Preprint of the paper

"Parallel computing aided design of earthing systems for electrical substations
in non homogeneous soil models"”

J. Gébmez-Calvifio, I. Colominas, F. Navarrina, M. Casteleiro, J.M. Cela (2000)

En "Proceedings of the 2000 ICCP Workshops", 381---388; P. Sadayappan (Ed.); IEEE
Computer Society Press, USA. (ISBN: 0-7695-0771-9)

http://caminos.udc.es/gmni



Parallel computing aided design of earthing systems for electrical
substations in non homogeneous soil models

J. Gomez-Calvino, I. Colominas,
F. Navarrina, M. Casteleiro
Applied Mathematics Dpt.

Civil Engineering School

Universidade da Coruna, SPAIN

colominas@iccp.udc.es

Abstract

An accurate design of grounding systems is essential
to assure the safety of the persons, to protect the equip-
ment and to avoid interruptions in the power supply. In
order to attain these targets, the equivalent electrical
resistance of the system and the potential distribution
on the earth surface in fault conditions are necessary
to compute. In this paper, it is presented a numerical
approach for grounding analysis embedded in stratified
soils and its implementation in a high-performance par-
allel computer. The feasibility of this system is shown
with its application to the analysis of a real grounding
system in a layered soil.

1. Introduction

The interest for the prediction and the numerical
simulation of problems related to the security have in-
creased in last years with the construction of grounding
systems of large electrical installations. The “ground-
ing” or “earthing” systems comprises all intercon-
nected grounding facilities of an specific area, being the
“grounding grid” the main element of these systems.
A grounding grid in most of real electrical substations
consists of a mesh of interconnected cylindrical conduc-
tors, horizontally buried and supplemented by ground
rods vertically thrusted in specific places of the instal-
lation site.

The main objective of a grounding system is to pro-
vide means to carry and dissipate electrical currents
into the ground, in order to guarantee the continuity
of the power supply and the integrity of the equip-
ment and to ensure that a person in the vicinity of the
grounded installation is not exposed to a critical elec-
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trical shock. Thus, the apparent electrical resistance
of the grounding system must be low enough to guar-
antee that fault currents dissipate mainly through the
earthing electrode into the ground, while the values of
electrical potentials between close points on earth sur-
face that can be connected by a person must be kept
under certain maximum safe limits (step, touch and
mesh voltages)[1, 2].

Taking into account these previous aspects, it is ob-
vious that the design of safe grounding systems in elec-
trical installations is essential to assure the security of
the persons, to protect the equipment and to avoid
interrumptions in the power service. Since the six-
ties, several methods and procedures for the analysis
and design of grounding systems of electrical substa-
tions have been proposed, most of them based on prac-
tice, on semi-empirical works or on intuitive ideas. Al-
though these techniques represented an important im-
provement in the grounding analysis area, some prob-
lems were reported such as large computational re-
quirements, unrealistic results when segmentation of
conductors was increased, and uncertainty in the mar-
gin of error[l, 3.

Since the early days of the industrial use of the
electricity the problem of obtaining the potential dis-
tribution produced when a fault current is derived
into the ground through an earthing grid has been
a challenging one. Although the physical phenom-
ena of fault currents dissipation into the earth is a
well-known problem that can be modelled by means
of Maxwell’s Electromagnetic Theory, its application
and resolution for the computing of grounding grids
of large installations in practical cases present some
difficulties. First, it is obvious that no analytical so-
lutions can be obtained in a real case. Moreover, the
specific geometry of the grounding systems (a mesh



of interconnected bare conductors in which ratio di-
ameter /length is relatively small) precludes the use of
standard numerical techniques (such as the Finite Ele-
ment Method or Finite Differences) since discretization
of the domain (the whole ground) is required, and ob-
taining sufficiently accurate results should imply un-
acceptable computing efforts in memory storage and
CPU time. For these reasons, during the last years
the authors have developed a general numerical for-
mulation based on the Boundary Element Method for
the analysis of earthing systems embedded in uniform
soil models, which has been succesfully applied to real
grounding grids[4, 5]. At present, for real problems,
single-layer models (“uniform models”) run in real-time
in personal computers[6], while multiple-layer models
break off the design process since the computing time
is not contemptible.

