hs,ti<ht

ks(
x− xi
hs

,
y − yi
hs

)kt(
t− ti
ht

)

Density f̂(x, y, t) of each voxel is determined by number and distance of events (points) (xi, yi, ti) within its
vicinity, which is conceptualized by a cylinder. The spatial bandwidth hs forms a circle which, due to the orthogonal
relationship between space and time, is extended to a cylinder by temporal bandwidth ht. For every event inside the
cylinder, the spatial (di) and temporal (ti) distances are smaller than hs and ht. Therefore, the event receives a weight
based on the kernel functions ks and kt (distance decay):

ks(u, v) =
π

2
(1− u)2(1− v)2

kt(w) =
3

4
(1− w)2

Figure 1 illustrates how varying the bandwidths used in STKDE helps focusing the graphical visualization of
Dengue fever cases in Cali, Colombia [DDC+14]. Figure 2 shows the impact of a single point on the neighboring
space.

Computationally, the domain of size gx, gy , gt is discretized in voxels using a spatial resolution sres and a temporal
resolution tres. Therefore, the domain is represented by a grid of size Gx =

⌈
gx
sres

⌉
, Gy =

⌈ gy
sres

⌉
, Gt =

⌈
gt

tres

⌉
.

Each point causes a density increase in the voxels that are within a cylinder centered on the point, of radius equal to
the spatial bandwidth in voxels Hs =

⌈
hs

sres

⌉
, and of half height equal to the temporal bandwidth Ht =

⌈
ht

tres

⌉
.

All the notations are summarized in Table 1. As a convention all uppercase notations denote quantities in voxels
and all lowercase notations denote quantities in domain space.

2.2 Gold Standard Implementation
The gold standard implementation (for instance from [HDTC16]) follows the exact definition of STKDE as it is given
above. It is a voxel-based algorithm we call VB. For each voxel, VB finds the points within the temporal and spatial
bandwidths and calculates the contribution to the density of this voxel. The pseudo code is given in Algorithm 1.

2

(a) hs = 2500m, ht = 14days (b) hs = 500m, ht = 7days

Figure 1: Visualization of Dengue fever cases in Cali, Colombia in 2010 and 2011 for different spatial bandwidth and
temporal bandwidth.

Figure 2: The computation of STKDE happens in a domain space of size gx, gy, gt. Each point impacts the neighboring
space at a distance hs in space and ht in time; forming a cylinder of diameter 2hs and of height 2ht.

n Number of points
s = (x, y, t) A voxel and sampling coordinate
(xi, yi, ti) Coordinate of point i
hs, ht Spatial and temporal bandwidth
gx, gy, gt Real size of the domain (in meters)
sres, tres Resolution (in meters)
s = (X,Y, T) A voxel in voxel space
(Xi, Yi, Ti) Voxel of point i
Gx, Gy, Gt Size of the domain (in voxels)
Hs, Ht Bandwidth (in voxels)

Table 1: Notations

3

Algorithm 1 VB
for all voxels s = (x, y, t) do

sum = 0
for all points i at xi, yi, ti do

if
√

(xi − x)2 + (yi − y)2 < hs and |ti − t| ≤ ht then
sum+ = ks(

x−xi

hs
, y−yi

hs
)kt(

t−ti
ht

)

stkde[X][Y][T] = sum
nh2

sht

The algorithm performs θ(GxGyGtn) distance tests and computes θ(nH2
sHt) densities. Since Hs is smaller

than Gx and Gy and since Ht is smaller than Gt, the complexity of the algorithm is θ(GxGyGtn) and it requires
θ(GxGyGt) memory.

3 Algorithm Design and Engineering

3.1 Point-based Algorithm
The voxel-based algorithm suffers from a massive cost of computing distances. The gold implementation reduces the
number of distance computation by decomposing the domain, but that still incurs many distance calculations. Most
of these calculations are unnecessary since we know where each point will radiate density. The point-based algorithm
PB, given in Algorithm 2, leverages that property.

Algorithm 2 PB
for all voxels s = (x, y, t) do

stkde[X][Y][T] = 0

for each points i at xi, yi, ti do
for Xi −Hs ≤ X ≤ Xi +Hs do

for Yi −Hs ≤ Y ≤ Yi +Hs do
for Ti − Ts ≤ T ≤ Ti +Hs do

if
√

(xi − x)2 + (yi − y)2 < hs and |ti − t| ≤ ht then

stkde[X][Y][T]+ =
ks(

x−xi
hs

,
y−yi
hs

)kt(
t−ti
ht

)

nh2
sht

The algorithm PB incurs mostly two costs. Initializing the memory which costs Θ(GxGyGt) and computing the
impact of each point Θ(nH2

sHt). Note that it is possible that either of these two terms is significantly larger than the
other. Therefore the complexity of the algorithm is Θ(GxGyGt + nH2

sHt).

3.2 Exploiting Symmetries
When the bandwidth is large, computing the density contribution of each point each for voxel in the bandwidth is the
most expensive operation. Each of these n(2Hs)

22Ht calculations costs approximately 40 floating point operations.
(The exact cost is difficult to estimate since there are floating point additions, multiplications, divisions, and square
root operations).

One can remark that the calculation is mostly redundant since for one particular point, its contribution to the
neighboring voxels can be decomposed in two components. Ks(x, y) only depends on the spatial coordinate of the
voxel with respect to the point and does not depend on its temporal coordinate. And Kt(t) only depends on the
temporal coordinate and not on the spatial coordinates. See Figure 3 for a graphical depiction.

