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Abstract—Optimizing the performance of GPU Kernels is
challenging for both human programmers and code generators.
For example, CUDA programmers must set thread and block
parameters for a kernel, but might not have the intuition to
make a good choice. Similarly, compilers can generate working
code, but may miss tuning opportunities by not targeting GPU
models or performing code transformations. Although empirical
autotuning addresses some of these challenges, it requires exten-
sive experimentation and search for optimal code variants. This
research presents an approach for tuning CUDA kernels based
on static analysis that considers fine-grained code structure and
the specific GPU architecture features. Notably, our approach
does not require any program runs in order to discover near-
optimal parameter settings. We demonstrate the applicability
of our approach in enabling code autotuners such as Orio to
produce competitive code variants comparable with empirical-
based methods, without the high cost of experiments.

I. INTRODUCTION

Heterogeneous computing poses several challenges to the
application developer. Identifying which parts of an appli-
cation are parallelizable on a SIMD accelerator and writing
efficient data parallel code are the most difficult tasks. For
instance, CUDA programmers must set block and thread sizes
for application kernels, but might not have the intuition to
make a good choice. With NVIDIA GPUs, each streaming
multiprocessor (SM) has a finite number of registers, limited
shared memory, a maximum number of allowed active blocks,
and a maximum number of allowed active threads. Variation
in block and thread sizes results in different utilization of
these hardware resources. A small block size may not provide
enough warps for the scheduler for full GPU utilization,
whereas a large block size may lead to more threads competing
for registers and shared memory.

Writing kernel functions requires setting block and thread
sizes, and the difficulty is in deciding which settings will
yield the best performance. One procedure entails testing the
kernel with block sizes suggested by the CUDA Occupancy
Calculator (OCC) [1]. Although the OCC takes into account
the compute capability (NVIDIA virtual architecture) when
calculating block sizes and thread counts, inaccuracies may
arise because variations in runtime behavior may not be con-
sidered, which can potentially result in suboptimal suggested
hardware parameters.

How do variations in runtime behavior arise? Accelerator
architectures specialize in executing SIMD in lock-step. When

branches occur, threads that do not satisfy branch conditions
are masked out. If the kernel programmer is unaware of the
code structure or the hardware underneath, it will be difficult
for them to make an effective decision about thread and block
parameters.

CUDA developers face two main challenges, which we
aim to alleviate with the approach described in this paper.
First, developers must correctly select runtime parameters
as discussed above. A developer or user may not have the
expertise to decide on parameter settings that will deliver
high performance. In this case, one can seek guidance from
an optimization advisor. The advisor could consult a perfor-
mance model based on static analysis of the kernel properties,
or possibly use dynamic analysis to investigate alternative
configurations. A second concern is whether the kernel im-
plementation is not optimized yet. In this case, advice on
parameter settings could still be insufficient because what is
really required is a transformation of the kernel code itself to
improve performance. For both concerns, static and dynamic
analysis techniques are applicable. However, to address the
second concern, an autotuning framework based on code
transformation is required.

This work presents our static analyzer that can be used
by developers, autotuners, and compilers for heterogeneous
computing applications. Unlike most existing analysis tech-
niques, our approach does not require any program runs to
discover optimal parameter settings. The specific contributions
described in this paper include:

o A static analyzer for CUDA programs.

o Predictive modeling based on static data.

o Example use cases of the new methodology in an auto-
tuning context.

Section provides background information, while Sec-
tion defines the methodology of our static analyzer tool.
Experimental setup and analysis are elaborated in Section
related work is discussed in Section [V] and Sections
and present our conclusions and future work plans.

II. BACKGROUND

This section briefly discusses the background for our
research contributions, including the CUDA programming
model, performance measurement approaches, and autotuning.
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A. CUDA Programming Model and Control Flow Divergence

In CUDA kernels, threads are organized in groups called
blocks, which consists of one or more warps (each of which
has 32 threads). Each block is assigned to one of the GPU’s
streaming multiprocessors, and each SM is composed of
multiple streaming processors, or multiprocessors (MP) that
execute individual threads in SIMD.

In a given execution cycle, a SM executes instructions from
one of the thread block’s warps, where threads within a warp
are executed together. However, if threads within a warp take
different paths on conditional branches, execution of those
paths become serialized. In the worst case, only 1 of the 32
threads within a warp will make progress in a cycle. Figure [I]
shows how performance is affected when branches diverge.
Measuring the occupancy of a kernel execution can determine
whether branch divergence exists and suggest parameter ad-
justments to the program, a subject of this current work.

B. GPU performance tools

To date, GPU performance tools have mainly focused on the
measurement and analysis of kernel execution, reporting time
and counters associated with kernel execution. For instance,
the TAU Performance System provides scalable, profile and
trace measurement and analysis for high-performance parallel
applications [2]], including support for CUDA and OpenCL
codes [3]]. Even though profile measurements can help answer
certain types of questions (e.g., how long did foo() take?),
improving performance requires more detailed information
about the program structure.

While TAU and other profiling tools provide performance
measurement [4]]-[6], they do not shed much light on the
divergent branch behavior and its effects on making good
decisions about thread and block sizes. Our work introduces
several static analysis techniques that delivers fine-grained
information that can be used for predictive modeling. These
techniques include the ability to analyze instruction mixes
and occupancy for estimating thread and register settings. In
a complementary approach (not discussed in this paper), we
have also developed dynamic analysis techniques to compute
instruction execution frequencies and control flow information
[7].