Next, we present a generalization of the BEM formu-
lation for the analysis of grounding systems embedded
in stratified soils and the study of the parallelization of
that code for its implementation in a high-performance
parallel computer. Furthermore, we apply this ap-
proach to the analysis of a real grounding system in
a layered soil model.

2. Mathematical Model of the Problem

Fault current dissipation into the ground through a
grounding grid can be described by means of Maxwell’s
Electromagnetic Theory. Thus, if one restricts the
analysis to the electrokinetic steady-state response and
neglects the inner resistivity of the earthing conductors
(then, potential can be assumed constant in every point
of the grounding electrode surface), the 3D problem
can be written as

div(e) =0, o= —-vygrad(V) in F ;
on,=0inTg; V=Vrinl;
V=0, if |zg| = oo (1)

where E is the earth, -« is its conductivity tensor, I'g
is the earth surface, ny is its normal exterior unit field
and T is the electrode surface [5]. Therefore, when the
earthing electrode is energized to a voltage Vi (Ground
Potential Rise, or GPR) relative to a remote earth, the
solution to problem (1) gives potential V and current
density o at an arbitrary point £. Then, for known val-
ues of V on 'y and @ on T, it is straightforward to ob-
tain the design and safety parameters of the grounding
system, such as the total surge current, the equivalent
resistance of the grounding system, and the step and
touch voltages[1, 2]. On the other hand, since V and o
are proportional to the GPR value, it will be used the
normalized boundary condition Vr = 1 from here on.

Most of the methods proposed for grounding analy-
sis are based on the hypothesis that soil can be consid-
ered homogeneous and isotropic, and thus < is substi-
tuted by an apparent scalar conductivity ~ that must
be experimentally obtained[1]. It is obvious that this
assumption does not introduce significant errors if the
soil is essentially uniform (both in horizontal and ver-
tical directions) in the surroundings of the grounding
grid[1], and this model can be used with loss of accu-
racy if the soil resistivity changes slightly with depth.
However, since parameters involved in the grounding
design can significantly vary if soil electrical properties
change through the substation site (e.g., changes of the
material nature, changes of humidity), it seems advis-
able to develop advanced models that could take into
account variations of soil conductivity in the surround-
ings of the installation.

It is clear that to take into account the real variation
of the soil conductivity in the vicinity of a grounding
site would never be affordable, neither from the eco-
nomical nor from the technical point of view. Hence, a
more practical proposed soil model (and still quite re-
alistic when conductivity is not markedly uniform with
depth) consists of considering the soil stratified in a
number of horizontal layers, defined by an appropri-
ate thickness and an apparent scalar conductivity that
must be experimentally obtained. In fact, it is widely
accepted that two-layer (or even three-layer) soil mod-
els should be sufficient to obtain good and safe de-
signs of grounding systems in most practical cases[1].
This paper is devoted to studying the application of
high performance computing techniques to two-layer
soil models by means of parallelization, and its final
implementation.

Consequently, if the soil is formed by C horizontal
layers with different conductivities and the grounding
electrode is buried in the layer b, the mathematical
problem (1) can be written in terms of the following
Neumann exterior problem|7]

div(e.) =0, 6. = —y.grad(V.) in E., 1 < ¢ < C;
olny,=0inTp, V,=1inT}
Ve = 0if |g]| = o0, oln. =0 n.in T,
1<c<C-1; (2)

being E. each one of the soil layers, ~. the scalar con-
ductivity of layer E., V. the potential at an arbitrary
point of layer E. and o. the corresponding current den-
sity, I'. the interface between layers E. and E.;; and
n. the normal field to T'.[7].



3. Variational Form of the BVP

As we have exposed, the real geometry of grounding
systems in most of real electrical substations consists
of a grid of interconnected bare cylindrical conductors,
horizontally buried and supplemented by rods, so ratio
diameter/length uses to be relatively small (~ 1073).

Although this geometry is straightforward to de-
scribe, it implies serious difficulties to the modelliza-
tion of the problem: it is obvious that no analytical
solutions can be obtained in a real case, and the use of
standard numerical techniques (FEM or FD) should in-
volve a completely out of range computing effort since
discretization of the domain (the 3D domains E.) is
required. Consequently, and taking into account that
potential values are only required on the earth surface
and the equivalent resistance can be easily obtained in
terms of the leakage current density o on I' (0 = o'n,
where n is the normal exterior unit field to I'), we turn
our attention to a Boundary Element approach which
would only require the discretization of the grounding
surface I'[5]. For this, it is first necessary to derive an
expression to relate the potential V' and the leakage
current density o.