Therefore, we write an algorithm to leverage these symmetries in the problem. We present three variants, the
PB-DISK variant ensures that the invariant on the spatial domain is only computed once. The PB-BAR variant ensures
that the invariant on the temporal domain is only computed once. The PB-SYM variant computes independently the

4

Figure 3: The contribution to the density estimate of each voxel of a cylinder can be decomposed in two terms, one
temporally invariant Ks(x, y) and one spatially invariant Kt(t).

5

spatial invariant and the temporal invariant and then adds the density caused by the point by taking the product of the
two invariants. (See pseudocode in Algorithm 3.) Notice that leveraging the symmetries in the calculation does not
change the complexity (PB-SYM still has a complexity of Θ(GxGyGt + nH2

sHt)) but reduces the number of flops.

Algorithm 3 PB-SYM
for all voxels s = (x, y, t) do

stkde[X][Y][T] = 0

for each points i at xi, yi, ti do
for Xi −Hs ≤ X ≤ Xi +Hs do

for Yi −Hs ≤ Y ≤ Yi +Hs do
if
√

(xi − x)2 + (yi − y)2 < hs then

Ks[X][Y] =
ks(

x−xi
hs

,
y−yi
hs

)

nh2
sht

else
Ks[X][Y] = 0

for Ti − Ts ≤ T ≤ Ti +Hs do
if |ti − t| ≤ ht then

Kt[T] = kt(
t−ti
ht

)
else

Kt[T] = 0

for Xi −Hs ≤ X ≤ Xi +Hs do
for Yi −Hs ≤ Y ≤ Yi +Hs do

for Ti − Ts ≤ T ≤ Ti +Hs do
stkde[X][Y][T]+ = Ks[X][Y]Kt[T]

Notice that this exploitation of symmetries is not possible in a voxel-based algorithm.

4 Domain-based parallelism

4.1 Domain Replication
The simplest way to parallelize this kind of computation is to split the points equally among the P different computa-
tional units. Though, if two close-by points are computed simultaneously, the cylinders of density around them might
intersect and there is a race condition.

The PB-SYM-DR algorithm solves the data race issue by having each of the P computational unit aggregate the
result on a local copy of the domain. Once all the points have been processed, the P copies need to be summed. The
pseudo code of PB-SYM-DR is given in Algorithm 4.

This algorithm has a memory requirement of Θ(PGxGyGt) and a parallel amount of work of Θ(PGxGyGt +
nH2

sHt). Fortunately, the increase in work enables the computation to be pleasingly parallel. (There are actually in
three pleasingly parallel phases: initializing the memory, processing the points, and reducing the partial results.)

4.2 Domain Decomposition
Another strategy to avoid the data race is to compute voxel intensity independently for different subdomains. We call
this method PB-SYM-DD (Algorithm 5). It splits the domain in AxBxC subdomains and each subdomain is associated
the points which cylinder intersects with a voxel of the subdomain. Then the algorithm proceeds with handling each
subdomain independently by only considering the impact of the data-point on voxels within the subdomain.

The main problem with Domain Decomposition is that it requires some points to be replicated across multiple
subdomain which incurs additional work. Indeed, if a point is replicated in multiple subdomains, its cylinder is
split across multiple subdomains as well. Assuming the split is temporal, then using PB-SYM in each subdomain

6

Algorithm 4 PB-SYM-DR
for all processor p ≤ P in parallel do

for all voxels s = (x, y, t) do
stkdel[p][X][Y][T] = 0

for each points i at xi, yi, ti distributed among the P processors do
Processor p processes i using PB-SYM and aggregate it in stkdel[p]

for all voxels s = (x, y, t) in parallel do
stkde[X][Y][T] = 0
for all processor p ≤ P do

stkde[X][Y][T]+ = stkdel[p][X][Y][T]

Algorithm 5 PB-SYM-DD
for all points i = (xi, yi, ti) do

for each subdomain (a, b, c) do
if (X,Y, T)± (Hs, Hs, HT) intersects

(
⌊
aGx

A

⌋
:
⌈
(a+1)Gx

A

⌉
,
⌊
bGy

B

⌋
:
⌈
(b+1)Gy

B

⌉
,
⌊
cGt

C

⌋
:
⌈
(c+1)Gt

C

⌉
) then

localpoints[a][b][c].add(xi, yi, ti)

for each subdomain (a, b, c) in parallel do
Process subdomain (a, b, c) using PB-SYM

requires computing part of the temporal invariant, the entire spatial invariant, and part of the cylinder. Therefore both
subdomains need to compute the entire spatial invariant. See Figure 4 for a graphical depiction of this phenomenon.

If the algorithms keeps the number of subdomains small such that each point is replicated less than a constant
number of times, then the work expressed in Big-Oh notation does not change. (This can be achieved by having
subdomains larger than Hs × Hs × Ht.) However, the practical amount of work can increase by a non-negligable
factor.

Another issue with Domain Decomposition is load imbalance. The points are unlikely to be equally distributed in
the domain space, but more likely clustered around some locations. The subdomain containing a cluster will have a
significantly higher work than other subdomains. And this work is not executed in parallel. One could decompose the
domain more, but replicated point will incur an even higher overhead which may end up nullifying the gain in load
balance.

5 Point-based parallelism

5.1 Point Decomposition
Both of the previous strategies increase the amount of work significantly. We want to achieve parallelism without
cutting a cylinder and without requiring each thread to have its own memory space. To achieve that goal, we propose
the PB-SYM-PD algorithm that decomposes the points in sets that can be safely performed simultaneously.

As long as two points are separated by 2hs in space dimension or by 2ht in time, the cylinders induced by the two
points will not overlap. PB-SYM-PD decomposes the points in A × B × C subdomain of identical size. As long as
these subdomains are larger than 2hs in a spatial dimension and 2ht in the temporal dimension, the points in domain
(x, y, z) can be done concurently with the points in (x+ 2, y, z). See Figure 5 for a graphical depiction.