In the remainder of this section, we discuss how we model
different performance-relevant metrics by using primarily
static analysis of CUDA binaries.

C. Autotuning

By themselves, performance models can produce adequate
predictions of parameter settings, but can not change the kernel
to improve performance. Autotuning systems have been im-
portant in exploring alternative parameter choices by providing
a kernel experimentation and optimization framework. For
example, the Orio autotuning framework [8] generates many
code variants for each kernel computation. The objective of
the GPU portions of Orio is to accelerate loops [9], [[10] since
loops consume a large portion of program execution time.
We use the term kernels to refer to deeply nested loops that
arise frequently in a number of scientific application codes.
Existing C loops are annotated with transformation and tuning
specifications. Transformations are parameterized with respect
to various performance constraints, such as block sizes, thread
counts, preferred L1 sizes and loop unroll factors. Each kernel
specification generates a family of variant translations for
each parameter and each variant is measured for its overall
execution time, with the fastest chosen as the top performing
autotuned translation.

The main challenge in the optimization space search is
the costly empirical measurement of many code variants in
autotuning systems. The main contribution of our work is to
demonstrate the use of static predictive models in autotuning,
reducing the need for experimental performance testing.

III. METHODOLOGY

Figure [2] is a high-level depiction of our framework, which
illustrates not only different processes involved, but also
the analysis support and tradeoffs inherent in them. For
instance, providing a user with runtime parameters for kernel
launch could engage static and/or dynamic analysis, but not
necessarily code transformation. Dynamic analysis would be
expected to be more costly because empirical experiments
would be involved. Transforming the implementation allows
new variants to be explored, but these could be analyzed
either statically or dynamically, or both. However, it is in the
integration of these models with an autotuning system that
can transform the kernel code where the potential power for
delivering optimizations is found.

Static Analysis
Our static analysis approach consists of the following steps:

1) Extract kernel compilation information with nvcc’s
-—ptxas—options=-v flag.

2) Disassemble CUDA binary with nvdisasm for instruc-
tion operations executed.

The subsequent sections define metrics resulting from our
static analysis approach.
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A. Occupancy

Threads, registers and shared memory are factors that influ-
ence a CUDA kernel’s ability to achieve high occupancy. In
this section, we will group threads, warps, and blocks into
one category for simplifying the discussion, although each
term has its own distinct meaning. Threads (7) are the work
units performing the computation, whereas warps (W) are the
schedulable units for the streaming multiprocessor and blocks
(B) consist of groups of warps. Each has memory local to its
level. For instance, threads access private registers (R), warps
and blocks use shared memory (S), and grids utilize global
memory.

The following subsections define factors that contribute to
a kernel’s GPU occupancy. Table [I| lists the GPUs used in
this research, along with hardware features and associated
notation. We adopt the naming convention where superscripts
denote the source of the variable, with subscripts as constraints
of the variable. Compute capability (cc) represents the GPU
architecture family (also listed in Tab. [I), meaning nvcc
will target an architecture based on the assigned compute
capability flag (e.g. —arch=sm_xx). User input (u) includes
threads, registers and shared memory parameters at compile
time. Active (x) represents the results provided by our static
analyzer tool. Occupancy is the metric we are calculating and
is defined in the next subsections.

1) Occupancy calculation: The objective of the occupancy
calculation is to minimize the number of active thread blocks
per multiprocessor constrained by hardware resource :

By =min {Gy(u)}, (1)

where G(-) calculates the maximum allocable blocks for
each SM, and ¢ = {¢w, ¥R, s} denotes warps, registers,
and shared memory. Each G, will be defined in Egs.
and

2) Definition of occupancy: Occupancy is defined as the
ratio of active warps on a SM to the maximum number of
active warps supported for each SM:
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where Wy, = By, x Wp, with B}, as defined in Eq. I]
and Wi = 32 for all GPUs (Tab. [[). Note that in an ideal
world, occ,,, = 1. However, in practice, occupancy rates are
on average at 65-75%, and should not be used in isolation for
setting CUDA parameters [[11]. Occupancy is one of several
metrics we incorporated in our static analyzer.

3) Theoretical occupancy: The number of blocks which can
execute concurrently on an SM is limited by either warps,
registers, or shared memory.

a) Warps per SM: The SM has a maximum number of
warps that can be active at once. To calculate the maximum
number of blocks constrained by warps Gy, , find the mini-
mum of blocks supported per multiprocessor and the rate of

warps per SM and warps per block:
Wsm
Wpg

w, with variables as

2

0CCmp =

Gy (T*) = min {Bfncp, 3)

where Ws,,, = WS and Wg =

mp [ch
. w
defined in Table [l
b) Registers per SM: The SM has a set of registers shared
by all active threads. Deciding whether registers is limiting
occupancy Gy, is described by the following cases:

0 if R* > Ry,
Gyr(R") = [’}—BW x {Z—ﬂ if R* > 0, (4)
By otherwise.
Ree Tu
where Ry = | ——2—— | and Rp = . Case 1
|' U ¢ ch'| Tﬁ;

represents when the user decVYares a register value beyond the
maximum allowable per thread that is supported for the cc, an
illegal operation. Case 2 describes when the user provides a