Since the surroundings of the substation site are lev-
elled and regularized during the construction of the
electrical installation, earth surface 'y and interfaces
I'. between layers can be assumed horizontal. Thus,
with this assumption the application of the “method
of images” and Green’s Identity to problem (2) yields
the following integral expression[7] for potential V. (z.)
at an arbitrary point . € F,, in terms of the unknown
leakage current density o(€) at any point € of the elec-
trode surface I' C FEy:

/ / Five(3e, €) 0(€)dT, Yz, € E,,
(3)

where integral kernels key.(z., ) are formed by infinite
series of terms corresponding to the resultant images
obtained when Neumann exterior problem (2) is trans-
formed into a Dirichlet one[7, 9]. In the case of uniform
soil, the series are reduced to only two summands, since
there is only one image of the original grid[4, 5].
Weakly singular kernel kp.(z.,€) depends on the
conductivity of the layers, and on the inverse of the
distances from the point €. to the point £ and to all
the images of & with respect to the earth surface I'g
and to the interfaces I'. between layers[7]. A general
form to express these integral kernels is given by:

P(x)
ki (xc, —_—,
Z ool ), (@0, €(8))

(4)

Vo(ze) =
(ze) ATy

kbc xcv £ kll)c<xca £) =

being 9! a weighting coefficient that only depends on
a certain ratio k defined in terms of the layer conduc-
tivities and 7 (2., €' (€)) the Euclidean distance between
the points z. and &', being &° the point & on the elec-
trode surface (£°(€) = &), where &' (I # 0) are the im-
ages of € with respect to the earth surface and to the
interfaces between layers[7]. For example, in the par-
ticular case of a two-layer soil model ratio x is given
by (v1 —72)/(71 + 2) and four cases must be consid-
ered depending on the layer where the points . and {l
are located. In each case, several series with different
locations of their images and different weighting coeffi-
cients are added. Explicit expressions of these kernels
can be found in [7, 9].

Now, since the expression for the potential (3) also
holds on electrode surface I' (where potential is known
by the boundary condition V4(x) = 1, Vx € T'), the
leakage current density o must satisfy the following
Fredholm integral equation of the first kind on I':

o(&)dl — 1) dl’ =0,

//XE;L(X) (47771, /&F]ﬂbb x:€
()

for all members w(x) of a suitable class of test functions
defined on T'[4, 5]. It is obvious that a numerical ap-
proach based on the Boundary Element Method seems
to be the best choice to solve equation (5).

4. BEM Numerical Formulation
4.1. General 2D approach

The numerical resolution of the variational form (5)
requires the discretization of the domain (the surface
of the cylindrical conductors) and the leakage current
density that flows from the grounded electrode. Thus,
for given sets of N trial functions {N;(€)} defined on
I', and M two dimensional boundary elements {I'*},
the leakage current density o and the electrode surface
I' can be discretized as follows:

N
a(8) =Y _ o Ni(8),
=1

Now, if we take into account that kernels (4) are given
by series, integral expression (3) for potential V.(z.)
can also be discretized as

N
= Zai‘/c,i(mc) cz mc
i=1

M
r=|]Jre, (6)

- S vae

a=1[=0
(7)
471'*)/17 //feI‘a kbc z, &) Ni(§) dT*;  (8)
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where [, represents the number of terms that is neces-
sary to consider until convergence is achieved.

On the other hand, for a given set of N test functions
{w;(x)} defined on T', variational form (5) is reduced
to the following linear system:

N
ZRjiUi:Vj (jZl,...,N)
i=1

Ir M (9)

M M
me=3 55w
—1a=

1 1= =1

being coefficients Rff‘l and Z/f :

Bal 1

e =g [ woof [ Kl f)Nxodra(clz;ﬂ,

=/ /x m0dr’, (1)

where [, represents the number of terms that is neces-
sary to consider until convergence is achieved.

It is important to emphasize that the solution of lin-
ear equations (9) provides the values of the intensities
o; (i =1,...,N) leaking from the nodes of the grid.
With these values, it is possible to compute the poten-
tial at any point on the earth surface or even at any in-
ner point —by means of (7) and (8)—, the leakage cur-
rent density ¢ —by means of (6)—, and all the design
and safety parameters of the grounding system|[1, 5].