We implemented the first version of this algorithm that organizes the subdomain in 8 sets where the first set is
composed of the subdomains (2i, 2j, 2k), the second of all the subdomains (2i+ 1, 2j, 2k), the third of all the subdo-
mains (2i, 2j + 1, 2k), etc.. The algorithm processes the sets the one after the other by doing each subdomain within
a set in parallel. Two such sets are depicted in Figure 5. In practice, this is implemented using 8 OpenMP parallel-for
constructs.

7

Figure 4: When a cylinder is split among two subdomains, PB-SYM-DD causes an overhead because one of the
invariant needs to be recomputed. Here each subdomains compute part of the temporal invariant Ks, but both need to
compute the spatial invariant Kt.

Figure 5: Provided the subdomains are larger than twice the bandwidth, the points contained in each blue boxes can
be performed simultaneously.

8

Algorithm 6 PB-SYM-PD
for all points i = (xi, yi, ti) do

localpoints[
⌊
AX
Gx

⌋
][
⌊
BY
Gy

⌋
][
⌊
CT
Gt

⌋
].add(xi, yi, ti)

for abase ∈ {0; 1} do
for bbase ∈ {0; 1} do

for cbase ∈ {0; 1} do
Do the work of the next three loops in parallel
for a = abase; a ≤ A; a+ = 2 do

for b = bbase; b ≤ B; b+ = 2 do
for c = cbase; c ≤ C; c+ = 2 do

Process points in localpoints[a][b][c] using PB-SYM

A B C D
E F G H
I J K L
M N O P
Q R S T

A B C D

E F G H

I J K L

M N O P

Q R S T
Figure 6: Dependency structure implied by a coloring of the subdomain. (Shown for a 2D decomposition for simplic-
ity.)

5.2 Coloring and Scheduling
Note that such an implementation overconstrains the execution of the algorithm. Indeed, despite they are not in the
same set, subdomain (1, 0, 0) and (64, 64, 64) can be computed at the same time. The real constraint is that the points
contained in a subdomain can be processed safely as long as none of the point contained in a neighboring subdomain
is being processed. Using the OpenMP tasking construct with dependency introduced in OpenMP 4.0 [Boa13], one
can precisely express this constraint, which is a 27-point stencil constraint.

Formally speaking, this problem is a combination of multiple very classical graphs and scheduling problem. Mod-
eling the subdomains as a 27-point stencil graph, identifying sets of subdomains to perform in parallel is coloring the
vertices of the graph so that no two neighboring vertices share the same color. It differs from classical graph coloring
problems (surveyed in [GMP05]) in that the objective is not to minimize the number of colors or to balance the number
of vertices of each color but to minimize the execution time of the implied schedule.

The implied schedule is actually a scheduling of a graph of dependency which is extracted from the coloring. Each
edge of the stencil graph is oriented from the vertex of the lowest color to the vertex with the highest color. Each vertex
is associated with a processing time proportional to the number of points inside the sub-domain the vertex represents
and the neighboring subdomains. This construction is represented in Figure 6.

The OpenMP scheduler is not explicit in which order tasks that are available are performed. Though it is reasonable
to assume that the tasks will be scheduled using a greedy algorithm. Therefore, the classic guarantee from Graham’s
List Scheduling [Gra69] is valid:

TP ≤
T1 − T∞

P
+ T∞,

where T1 is the total amount of work to perform and T∞ is the length of the longest chain in the dependency graph.

9

We propose to reduce the critical path by using a load-aware coloring of the subdomains. We use a greedy coloring
algorithm which considers the subdomains in a particular order and for each subdomain will color it with the smallest
color that does not conflict with the already colored neighbors. Such greedy coloring algorithm are commonly used
in parallel computing applications [GMP05, BBÇ+05, DBDR16]. However, we will use an ordering that color the
vertices in non-increasing order of the number of points contained in the subdomain. While this algorithm is a heuristic,
it is likely to obtain a coloring that minimizes the critical path1. We call this algorithm to compute STKDE: PB-SYM-
PD-SCHED.

To decrease the critical path further, we propose an other algorithm PB-SYM-PD-REP which replicates the subdo-
mains that are on the critical path (and its neighbors) of the graph so that the points of a subdomain can be performed
in parallel. As long as the critical path is longer than n

2P , the tasks on the path are replicated an additional time and
the critical path is recomputed. Replication of subdomain causes to have to initialize additional subdomains and to
reduce them which increases the work in a similar way PB-SYM-DR. However, the replication should be limited to a
few chains in the graph and therefore should limit the overhead. Note that this problem is similar to scheduling a DAG
of moldable tasks [LTW02, Hun13].

6 Experiments

6.1 Experimental Setting
Execution environment The machine used to perform the experiments is composed of two Intel Xeon E5-2667
v3 processors for a total of 16 cores clocked at 3.2Ghz. Despite each core is capable of hosting 2 hyperthreads,
hyperthreading was disabled. The machine is equipped with 128GB of DDR4 clocked at 2.133 Ghz. The node uses
RHEL 7.2 and Linux 3.10. All codes are written in C++ and are compiled using GCC 5.3, which implements OpenMP
4.0, with optimization flags -O3 -march=native -fopenmp -DNDEBUG. All reported execution times exclude
all IOs.