TABLE I TABLE II
GPUS USED IN THIS EXPERIMENT. INSTRUCTION THROUGHPUT PER NUMBER OF CYCLES.
Sym Parameter M2050 K20 M40 P100 Category Op SM20 SM35 SM52 SMe60
cc CUDA capability 2 3.5 5.2 6.0 FPIns32 FLOPS 32 192 128 64
Global mem (MB) 3072 11520 12288 17066 FPIns64 FLOPS 16 64 4 32
mp Multiprocessors 14 13 24 56 CompMinMax FLOPS 32 160 64 32
CUDA cores / mp 32 192 128 64 Shift, Extract,
CUDA cores 448 2496 3072 3584 Shuffle, FLOPS 16 32 64 32
GPU clock (MHz) 1147 824 1140 405 SumAbsDiff
Mem clock (MHz) 1546 2505 5000 715 Conv64 FLOPS 16 8 4 16
L2 cache (MB) 0.786  1.572  3.146  4.194 Conv32 FLOPS 16 128 32 16
Constant mem (B) 65536 65536 65536 65536 LogSinCos FLOPS 4 32 32 16
Sge Sh mem block (B) 49152 49152 49152 49152 IntAdd32 FLOPS 32 160 64 32
R, Regs per plock 32768 65536 65536 65536 TexIns, LdStlns, MEM 16 o 64 16
Wg Warp size 32 32 32 32 SurfIns
TES, Threads per mp 1536 2048 2048 2048 PredIns, Ctrllns CTRL 16 32 64 16
T Threads per block 1024 1024 1024 1024 Movelns CTRL 32 32 32 32
BgE, | Thread blocks / mp 8 16 32 32 Regs REG 16 32 32 16
T35 Threads per warp 32 32 32 32
Wi Warps per mp 48 64 64 64
CC M
%Bg Rlieggs ;l;f ihiffd 2§ ggg §§§ §§§ per cycle. In other words, an operation with a high throughput
l [ Family [ Formi _ Kepler Maxwell Pascal | would cost less to issue than an operation with a lower

valid register value, where we take the product of the number
of registers per SM supported over the number of registers
per block and the register file size per MP over the maximum
register block supported in this architecture. Case 3 is when
the user does not provide a value, where the value is set to
the thread block per multiprocessor supported by the cc.

c) Shared memory per SM: Shared memory per thread
is defined as the sum of static shared memory, the total size
needed for all __ shared__ variables and dynamic shared
memory. If active blocks are constrained by shared memory,
reducing S per T could increase occupancy. To compute G,
take the ceiling of the shared memory per multiprocessor
provided by its compute capability over the shared memory
per block.

0 it S* > S%,
Gus(5") = |52 i su >0, 5)
Bee otherwise.

mp

where shared memory per block Sp = |S*|, shared memory
per SM Ss,,, = S%, and with cases following similarly to
Eq. @

Next, we describe instruction types and pipeline utilization
and how increasing the number of active warps may adversely
affect performance, since additional warps will oversubscribe
the pipeline and force additional stalls.

B. Instruction Mixes

The instruction throughput on a GPU varies depending
on its type, with memory operations typically achieving 32
instructions-per-cycle (IPC) and floating-point operations ca-
pable of 192 IPC. Table lists IPCs, based on instruction
type and compute capability [12]. By definition, instruction
throughput is the number of operations each SM can process

instruction throughput. In this work, we assign weights to
instruction types based on its instruction throughput, defined
as the reciprocal of IPC, or cycles-per-instruction (CPI).

1) Instruction mix metrics: Instruction mix is defined as
the number of specific operations that a processor executes.
Instruction mix-based characterizations have been used in a
variety of contexts, including to select loop unrolling factors
[13], [14]], unlike hardware counters which are prone to
miscounting events [[15]. In this work, we use instruction mixes
to characterize whether a kernel is memory-bound, compute-
bound, or relatively balanced. Refer to [[16] for definitions for
O/, Omems Octri, and O,4 according to category type.

The intensity (magnitude) of a particular metric can suggest
optimal block and thread sizes for a kernel. Memory-intensive
kernels require a high number of registers, where a large
block size consists of more registers per block. The tradeoff
with big block sizes is that fewer blocks can be scheduled
on the SM. Small block sizes will constrain the number of
blocks running on the SM by the physical limit of blocks
allowed per SM. Compute-intensive kernels perform well
with larger block sizes because the threads will be using
GPU cores with fewer memory latencies. Small block sizes
will result in many active blocks running on the SM in a
time-shared manner, where unnecessary switching of blocks
may degrade performance. For control-related synchronization
barriers, smaller block sizes are preferred because many active
blocks can run simultaneously on the SM to hide memory
latency.

2) Pipeline utilization: Each streaming multiprocessor
(SM) consists of numerous hardware units that are specialized
in performing a specific task. At the chip level, those units
provide execution pipelines to which the warp schedulers
dispatch instructions. For example, texture units provide the
ability to execute texture fetches and perform texture filtering,
whereas load/store units fetch and save data to memory.
Understanding the utilization of pipelines and its relation to
peak performance on target devices helps identify performance



bottlenecks in terms of oversubscription of pipelines based on
instruction type.

The NVIDIA Kepler GK100 report [[12] lists instruction
operations and corresponding pipeline throughputs per cycle.
Pipeline utilization describes observed utilization for each
pipeline at runtime. High pipeline utilization would indicate
that the corresponding compute resources were used heavily
and kept busy often during the execution of the kernel.

3) Infer Kernel Execution Time: Because the majority of
CUDA applications are accelerated loops, we hypothesize that
the execution time of a CUDA program is proportional to the
input problem size N. Hence,

f(N):Cf'0ﬂ+Cm'omem+cb‘octrl+cr'oreg (6)

where ¢y, ¢, ¢, and ¢, are coefficients that represent the
reciprocal of number of instructions that can execute in a cycle,
or CPIL Equation [6] represents how a program will perform for
input size N without running the application.