Nevertheless, the statement of the above linear sys-
tem requires the discretization of a 2D domain: the
whole surface I' of the grounding electrodes, which im-
plies a large number of degrees of freedom in practical
cases. Besides, its matrix is full and the computation
of its coefficients requires to perform double integration
on 2D domains. For all these reasons, it is necessary
to introduce some additional hypotheses in order to
decrease the computational cost.

4.2. Approximated 1D boundary element
approach

An approximated boundary element numerical ap-
proach to the previous one presented can be derived
if the real geometry of the grounding systems in prac-
tice is considered. Thus, since the ratio between the
diameter and the length of the grounded conductors
is very small (~ 1073), the hypothesis of circumfer-
ential uniformity (i.e., the leakage current density o
is constant around the cross section of the cylindrical
conductors of the grounding grid) can be assumed pro-
ducing a notable fall of the computational cost[1, 5]. In

this way, discretizations (6) and (9) become much sim-
pler, since the classes of test and trial functions are re-
stricted to those with circumferential uniformity, while
only the axial lines of the grounding electrodes have to
be discretized[5].

Now, for a given level of mesh refinement, the num-
ber of element contributions R?f‘ and 17 that we need
to compute in order to state linear system (9), as much
as the number of unknowns o; are significantly smaller
than in the previous 2D approach, since it is required
the discretization of a simpler domain: the axial lines
of the grounding electrodes. Despite of this important
reduction in the computation effort, extensive comput-
ing is still necessary mainly because of the circumfer-
ential integration on the perimeter of the electrodes
that are involved in the integral kernels[5]. However,
these circumferential integrals can be performed in an
approximated way if suitable simplifications in the gen-
eral approach are introduced|7].

The selection of different sets of trial and test func-
tions in the numerical scheme allows to derive differ-
ent formulations. Further discussion in this paper is
restricted to the case of a Galerkin type approach,
since the matrix of coefficients is symmetric and pos-
itive definite[5]. As the 1D approximated expressions
for terms Vco‘ll and Rfio‘l in (8) and (10) are formally
equivalent to those obtained in the case of uniform
soil models[7], these terms can be computed by using
the highly efficient analytical integration techniques de-
rived by the authors to compute these coeflicients for
the uniform soil case[5, 7].

The example presented in the next section corre-
sponds to the analysis of a grounding system embed-
ded in a two-layer soil model. Obviously, this boundary
element formulation can be applied to any other case
with a higher number of layers. However, CPU time
may increase up to unadmisible levels, mainly due to
the poor rate of convergence of the underlying series
expansions, and the need to evaluate double series (in
three-layer models), triple series (in four-layer models),
and so on.

4.3. Total Efficiency of the Numerical Ap-
proach

An important aspect of the numerical formulation
proposed is its total computational cost. Thus, for spe-
cific discretization (M elements of p nodes each, and a
total number of N degrees of freedom), a linear system
(9) of order N must be generated and solved.

Matrix generation process requires O(M?2p?/2) op-
erations, since p? series of contributions of type (10)
have to be computed for every pair of elements, and ap-



proximately half of them are discarded because of sym-
metry. In uniform soil models these series are formed
by only two terms, while in two-layer models the series
have an infinite number of them, that will be numeri-
cally added up until a tolerance is fulfilled or an upper
limit of summands is achieved. Consequently, matrix
generation will be much more expensive in two-layer
models. In connection with the linear system solving
process, it requires O(N3/3) operations (since the ma-
trix is symmetric but not sparse) if the resolution is
carried out with a direct method.

Hence, most of computing effort is devoted to matrix
generation in small/medium problems, while linear sys-
tem resolution prevails in medium /large ones. In these
cases, the use of direct methods for the linear system
resolution is out of range. Therefore iterative or semi-
iterative techniques will be preferable. The best results
have been obtained by a diagonal preconditioned con-
jugate gradient algorithm with assembly of the global
matrix[5]. This technique has turned out to be ex-
tremely efficient for solving large scale problems, with
a very low computational cost in comparison with ma-
trix generation. So the cost of the system resolution
should never prevail.

On the other hand, once the leakage current has
been obtained, the cost of computing the equivalent
resistance is negligible. The additional cost of comput-
ing potential at any given point (normally at the earth
surface) by means of (7) only requires O(Mp) opera-
tions, since p series of contributions of type (8) have
to be computed for every element. However, if it is
necessary to compute potentials at a large number of
points (i.e. to draw contours), computing time may be
important.