Dataset Four datasets are used in our experiments. Their key attributes are summarized in Table 2. Out first dataset,
Dengue, is of epidemiological nature and consists of the space-time locations of dengue fever cases reported to the
Sistema de Vigilancia en Salud Pública for the city of Cali, Colombia during 2010 and 2011. The system is updated
on a daily basis with records of individuals that have been diagnosed with dengue fever, including patient address
and the date of diagnosis. Addresses are standardized to a common address format, and spelling and other syntactical
errors are manually corrected [DCRV13]; they are then geocoded and masked to the nearest street intersection level to
maintain privacy [KCS04]. In 2010, 9606 were successfully geocoded (11,760 reported cases, or 81.7%), whereas in
2011, 1562 cases were successfully geocoded (1822 reported cases, or 85.7%).

The PollenUS dataset is composed of 588K tweets of US users from February 2016 to April 2016 related to Pollen
(i.e., that mention keywords such as “pollen” and “allergy”). Tweets that did not contain a precise localization were
approximated by picking a random location in the approximated region provided by Gnip2. Tweets are mostly located
in the contiguous continental US. Therefore, this is the region we modeled with a spatial resolution ranging from .2◦

to 1◦ and a temporal resolution of 1 day.
The Flu dataset was obtained from the Animal Surveillance database of the Influenza Research Database3. The

dataset contains observations of birds tested positive for carrying any strain the avian flu from 2001 to 2016. The
birds were observed all over the world and the modeled region spans as West as Alaska and East as Japan, as South
as the southern shore of Australia and as North as the Northern shore of Russia. The domain is modeled with spatial
resolution from .2◦ to 1◦ and a temporal resolution of 1 day.

The eBird4 dataset is a collection of worldwide rare bird spotting obtained from a crowdsourcing effort managed
by Cornell’s Lab or Ornithology [CLoO16]. Despite the service was launched in 2002, the database contains many

1The complexity of this problem is currently unknown to the authors. The general case of an arbitrary graph is NP-Hard by reduction to graph
coloring. But the case of a 1D stencil is clearly polynomial.

2http://www.gnip.com/
3https://www.fludb.org/
4http://ebird.org

10

http://www.gnip.com/
https://www.fludb.org/
http://ebird.org

Instance n Gx x Gy x Gt Size Hs Ht

Dengue Lr-Lb 11056 148x194x728 79MB 3 1
Dengue Lr-Hb 11056 148x194x728 79MB 25 1
Dengue Hr-Lb 11056 294x386x728 315MB 2 1
Dengue Hr-Hb 11056 294x386x728 315MB 50 1
Dengue Hr-VHb 11056 294x386x728 315MB 50 14
PollenUS Lr-Lb 588189 131x61x84 2MB 2 3
PollenUS Hr-Lb 588189 651x301x84 62MB 10 3
PollenUS Hr-Mb 588189 651x301x84 62MB 25 7
PollenUS Hr-Hb 588189 651x301x84 62MB 50 14
PollenUS VHr-Lb 588189 6501x3001x84 6252MB 100 3
PollenUS VHr-VLb 588189 6501x3001x84 6252MB 50 3
Flu Lr-Lb 31478 117x308x851 117MB 1 1
Flu Lr-Hb 31478 117x308x851 117MB 2 3
Flu Mr-Lb 31478 233x615x1985 1085MB 2 3
Flu Mr-Hb 31478 233x615x1985 1085MB 4 7
Flu Hr-Lb 31478 581x1536x5951 20260MB 5 7
Flu Hr-Hb 31478 581x1536x5951 20260MB 10 21
eBird Lr-Lb 291990435 357x721x2435 2391MB 2 3
eBird Lr-Hb 291990435 357x721x2435 2391MB 6 5
eBird Hr-Lb 291990435 1781x3601x2435 59570MB 10 3
eBird Hr-Hb 291990435 1781x3601x2435 59570MB 30 5

Table 2: Properties of the datasets. The domain is expressed in voxels and in MB. Bandwidth are expressed in voxels.

older entries of birds that are known to have been observed at the time. For our experiment, we use the last 20 years
of bird spotting and model the entire world with a temporal resolution of 3 days, and a spatial resolution of either .1◦

or .5◦.
For all datasets, we created multiple instances of the problem coded Lr, Mr, Hr for low, medium, and high resolu-

tion and Lb, Hb, VHb for low, high and very high bandwidth. See details in Table 2.

6.2 Algorithm design
Table 3 presents the runtime of the point-based algorithms presented in Section 3. The runtime are given in seconds.
As expected for each dataset, the runtime increases with resolution and bandwidth. Exploiting the disk invariant with
PB-DISK provides a large reduction in the runtime, even more so when the temporal bandwidth is high. PB-BAR
provides a more modest time reduction.

PB-SYM combines the reductions of both PB-BAR and PB-DISK and achieves the best performance in most
cases. PB-SYM provides improvements up to a factor of 6.969 on the PollenUS Hr-Hb case. The cases where PB-
SYM provides little improvement are explained either by the instance having a low bandwidth, and therefore there is
little redundant computation to take advantange of, or by the fact that the runtime is dominated by initialization cost.
The breakdown of the runtime of PB-SYM is given in Figure 7 and shows that PB-SYM is composed of two phases,