Autotuning Integration

C. Static Search Analysis

The static analyzer tool has been integrated in Orio to enable
model-based pruning of the search space. Current search
algorithms in Orio include exhaustive, random, simulated an-
nealing, genetic, and Nelder-Mead simplex methods [{8]], [[17]].
Adding this tool as a new search module in Orio demonstrates
that our approach can easily be integrated into a general
autotuning framework.

We describe the overall search workflow of the static
analyzer option. Orio collects instruction counts for the CUDA
kernel and computes the instruction mix metrics and occu-
pancy rates, as defined in Sec. A rule-based model is
invoked, which produces suggested parameter coordinates for
Orio to search. The heuristic that we employed was based on
the kernel’s computational intensity derived from collecting
instruction mixes and its occupancy (Eq.[I). Through empirical
observation (discussed in Section [[V-B), we have concluded
that a threshold of intensity > 4.0 would benefit from
upper ranges of thread values suggested by our static analyzer,
whereas intensity < 4.0 would benefit from lower ranges of
suggested thread values. An example search space is displayed
in Figure 3] Without empirical testing, exhaustive search would
be required to converge to optimal parameter settings, leading
to a combinatorial explosive problem. The goal is to minimize
the range of parameter settings to tighten the search bounds,
and our static analyzer feeds the necessary information to
intelligently guide the autotuner.

IV. EXPERIMENTAL SETUP AND ANALYSIS

This section reports on the autotuning execution environ-
ment for the CUDA kernels listed in Table [V} Results com-
paring our static analyzer approach with the existing methods
are also reported.

IBlock sizes are compute capability specific.

TABLE III
A SUBSET OF FEATURES USED FOR THREAD BLOCK CLASSIFICATION.

[ Feature [
Thread Count

Size |
32 — 1024 (with 32 increments)
Block size E] 24 — 192 (with 16 increments)
Unroll loop factor {1-6}
Compiler flags {’, “-use_fast_math’}
{FLOPS, memory, control }
{registers, threads, OCC rate, etc.}

Instructions
Occupancy calculation

/%@ begin PerfTuning (
def performance_params {

param TC[] = range(32,1025,32);
param BC[] = range(24,193,24);
param UIF[] = range(l,6);
param PL[] = [16,48];
param SC[] = range(l,6);
param CFLAGS[] = [’', '-use_fast_math’];
}
) @x/

Fig. 3. Performance tuning specification in Orio.

A. Environment

Orio was used to generate and autotune CUDA implemen-
tations by varying the feature space listed in Table The
details of CUDA code generation and autotuning with Orio are
described in [10]. The T'C parameter specifies the number
of simultaneously executing threads. BC' is the number of
thread blocks (independently executing groups of threads that
can be scheduled in any order across any number of SMs)
and is hardware-specific. UIF' specifies how many times loops
should be unrolled; PL is the L1 cache size preference in KB.

For each code variant, the experiment was repeated ten
times, and the fifth overall trial time was selected to be
displayed. The execution times were sorted in ascending order
and the ranks were split along the 50th percentile. Rank 1 rep-
resents the upper-half of the 50th percentile (good performers),
while Rank 2 represents the lower portion (poor performers).
On average, the combination of parameter settings generated
5,120 code variants. The GPUs used in this work are listed in
Table E] and include the Fermi M2050, Kepler K20, Maxwell
M40, and Pascal P100. Subsequently we will refer to the GPUs
by the architecture family name (Fermi, Kepler Maxwell,
Pascal). CUDA nvcc v7.0.28 was used as the compiler. Each
of the benchmarks executed with five different input sizes,
where all benchmarks consisted of inputs {32, 64, 128, 256,
512}, except ex14FJ, which had inputs {8, 16, 32, 64, 128}.

To demonstrate our approach, we considered the kernels
described in Table Because the chosen kernels (except
ex14FJ, which is application-specific) contribute significantly
to the overall execution time of many different applications,
tuning these kernels can result in significant overall application
performance improvements.



TABLE IV
KERNEL SPECIFICATIONS.

[ Kernel [ Category | Description | Operation |
atax Elementary linear algebra | Matrix transpose, vector multiplication y=AT (Az)
BiCG Linear solvers Subkernel of BiCGStab linear solver 7= ;411%
= A'r
. . . F(z)=A(x)xr—b=0
ex14FJ 3-D Jacobi computation Stencil code kernels (@) ) ]
A(u)v ~ — v (k(u) Vo)
MatVec2D | Elementary linear algebra | Matrix vector multiplication y = Azx
Thread Counts
200 arch = k20 arch = m2050 arch = m40 arch = p100
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Fig. 4. Thread counts for Orio autotuning exhaustive search, comparing architectures and kernels.

TABLE V
STATISTICS FOR AUTOTUNED KERNELS FOR TOP PERFORMERS (TOP HALF) AND POOR PERFORMERS (BOTTOM HALF), COMPARING GPU ARCHITECTURE
GENERATIONS.
Occupancy Register Instructions Threads
Mean  Std Dev Mode Mean Std Dev  Allocated | 25th  50th  75th
Fer | 77.46 24.18  100.00 39613.1 35673.2 21 152 272 416
ATAX | Kep | 8521 19.03 93.75 34833.1 30954.5 27 160 288 416
Max | 90.59 11.87 93.75 104285.9 85207.1 30 160 320 448
Pas | 90.86 12.24 93.75 227899.7 202120.2 30 152 272 392
Fer | 60.55 15.54 75.00 35321.3 32136.6 27 160 288 416
BiCG | Kep | 85.14 19.05 98.44 35485.7 31535.9 28 160 288 416
Max | 89.09 11.50 98.44 158963.8 135681.2 32 224 448 736
Pas | 90.93 12.19 93.75 228350.6 201865.8 30 152 272 392
Fer | 53.69 8.83 62.50 98418.5 45166.64 30 608 768 896
ex14FJ | Kep | 88.44 9.98 93.75 54345.4 47526.8 31 288 512 768
Max | 89.23 9.61 98.44 4141130.6 158537.4 28 320 608 832
Pas | 89.04 11.10 98.44 4335986.6 409162.6 32 192 480 768
Fer | 72.21 14.17 87.50 307425.50 69330.06 23 448 640 804
matVec2D | Kep | 89.29 8.17 96.88 274359.93 65373.88 23 416 640 864
Max | 89.53 9.22 98.43 693752.81  146799.80 18 288 576 800
Pas | 88.42 9.08 90.63 | 1264815.81 316252.38 18 480 672 804
Fer | 74.23 1598  100.00 102946.9 58009.0 21 640 768 896
ATAX | Kep | 86.27 10.97 93.75 89906.9 51102.5 27 640 768 896
Max | 87.04 10.09 87.50 253714.1 151973.5 30 608 736 896
Pas | 86.77 9.54 87.50 605300.3 337615.5 30 640 768 896
Fer | 56.12 10.73 66.67 35321.3 32136.6 27 608 768 896
BiCG | Kep | 86.34 10.93 93.75 89254.3 51141.2 28 608 768 896
Max | 88.55 10.80 93.75 199036.3 149373.1 32 352 608 832
Pas | 86.70 9.57 87.5 605169.4 338092.4 30 640 768 896
Fer | 55.55 14.03 62.50 26321.5 21137.2 30 152 288 448
ex14FJ | Kep | 83.05 19.21 93.75 70394.6 51953.5 31 256 544 800
Max | 88.40 12.50 93.75 4079589.4 120401.0 28 224 480 704
Pas | 88.59 11.22 93.75 4359934.4 241618.2 32 352 544 800
Fer | 68.93 21.93 87.50 210334.50 47850.90 23 160 352 672
matVec2D | Kep | 82.19 19.54 93.75 219636.56 57185.33 23 160 384 704
Max | 88.09 12.77 93.75 645687.18  137182.93 18 224 480 736
Pas | 89.22 12.89 93.75 877505.0  225900.05 18 160 320 576
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Fig. 5. Time-to-instruction mix ratio, comparing architectures and kernels.

TABLE VI
ERROR RATES WHEN ESTIMATING DYNAMIC INSTRUCTION MIXES FROM
STATIC MIXES.

Metrics
FLOPS | MEM | CTRL | Tus
For | 007 | 1.69 | 201 | 34
ATAX e T 00T | 175 | 220 | 34
Max | 023 | 006 | 0.2 | 18
) Fer | 003 | 3.68 | 240 | 138
BiCG e 002 [ 380 | 267 | 18
Max | 057 | 130 | 006 | 13
ey |_Fer [ 020 [ 014 [ 000 | 127
Kep | 101 | 0.8 | 021 [ 127
Max | 197 | 0.4 | 089 | 163
Fer | 0.04 | 092 | 080 | 46
matVee2D 0,07 [ 097 | 099 | 46
Max | 029 | 0.06 | 036 | 72

B. Discussion

We empirically autotuned the kernels listed in Table
using exhaustive search and uncovered distinct ranges for
block and thread sizes, based on ranking. The dynamic anal-
ysis of autotuning is displayed in Figure f] projecting thread
settings and frequency for each kernel, and comparing various
architectures. In general, ATAX and BiCG kernels performed
well in lower thread range settings, whereas matVec2D per-
formed better with higher thread settings. The ex14FJ is a
more complex kerneﬂ and thread behavior patterns for Rank
1 were less apparent.

Table [V] reports statistics on occupancy, registers, and
threads for all benchmarks and architectures. The top half
represents good performers (Rank 1), whereas the bottom half
represents poor performers (Rank 2). In general, occupancy
did not seem to matter much, since the reported means
were somewhat similar for both ranks, with Fermi achieving

2The ex14FJ kernel is the Jacobian computation for a solid fuel ignition
simulation in 3D rectangular domain.

TABLE VII
SUGGESTED PARAMETERS TO ACHIEVE THEORETICAL OCCUPANCY.
T* [R™ : R¥] S* occ*
Fer 192, 256, 384, 512, 768 [21 : 0] 6144 1
AT Kep 128, 256, 512, 1024 [27 : 5] 3072 1
Max | 64, 128, 256, 512, 1024 [30 : 2] 1536 1
Pas 64, 128, 256, 512, 1024 [30 : 2] 1536 1
Fer 192, 256, 384, 512, 768 [27 : 0] 8192 15
Bi Kep 128, 256, 512, 1024 [28 : 4] 3072 1
Max | 64, 128, 256, 512, 1024 [32: 0] 12288 71
Pas 64, 128, 256, 512, 1024 [30 : 2] 1536 1
Fer 192, 256, 384, 512, 768 [30 : 0] 24576 71
ox Kep 128, 256, 512, 1024 [31: 1] 3072 1
Max | 64, 128, 256, 512, 1024 [28 : 4] 1536 1
Pas 64, 128, 256, 512, 1024 [32: 0] 1536 1
Fer 192, 256, 384, 512, 768 [20 : 1] 12288 92
ma Kep 128, 256, 512, 1024 [20 : 11] 3072 1
Max | 64, 128, 256, 512, 1024 [13 : 18] 1536 1
Pas 64, 128, 256, 512, 1024 [15: 17] 1536 1

low occ for all kernels. However, register instructions varied
considerably, with Rank 1 consisting of lower mean and
standard deviations, versus Rank 2 which had higher values.
Thread behavior patterns were apparent when comparing Rank
1 and Rank 2. For instance, one could conclude that ATAX
and BiCG prefers smaller range thread sizes, whereas ex14FJ
prefers higher ranges.