11

Time (in seconds) speedup
Instance VB VB-DEC PB PB-DISK PB-BAR PB-SYM PB-SYM
Dengue Lr-Lb 219.163 2.283 0.040 0.029 0.035 0.028 1.429
Dengue Lr-Hb 220.591 13.878 1.298 0.564 1.152 0.499 2.601
Dengue Hr-Lb 866.445 9.522 0.089 0.082 0.085 0.084 1.060
Dengue Hr-Hb 871.774 55.206 5.169 2.272 4.563 2.074 2.492
Dengue Hr-VHb 1056.172 404.845 51.885 11.478 42.994 7.431 6.982
PollenUS Lr-Lb 518.859 7.639 1.106 0.347 0.922 0.256 4.320
PollenUS Hr-Lb 12721.001 189.337 23.539 7.700 18.527 4.708 5.000
PollenUS Hr-Mb 17179.482 3126.947 357.743 86.129 295.791 57.528 6.219
PollenUS Hr-Hb 2666.104 583.175 2212.626 382.566 6.969
PollenUS VHr-Lb 2428.126 1004.174 1949.988 759.722 3.196
PollenUS VHr-VLb 603.789 240.236 488.388 179.834 3.357
Flu Lr-Lb 926.360 3.691 0.035 0.032 0.034 0.032 1.094
Flu Lr-Hb 966.328 3.797 0.081 0.046 0.070 0.042 1.929
Flu Mr-Lb 8591.165 30.355 0.305 0.278 0.298 0.277 1.101
Flu Mr-Hb 8957.175 32.018 0.714 0.384 0.608 0.323 2.211
Flu Hr-Lb 536.091 5.702 5.089 5.454 5.059 1.127
Flu Hr-Hb 591.955 12.795 6.822 10.992 7.072 1.809
eBird Lr-Lb 396.811 147.951 322.580 125.248 3.168
eBird Lr-Hb 6969.187 1897.051 5611.158 1067.395 6.529
eBird Hr-Lb 8373.273 3226.016 6470.764 2229.460 3.756
eBird Hr-Hb 34577.745

Table 3: Runtime of different algorithm. The speedup of PB-SYM over PB is given.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

D
e
n
g
u
e
_L

r-
Lb

D
e
n
g
u
e
_L

r-
H

b

D
e
n
g
u
e
_H

r-
Lb

D
e
n
g
u
e
_H

r-
H

b

D
e
n
g
u
e
_H

r-
V

H
b

P
o
lle

n
U

S
_L

r-
Lb

P
o
lle

n
U

S
_H

r-
Lb

P
o
lle

n
U

S
_H

r-
M

b

P
o
lle

n
U

S
_H

r-
H

b

P
o
lle

n
U

S
_V

H
r-

Lb

P
o
lle

n
U

S
_V

H
r-

V
Lb

Fl
u
_L

r-
Lb

Fl
u
_L

r-
H

b

Fl
u
_M

r-
Lb

Fl
u
_M

r-
H

b

Fl
u
_H

r-
Lb

Fl
u
_H

r-
H

b

e
B

ir
d
_L

r-
Lb

e
B

ir
d
_L

r-
H

b

e
B

ir
d
_H

r-
Lb

e
B

ir
d
_H

r-
H

b

Initialization
Compute

Figure 7: Breakdown of the runtime of PB-SYM. Some instances are mostly Initialization.

initializing the memory to store the density estimation of the voxels, and computing the density cylinder surrounding
the points. PB-SYM reduces the computation cost but initializes the memory in the same way as PB. Initialization is
a predominant runtime cost in the Flu dataset since there were only 31K occurence of confirmed avian flu recorded in
the last 15 years but they span most of the earth.

Comparing to the gold implementation would not be fair because it is in a different programming language. Though
we implemented the VB algorithm, and also a variant, VB-DEC, that partitions the points in blocks of size equal to
the bandwidth to only compute distances between voxels and points that have a chance to have an impact on it. The
results are given in Table 3 and show that even VB-DEC is usually at least an order of magnitude larger than PB and
typically two orders of magnitude larger than PB-SYM.

6.3 Domain-based parallelism
PB-SYM-DR The performance of the PB-SYM-DR algorithm is given in Figure 8. Because it replicates the domain
space, PB-SYM-DR was not able to complete the calculations for Flu Hr-Lb and Flu Hr-Hb when using 8 threads
and 16 threads as the memory requirement exceeds the 128GB available on the machine. None of the high resolution
eBird instances could have their domain replicated.

All the instances that have a high initialization cost get a speedup lesser than 1 since the threads spend their time
allocating extra memory and reducing the content of that extra memory. The only instances to achieve a speedup
higher than 8 when using 16 threads are 3 of the PollenUS instances and one low resolution eBird instances. Not
surprisingly, they are the instances with the largest fraction of computation. (See Figure 7 for reference.)

PB-SYM-DD The PB-SYM-DD algorithm (described in Section 4.2) also has some overhead induced by cut cylin-
der surrounding a point. To measure the overhead beforehand, we run the decomposition algorithm using different
number of subdomains ranging from a single subdomain (1x1x1) to a very fine grain decomposition in 64x64x64 sub-
domains (except on the eBird Hr Hb where such a test is computationally expensive). The results of that experiment
is presented in Figure 9. The figure presents the overhead of the decomposition relatively to PB-SYM. Two things
are apparent. Some decomposition can actually reduce the runtime by providing better cache locality; for instance
Flu Hr-Lb is 9.8% faster using a 16x16x16 decomposition than PB-SYM.

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

S
p

e
e
d

u
p

1
2
4

8
16

Figure 8: Speedup of PB-SYM-DR for different number of threads used. Some instances run out of memory.

 0

 2

 4

 6

 8

 10

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

T
im

e
 r

e
la

ti
v
e
 t

o
 P

B
-S

Y
M

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 9: Overhead of PB-SYM-DD: runtime of PB-SYM-DD with a single thread normalized to PB-SYM. Some
decomposition improve performance dues to better cache fitting. Overdecomposition can cause significant overhead.