Figure [5] illustrates the use of static instruction mixes to
predict execution time. Execution time was normalized and
sorted in ascending order (x-axis). The mean absolute error
was used to estimate execution time based on static instruction
mixes. Equation [ was used to calculate the instruction mix
ratio, which consisted of weighting instructions according to
its number of achievable executed instructions per clock cycle.
In general, our model was able to estimate the execution time
within a reasonable margin of error, including ex14FJ with
MAE near 1.00, which validates instruction mixes as good
indicators of kernel execution performance.

Table reports the error rates calculated, using sum of
squares, when estimating dynamic behavior of the kernel from
static analysis of the instruction mix. Intensity is also displayed
in the last column and is defined as the ratio of floating-
point operations to memory operations. Although our static
estimator performed poorly for BiCG (memory, control ops),
our static analysis, driven by Equation [6] closely matches that
of the observed dynamic behavior for the other kernels.

C. Improved Autotuning with Static Analyzer

Finally, we wanted to determine whether our static analyzer
tool could be used to improve the efficiency and effectiveness
of Orio. We use the exhaustive empirical autotuning results
from Sec. as the baseline for validating whether our
search approach could find the optimal solution.

Table reports static information for register usage and
intensity for each kernel, as well as the thread parameters
suggested by our static analyzer, comparing different architec-
tures. T displays the suggested thread ranges for the kernel
that would yield occ*. [R* : R*] displays the number of
registers used and its increase potential. S* displays (in KB)



ATAX

RB

BiCG

Improvement (%)
o o 9o
2 o ®

o
)

o
=)

Static Static RB

ex14FJ matVec2D

m2050
k20
m40
p100

Static RB Static RB

Fig. 6. Improved search time over exhaustive autotuning, comparing static and rule-based approaches.

the amount of shared memory that could be increased to
achieve theoretical occupancy.

The basis of our contribution is that the instruction mix
and occupancy metrics from our static analyzer gets fed into
the autotuner. In general, an exhaustive autotuning consists of
[T~ X; trials, where X; represents a parameter, each having
m options. In the case of ATAX, five thread settings were
suggested for Fermi and Maxwell, which represents a 84%
improvement, and Kepler representing a 87.5% improvement,
with the search space reduced from 5,120 to 640. The search
space could be reduced further by invoking our rule-based
heuristic. Figure [6] displays the overall results of the improved
search module. The first set displays how the static based
method improves near 87.5%. When combining with the rule-
based heuristic, the search space is further reduced, which
results in a 93.8% overall improvement. Figure [7] displays
the occupancy calculator for the ATAX kernel, comparing the
current kernel and the potentially optimized version.

The model-based search space reduction does involve gener-
ating and compiling the code versions, but it does not require
executing them. Note that empirical testing typically involves
multiple repeated executions of the same code version, hence
the time saved over exhaustive search is approximately ¢ * r,
where ¢ is the average trial time and r is the number
of repetitions. Even when not using exhaustive search, our
new technique can be used as the first stage of the regular
empirical-based autotuning process to dramatically reduce the
search space, significantly speeding up the entire process and
increasing the likelihood of finding a global optimum. Unlike
runtime measurement, which requires several runs of each test,
static analysis does not suffer from the effects of noise and
hence only has to be performed once on each code version.
The search space reduced through static binary analysis can
then be explored using one of the existing search methods. If
it’s feasible and desirable to determine the optimal value, then
exhaustive search is appropriate, otherwise one of the other
methods such as Nelder-Mead simplex or random can be used
to strictly control the time spent autotuning.

V. RELATED WORK

Several prior efforts have attempted to discover optimal
code forms and runtime parameter settings for accelerator-
based programming models, typically by taking a domain-
specific approach. For instance, Nukada and Matsuoka demon-
strated automated tuning for a CUDA-based 3-D FFT library
based on selection of optimal number of threads [18]. Tomov

et al. developed the MAGMA system for dense linear algebra
solvers for GPU architectures, which incorporates a DAG rep-
resentation and empirical-based search process for modeling
and optimization [19]. The use of autotuning systems based on
program transformations, such as Orio and CHILL [20],
enable optimization exploration on more general application
code and across accelerator architectures [9]). However, the
complexity of the optimization space and the cost of empirical
search is high. A recent work on autotuning GPU kernels
focuses on loop scheduling and is based on the OpenUH com-
piler [21]]. Our approach attempts to leverage more static code
analysis to help better inform an autotuning process, thereby
reducing the dependence on pure dynamic measurement and
analysis to generate performance guidance.

The NVIDIA CUDA Toolkit includes occupancy cal-
culation functions in the runtime API that returns occupancy
estimates for a given kernel. In addition, there are occupancy-
based launch configuration functions that can advise on grid
and block sizes that are expected to achieve the estimated
maximum potential occupancy for the kernel. Because these
functions take as input intended per-block dynamic shared
memory usage and maximum block size (in addition to know-
ing user-defined registers per thread), it is possible to retrieve
a set of configuration choices. It is important to note that the
CUDA Occupancy Calculator/API takes into account the GPU
architecture being used. Thus, we can integrate the estimates it
generates over the full range of options (e.g., letting registers
per thread to be variable) with the other static models.

A project closely related to ours is STATuner [23]], which
identifies a feature set of static metrics that characterize a
CUDA kernel code and uses machine learning to build a classi-
fier model trained on a CUDA benchmark suite. Kernel codes
are compiled in LLVM and static analysis of the generated
binary code and IR provide metrics for instruction mix, loops,
register usage, shared memory per block, and thread synchro-
nization. The classifier model inputs these metric features for
a new kernel to predict which block size would give the best
performance. STATuner is shown to give smaller average error
compared to NVIDIA’s CUDA Occupancy Calculator/API.
Only a single block size is predicted by STATuner, whereas the
Occupancy Calculator/API offers block size choices given user
input about registers per thread and per-block shared memory.
Our approach differs in several respects. First, static analysis
is done on the PTX code generated by the NVIDIA nvcc
compiler, rather that on the upper level source code (as seen in
LLVM). While there are some benefits in incorporating higher-
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Fig. 7. Occupancy calculator displaying thread, register and shared memory impact for current (top) and potential (bottom) thread optimizations for the

purposes of increasing occupancy.

level code information, nvce produces different PTX code for
different GPU architectures, allowing hardware-specific code
effects to be seen. Furthermore, our static analysis extracts
metrics similar to STATuner, but also builds a CFG to help
understand flow divergence [7]]. Second, our prediction models
are based on estimating performance given the instruction mix,
control flow, and problem size. They are not based on learned
classifiers. Third, the objective of our work is to integrate
predictive models in an autotuning framework, beyond just
giving a single block size result to the user.

Milepost GCC [24] is a publicly-available open-source ma-
chine learning-based compiler for C (but not CUDA) that ex-
tracts program features and exchanges optimization data with
the cTuning.org open public repository. It automatically adapts
the internal optimization heuristic at function-level granularity
to improve execution time, code size and compilation time of
a new program on a given architecture.

The Oxbow toolkit [25]] is a collection of tools to em-
pirically characterize (primarily CPU) application behaviors,
including computation, communication, memory capacity and
access patterns. The eventual goal is to build a repository that
users can upload and access their datasets, and can provide
analysis, plots, suggested parameters, etc.

VI. CONCLUSION

Getting the most performance out of applications is im-
portant for code generators and end users, but the process
in making the best settings is often convoluted. With our
static analyzer tool, we show its accuracy in estimating the
runtime behavior of a kernel without the high costs of running
experiments. Using our tool, we’ve identified the computa-
tional intensity of a kernel, constructed a control flow graph,
estimated the occupancy of the multiprocessors, and suggested
optimizations in terms of threads and register usage. Finally,
we’ve shown how the integration of our static analyzer in

the Orio autotuning framework improved the performance in
narrowing the search space for exploring parameter settings.
The field of heterogeneous accelerated computing is rapidly
changing, and we expect several disruptions to take place
with the introduction of 3D-memory subsystems, point-to-
point communication, and more registers per computational
cores. Traditional approaches to measuring performance may
no longer be sufficient to understand the behavior of the
underlying system. Our static analyzer approach can facilitate
optimizations in a variety of contexts through the automatic
discovery of parameter settings that improve performance.

VII. FUTURE WORK

The optimization spectrum is a continuum from purely
static-based methods to ones that incorporate empirical search
across an optimization landscape. In general, the objective of
our work is on exploring the tradeoffs involving optimization
accuracy and cost over this spectrum, with a specific focus
on how well purely static methods perform as a guide for
autotuning. While static analysis side-steps the need for em-
pirical testing, it is not to say that static models can not be
informed by prior benchmarking and knowledge discovery. We
will investigate several avenues for enhancing our static mod-
els, including algorithm-specific optimizations and machine
learning for code classification.

Furthermore, we regard the methodology we have developed
as a knowledge discovery framework where the degree of
empirical testing can be “dialed in” during the autotuning
process, depending on what the user accepts. By recording the
decisions and code variants at each step, it is also possible to
replay tuning with empirical testing for purpose of validation.
In this way, the framework can continually evaluate the static
models and refine their predictive power. We will further
develop this capability.



While our static analysis tools will working with any CUDA
kernel code, the real power of our approach is in the ability to
transform the code in Orio. However, this requires the source
to be in a particular input form. We are exploring source
analysis technology [26] to translate kernel code to the input
required by Orio, thereby allowing any kernel to be a candidate
for CUDA autotuning.

ACKNOWLEDGMENT

We want to thank the anonymous reviewers for the insightful
comments. We also want to thank NVIDIA for providing early
access to CUDA 7.5 and to the PSG clusters. This work
is supported by American Society of Engineering Education
(ASEE) and Department of Energy (Award #de-sc0005360)
for the project “Vancouver 2: Improving Programmability of
Contemporary Heterogeneous Architectures.”

REFERENCES

[1] “CUDA occupancy calculator,” http://developer.download.nvidia.com/
compute/cuda/CUDA_Occupancy_calculator.xls, 2016.

[2] S.S. Shende and A. D. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287-311, 2006.