However, in most cases, the decomposition actually increases the runtime. For instance, a 16x16x16 decomposition
increases the amount of work by 9% in the Flu-Lr-Hb cases, and a 64x64x64 decomposition induces an overhead of
254%. Even on the Dengue Lr-Hb, a simple 4x4x4 decomposition already induces a 5% overhead which grows to 69%
for a 16x16x16 decomposition. Such large decomposition are likely to be necessary since the points in the datasets
are often organized in clusters: a decomposition in 16 subdomains is unlikely to provide a load balanced execution.
The PollenUS suffers from the highest overheads, with a 16x16x16 decomposition leading to a 74% overhead on
PollenUS-Hr-Mb, and a 495% overhead for a 64x64x64 decomposition

The speedup achieved by a parallel execution of PB-SYM-DD using 16 threads is presented in Figure 10. This
algorithm achieves overall better speedup than PB-SYM-DR. It achieves a speedup greater than 8 on 9 instances.
Let us note that a speedup of 14.9 is achieved on Dengue Hr-VHb using a 16x16x16 decomposition and of 14.8 on
eBird Hr-Hb with a 32x32x32 decomposition.

Despite a significant overhead on the PollenUS Hr instances, a speedup of 10 and 11.5 can be observed on the Mb
and Hb cases using 8x8x8 decomposition. This speedup is relatively impressive provided the decomposition induces
an overhead of 25% and 23% in these two cases. The 8x8x8 decomposition in that case is still imbalanced and a finer

14

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

eBird_Hr-Hb

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 10: Speedup of PB-SYM-DD with 16 threads. While PB-SYM-DD achieves good speedup in some cases, the
overdecomposition overhead usually hinders the performance.

decomposition can reach perfect load balance; however the overhead induced by the decomposition prevents taking
advantages of that better load balance. For PB-SYM-DD to be useful, it is important to pick the decomposition to
ensure load balance without suffering from an unbearable computational overhead.

A more modest speedup between 2 and 4 can be observed on the instances with higher initialization cost, such
as on the Flu dataset. Indeed, most of the time is spent on initializing the memory to hold the density estimates.
Even if the algorithm performs memory initialization in parallel, there is not much room for parallelism in memory
operations. Even more so since the initialization touches the memory for the first time, which makes the operating
system allocates the pages in physical memory. The speedup of the initialization phase using 16 threads is about the
same for all instances and is at about 3. The small speedup of PB-SYM-DD on instances with high initialization cost
is completely explained by this phenomenon. Even if the compute phase was reduced to 0, the speedup on the entire
calculation would only be 3.7.

6.4 Point-based parallelism
The performance of PB-SYM-PD is shown in Figure 11 for different decomposition. Note that there is a requirement
in PB-SYM-PD that the subdomain be larger than twice the bandwidth (see details in Section 5.1). Therefore if the
number of subdomain leads to too small subdomains, the decomposition is adjusted to fit the required size.

PB-SYM-PD does not scale well on all instances. The highest speedup achieved on PollenUS Lr-Lb is 2.6. It
is interesting to notice that the speedup usually increases with decomposition size. However, the speedup is limited
because of load imbalance. Figure 12 shows the implicit critical path within the PB-SYM-PD algorithm for the highest
decomposition used in the experiment (64x64x64). Most instances have a critical path of about 10% of the total work.
If Graham’s bound is reached, that implies a speedup lesser than 6.15. PollenUS Hr-Hb has a critical path of 55%
which implies a speedup lesser than 1.6. However, the speedup is typically lower because of the limited scalability in
the initialization phase.

PB-SYM-PD-SCHED aims at improving the load balance by arranging the execution to process the most loaded
subdomain first. Figure 12 shows that PB-SYM-PD-SCHED marginally decreases the critical path in all but one case.
Even if that decrease is marginal, PB-SYM-PD-SCHED ensures that the highest loaded subdomain are executed first
which tends to construct a better execution in practice. And one can see from Figure 13 that this scheduling improves
parallelism significantly for the PollenUS instance. A superlinear speedup occurs on PollenUS VHr-VLb: it is due to
the decomposition of the points which improves the locality of the computation compared to the sequential execution.

However, the parallelism is still constrained by load imbalance. PB-SYM-PD-REP performs domain decomposi-
tion on the subdomain of the most loaded chains in the dependency graph until the critical is small. Figure 14 shows

15

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

eBird_Hr-Hb

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 11: Speedup of PB-SYM-PD using 16 threads. Note that decompositions of subdomain smaller that twice the
bandwidths are adjusted.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

R
e
la

ti
v
e
 l
e
n
g
th

 o
f

th
e
 c

ri
ti

ca
l
p
a
th PB-SYM-PD

PB-SYM-PD-SCHED

Figure 12: Length of the critical path of the parallel algorithms PB-SYM-PD and PB-SYM-PD-SCHED for a
64x64x64 decomposition

16

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

eBird_Hr-Hb

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 13: Speedup of PB-SYM-PD-SCHED with 16 threads.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

eBird_Hr-Hb

S
p

e
e
d

u
p

1x1x1
2x2x2
4x4x4
8x8x8

16x16x16
32x32x32
64x64x64

Figure 14: Speedup of PB-SYM-PD-REP using 16 threads for different decompositions. Flu Hr-Lb and Flu Hr-Hb
run out of memory for small decomposition.

the speedup achieved by PB-SYM-PD-REP. Using PB-SYM-PD-REP achieves a speedup larger than 8 on 8 instances.
Though the speedup is close to 0 for small decompositions and on certain instances. Indeed, when there is no (or little)
decomposition, most of the domain is replicated and the execution has similar drawbacks as PB-SYM-DR.