[31 A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juck-
eland, R. Dietrich, D. Poole, and C. Lamb, “Parallel performance
measurement of heterogeneous parallel systems with GPUs,” in 2011
International Conference on Parallel Processing, 2011, pp. 176-185.

[4] “Allinea DDT,” http://www.allinea.com/products/ddt.

[5] “Nvidia Visual Profiler,” https://developer.nvidia.com/nvidia-visual-
profiler.

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685-701, 2010.

[71 R. Lim, B. Norris, and A. Malony, “Tuning heterogeneous computing
architectures through integrated performance tools,” in GPU Technology
Conference, 2016, p. poster.

[8] A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in Parallel & Distributed Processing,
2009. IEEE International Symposium on. 1EEE, 2009, pp. 1-11.

[9] N. Chaimov, B. Norris, and A. Malony, “Toward multi-target autotuning

for accelerators,” in Parallel and Distributed Systems (ICPADS), 2014

20th IEEE International Conference on, Dec 2014, pp. 534-541.

A. Mametjanov, D. Lowell, C.-C. C.C. Ma, and B. Norris, “Autotuning

stencil-based computations on GPUs,” in Cluster Computing (CLUS-

TER), 2012 IEEE International Conference on, 2012, pp. 266-274.

V. Volkov, “Better performance at lower occupancy,” 2010.

“NVIDIA GeForce GTX 680 Whitepaper,” Tech. Rep., 2012, http://bit.

ly/2jzzX13.

A. Monsifrot, F. Bodin, and R. Quiniou, “A machine learning approach

to automatic production of compiler heuristics,” in Artificial Intelligence:

Methodology, Systems, and Applications. Springer, 2002, pp. 41-50.

M. Stephenson and S. Amarasinghe, “Predicting unroll factors using

supervised classification,” in Code Generation and Optimization, 2005.

CGO 2005. International Symposium on. 1EEE, 2005, pp. 123-134.

R. Lim, D. Carrillo-Cisneros, W. Alkowaileet, and I. Scherson, “Com-

putationally efficient multiplexing of events on hardware counters,” in

Linux Symposium, 2014.

R. Lim, A. Malony, B. Norris, and N. Chaimov, “Identifying optimiza-

tion opportunities within kernel execution in GPU codes,” in Euro-Par

2015: Parallel Processing Workshops. Springer, 2015.

B. Norris, A. Hartono, and W. Gropp, “Annotations for productivity

and performance portability,” in Petascale Computing: Algorithms

and Applications, ser. Computational Science. Chapman & Hall /

CRC Press, Taylor and Francis Group, 2007, pp. 443-462, preprint

ANL/MCS-P1392-0107. [Online]. Available: http://www.mcs.anl.gov/

uploads/cels/papers/P1392.pdf

A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for CUDA

GPUSs,” in Supercomputing Conference (SC 2009), 2015.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]
[23]

[24]

[25]

[26]

S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in International Parallel
and Distributed Processing Symposium (IPDPS 2010), Jan. 2010.
“CHILL: A Framework for Composing High-Level Loop Transforma-
tions,” USC Department of Computer Science, Tech. Rep., Jun. 2008.
R. Xu, S. Chandrasekaran, X. Tian, and B. Chapman, “An analytical
model-based auto-tuning framework for locality-aware loop scheduling,”
in International Conference on High Performance Computing. Springer,
2016, pp. 3-20.

NVIDIA, “CUDA Toolkit,” https://developer.nvidia.com/cuda-toolkit.
R. Gupta, I. Laguna, D. Ahn, T. Gamblin, S. Bagchi, and F. Lin,
“STATuner: Efficient Tuning of CUDA Kernels Parameters,” in Super-
computing Conference (SC 2015), 2015, p. poster.

G. e. Fursin, “Milepost gcc: Machine learning enabled self-tuning
compiler,” International journal of parallel programming, vol. 39, no. 3,
pp- 296-327, 2011.

S. Sreepathi, M. Grodowitz, R. Lim, P. Taffet, P. C. Roth, J. Meredith,
S. Lee, D. Li, and J. Vetter, “Application characterization using Oxbow
toolkit and PADS infrastructure,” in Proceedings of the 1st International
Workshop on Hardware-Software Co-Design for High Performance
Computing. 1EEE Press, 2014, pp. 55-63.

P. de Oliveira Castro, C. Akel, E. Petit, M. Popov, and W. Jalby,
“CERE: LLVM Based Codelet Extractor and REplayer for Piecewise
Benchmarking and Optimization,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, no. 1, p. 6, 2015.


http://arxiv.org/abs/de-sc/0005360
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.allinea.com/products/ddt
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://bit.ly/2jzzX13
http://bit.ly/2jzzX13
http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1392.pdf
https://developer.nvidia.com/cuda-toolkit

	I Introduction
	II Background
	II-A CUDA Programming Model and Control Flow Divergence
	II-B GPU performance tools
	II-C Autotuning

	III Methodology
	III-A Occupancy
	III-A1 Occupancy calculation
	III-A2 Definition of occupancy
	III-A3 Theoretical occupancy

	III-B Instruction Mixes
	III-B1 Instruction mix metrics
	III-B2 Pipeline utilization
	III-B3 Infer Kernel Execution Time

	III-C Static Search Analysis

	IV Experimental Setup and Analysis
	IV-A Environment
	IV-B Discussion
	IV-C Improved Autotuning with Static Analyzer

	V Related Work
	VI Conclusion
	VII Future Work
	References