6.5 Summary and Discussion
Figure 15 summarizes the performance of all our methods. It shows the performance achieved by the best configuration
of each particular algorithm. On Dengue instances, PB-SYM-DD usually leads to the best performance because of its
low overhead on that instance while maintaining a good load balance. On the PollenUS instances, the smart scheduling
of PB-SYM-PD-SCHED-REP is necessary to reach the highest parallelism. The flu instances are mostly dominated to
initialization overhead because it is very sparse, as such, PB-SYM-DR performs much worse than the other methods,
and past that issue, the method leads to little performance difference. The eBird instances have a very small memory
initialization overhead because they are dense in computation. This makes approaches that replicate the voxel space
perform well at low resolution, but runs out of memory at high resolution there.

17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Dengue_Lr-Lb

Dengue_Lr-Hb

Dengue_Hr-Lb

Dengue_Hr-Hb

Dengue_Hr-VHb

PollenUS_Lr-Lb

PollenUS_Hr-Lb

PollenUS_Hr-M
b

PollenUS_Hr-Hb

PollenUS_VHr-Lb

PollenUS_VHr-VLb

Flu_Lr-Lb

Flu_Lr-Hb

Flu_M
r-Lb

Flu_M
r-Hb

Flu_Hr-Lb

Flu_Hr-Hb

eBird_Lr-Lb

eBird_Lr-Hb

eBird_Hr-Lb

eBird_Hr-Hb

S
p
e
e
d
u
p

PB-SYM-DR
PB-SYM-DD
PB-SYM-PD

PB-SYM-PD-SCHED
PB-SYM-PD-SCHED-REP

Figure 15: Best configurations

What we need to do is to develop a parametric model for the problem that will take into account memory avail-
ability, cost of memory initialization, expected cost of computing the kernel density. Using that model finding the best
execution strategy becomes a combinatorial problem.

7 Related Works
The PhD Thesis of U. Lopez-Novoa [Lop15] is on the topic of computing kernel density estimation for arbitrarily
shaped kernels. The crop and chop method presented revolves around cropping the voxel space around a point with
similar goal as PB, and compute the density estimates in parallel on a multi-core CPU or on a GPU before the data
is aggregated back on the CPU. The arbitrarily shaped density considered does not expose the invariants leveraged
by PB-SYM which makes their work inapplicable to STKDE. [ECR17] considers the same variant of kernel density
that we consider and expand the techniques of [Lop15] by considering coalescing. However, they still use a voxel
based algorithm which is very slow (on a resolution lower than our lowest resolution, the parallel computation takes
.6 seconds on a GPU which is slower than our reported sequential time on a larger instance).

The two most common spatial problems solved with parallel computing are N-body interactions [Aar03] and
Particle in Cell simulations [KVKVO06]. STKDE is different in the sense that there is no iterating over the problem
multiple times as we see in the timesteps of N-body or particle in cell, no direct interaction between points, and no
field updates as in Particle in Cell (unless you consider a field discretized at a one voxel size which makes the analogy
not quite useful).

The summation of kernel function, in particular of radial basis function attracted some attention [MXYB15, FLF11,
YDGD03]. While some method presented in these papers are similar to some of the decomposition we discuss here,
the mathematical property of the kernel function are different. In particular the kernel functions that these papers
consider do not have the grid-aligned symmetries that the space-time kernel density estimate have. That symmetry
is what we leverage in PB-SYM to gain an order of magnitude of acceleration and that leads to a more complex
management of parallelism we investigated.

Spatial applications can use spatial partitioning techniques such as recursive bisection [BB87], jagged parti-
tion [USZS96, PA97, DRDÇ16], or rectilinear partition [Nic94, MS96]. Depending on the algorithms used for
STKDE, the objective function is different. A partitioning for PB-SYM-DD needs a good load balance, to minimize
the number of cut cylinders. But PB-SYM-PD needs a decomposition where the subdomains have a minimum size
and the load balance critirion is harder to express since neighboring subdomains can not be processed simultaneously.

8 Conclusion
We presented in this paper the space-time kernel density estimation problem which is useful in the visualization of
events located in space and time. We proposed sequential algorithms to decrease the complexity of the problem. And

18

we investigated four parallel algorithms, two of which are pleasingly parallel but at the cost of not being work efficient.
We then designed a work-efficient parallel algorithm but the dependency structure tends to prevent high degree of
parallelism. Using graph coloring and moldable scheduling techniques we made that latter parallel algorithm more
parallel by adding some work-overhead.

For each instance of the problem, one of the parallel algorithm achieved an interesting performance. However, it
is clear that we need to model the instance and the platform to control the various overhead and be able to pick the
parallel strategy that will derive the highest performance. It would also be interesting to look at distributed memory
machines and accelerators to reduce the runtime further since real-time is desirable for interactive applications. In
term of the application, we would like to investigate how these methods apply to a bandwidth that adapts to the density
of population of the area is also of interest.

Acknowledgment
The authors would like to thank Dr. Daniel Janies for pointing us to the Flu dataset. Support from US NSF XSEDE
Supercomputing Resource Allocation (SES170007) ”Accelerating and enhancing multi-scale spatiotemporally explicit
analysis and modeling of geospatial systems” is acknowledged. This material is based upon work supported by the
National Science Foundation under Grant No. 1652442.

References
[Aar03] Sverre J. Aarseth. Gravitational N-Body Simulations: Tools and Algorithms. Cambridge University

Press, 2003.

[BB87] Marsha Berger and Shahid Bokhari. A partitioning strategy for nonuniform problems on multiproces-
sors. IEEE TC, C36(5):570–580, 1987.

[BBÇ+05] E.G. Boman, D. Bozdağ, Ü.V. Çatalyürek, A.H. Gebremedhin, and F. Manne. A scalable parallel graph
coloring algorithm for distributed memory computers. In Proc. of Euro-Par, pages 241–251, Aug 2005.

[Boa13] OpenMP Architecture Review Board. Openmp application program interface. Technical report,
OpenMP Architecture Review Board, July 2013. Verion 4.0.0.

[CLoO16] New York Cornell Lab of Ornithology, Ithaca. ebird basic dataset. http://ebird.org/content/ebird/, May
2016. Version: EBD relMay-2016.

[DBDR16] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam. Parallel graph coloring for manycore
architectures. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 892–901, May 2016.

[DCRV13] Eric Delmelle, Irene Casas, Jorge H Rojas, and Alejandro Varela. Spatio-temporal patterns of dengue
fever in cali, colombia. International Journal of Applied Geospatial Research (IJAGR), 4(4):58–75,
2013.

[DDC+14] E. Delmelle, C. Dony, I. Casas, M. Jia, and W Tang. Visualizing the impact of space-time uncertainties
on dengue fever patterns. International Journal of Geographical Information Science, 28(5):1107–1127,
2014.

[DRDÇ16] Mehmet Deveci, Sivasankaran Rajamanickam, Karen D. Devine, and Ümit V. Çatalyürek. Multi-jagged:
A scalable parallel spatial partitioning algorithm. IEEE Trans. Parallel Distrib. Syst., 27(3):803–817,
2016.

[ECR17] Todd Eaglin, Isaac Cho, and William Ribarsky. Space-time kernel density estimation for real-time
interactive visual analytics. In Proceedings of the 50th Hawaii International Conference on System
Sciences, January 2017.

19

[EE11] Lars Eisen and Rebecca J Eisen. Using geographic information systems and decision support systems
for the prediction, prevention, and control of vector-borne diseases. Annual review of entomology,
56:41–61, 2011.

[FLF11] Bengt Fornberg, Elisabeth Larsson, and Natasha Flyer. Stable computations with gaussian radial basis
functions. SIAM Journal on Scientific Computing, 33(2):869–892, 2011.

[GMP05] Assefaw H. Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your jacobian? Graph
coloring for computing derivatives. SIAM Review, 47(4):629–705, 2005.

[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathe-
matics, 17(2):416–429, March 1969.

[GWM14] Tony H Grubesic, Ran Wei, and Alan T Murray. Spatial clustering overview and comparison: Ac-
curacy, sensitivity, and computational expense. Annals of the Association of American Geographers,
104(6):1134–1156, 2014.

[HDTC16] A. Hohl, E. Delmelle, W. Tang, and I. Casas. Accelerating the discovery of space-time patterns of
infectious diseases using parallel computing. Spatial and Spatio-temporal Epidemiology, 2016.

[Hun13] Sascha Hunold. Scheduling moldable tasks with precedence constraints and arbitrary speedup functions
on multiprocessors. In Prof of PPAM, pages 13–25, 2013.

[KCS04] M. P. Kwan, I. Casas, and B. Schmitz. Protection of geoprivacy and accuracy of spatial information:
how effective are geographical masks? Cartographica: The International Journal for Geographic
Information and Geovisualization, 39(2):15–28, 2004.

[KVKVO06] H. Karimabadi, H. X. Vu, D. Krauss-Varban, and Y. Omelchenko. Global hybrid simulations of the
earth’s magnetosphere. Numerical Modeling of Space Plasma Flows, December 2006.

[Lop15] Unai Lopez-Novoa. Contributions to the Efficient Use of General Purpose Coprocessors: Kernel Den-
sity Estimation as Case Study. PhD thesis, Universidad del Paı́s Vasco, 2015.

[LTW02] Renaud Lepère, Denis Trystram, and Gerhard J. Woeginger. Approximation algorithms for scheduling
malleable tasks under precedence constraints. Int. J. Found. Comput. Sci., 13(4):613–627, 2002.

[MS96] Fredrik Manne and Tor Sørevik. Partitioning an array onto a mesh of processors. In Proc of PARA ’96,
pages 467–477, 1996.

[MXYB15] William B March, Bo Xiao, Chenhan D Yu, and George Biros. ASKIT: an efficient, parallel library for
high-dimensional kernel summations. SIAM Journal on Scientific Computing (to appear), 2015.

[Nic94] David Nicol. Rectilinear partitioning of irregular data parallel computations. JPDC, 23:119–134, 1994.

[NY10] T. Nakaya and K. Yano. Visualising crime clusters in a space-time cube: an exploratory data-analysis
approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 14(3):223–
239, 2010.

[PA97] Ali Pınar and Cevdet Aykanat. Sparse matrix decomposition with optimal load balancing. In Proc. of
HiPC 1997, 1997.

[Sil86] B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press, 1986.

[USZS96] Manuel Ujaldon, Shamik Sharma, Emilio Zapata, and Joel Saltz. Experimental evaluation of efficient
sparse matrix distributions. In Proc. of SuperComputing’96, 1996.

[YDGD03] Changjiang Yang, Ramani Duraiswami, Nail A Gumerov, and Larry Davis. Improved fast gauss trans-
form and efficient kernel density estimation. In Proceedings of the Ninth IEEE International Conference
on Computer Vision, pages 664–671. IEEE, 2003.

20

	1 Introduction
	2 Space-Time Kernel Density Estimation
	2.1 Description
	2.2 Gold Standard Implementation

	3 Algorithm Design and Engineering
	3.1 Point-based Algorithm
	3.2 Exploiting Symmetries

	4 Domain-based parallelism
	4.1 Domain Replication
	4.2 Domain Decomposition

	5 Point-based parallelism
	5.1 Point Decomposition
	5.2 Coloring and Scheduling

	6 Experiments
	6.1 Experimental Setting
	6.2 Algorithm design
	6.3 Domain-based parallelism
	6.4 Point-based parallelism
	6.5 Summary and Discussion

	7 Related Works
	8 Conclusion