5. Parallelization of the BEM approach
and application to a practical case

5.1. Description of the earthing system

This boundary element approach has been inte-
grated in a Computer Aided Design system for ground-
ing analysis. In this section we will discuss the imple-
mentation of the numerical code and its parallelization,
that is, the distribution of different tasks of the pro-
gram among several processors. Next discussion will be
illustrated with its application to a real case, in order
to test the parallel code onto a large grid: the Barberd
substation, near the city of Barcelona in Spain. This
earthing system is formed by a grid of 408 segments
of cylindrical conductor of the same diameter (12.85
mm) buried to a depth of 80 cm. The grounding sys-
tem has a right-angled triangle shape of 143x89 m and
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Figure 1. Barbera grounding system:
Potential distribution on earth surface
(x10 kV) obtained by using a uniform soil
model.

protects a total area of 6,600 m?. The grid has been
discretized in 408 linear leakage current elements which
implies 238 degrees of freedom. The Ground Potential
Rise (GPR) considered in this study has been 10 kV.

This grounding system has been calculated by using
a uniform soil model (y = 0.016 (2m)~!), and a more
interesting two-layer soil model (the conductivities of
the upper and the lower layer are y; = 0.005(Qm)~!
and 2 = 0.016(Qm) ! respectively, and the thickness
of the upper layer is 1.0 m).

Figure 1 shows the potential distribution on the
earth surface obtained for the uniform soil case, and
Figure 2 does for the two-layer soil model. The equiva-
lent resistance and the total surge current of the earth-
ing system computed in each case has been 0.3128
Q and I=31.97 kA (for the uniform soil model), and
0.3704 © and I=26.99 kA (for the two-layer soil model).

As we can see in this example, results obtained by
using a multiple-layer soil model can be noticeably dif-
ferent from those obtained by using a single layer (or
uniform) soil model. Therefore, it could be advisable to
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Figure 2. Barbera grounding system:
Potential distribution on earth surface
(x10 kV) obtained by using a two-layer soil
model.

use multi-layer soil formulations to analyze grounding
systems as a general rule, in spite of the increase of the
computational effort. In fact, the use of this kind of ad-
vanced models should be mandatory in cases where the
conductivity of the soil changes markedly with depth.

However, while single-layer models run in real
time in conventional computers for the analysis of
medium/big size grounding grids, multiple-layer mod-
els require in general an out of order computing time.
For this reason, we have studied the parallelization of
the multi-layer boundary element numerical approach
which could become a real-time design tool for ground-
ing analysis.

5.2. Parallelization of the numerical appro-
ach

As we have exposed in previous sections, the most
critical time-consuming process of this numerical for-
mulation based on the Boundary Element Method is
matrix generation, followed by computation of poten-
tial at a large number of points once the leakage current

Table 1. Barbera Grounding System: CPU
time in sequential execution for each
process of the numerical approach

Process Time(s)

Data Input: 0.737
Data Preprocessing;: 0.045
Matrix Generation: 1723.207

Linear System Solving: 0.211
Resuts Storage: 0.015

density has been obtained. Since both processes ac-
cept massive parallelization, computing time could be
reduced under acceptable levels, even for cases of ex-
tremely large models, if the number of available proces-
sors is high enough, in spite of the efficiency loses due
to the data transfer overhead and the system adminis-
tration workload. Table 1 summarizes the CPU time
required in each process of the implementation of the
numerical approach for the Barberd grounding system
in the two-layer soil model case. It is evident that the
matrix construction is the most expensive part of it.

The numerical approach has been implemented on
a CAD system, which has been compiled and run onto
an Origin 2000 Silicon Graphics computer at the Eu-
ropean Center for Parallelism of Barcelona (CEPBA).
The compilation process of the code has been made in
sequential and parallel modes, and the executions have
been run for the uniform and the two-layer models.

The 02000 used in our work is a high-performance
computer with 64 MIPS R10000 processors at 250
MHz. It has a peak performance of 32 GFlops. Inter-
nally, the 02000 is organised in clusters of 2 processors
sharing a main memory of 256 Mbyte. Each processor
has 4 Mbyte of cache memory. The clusters are con-
nected by an hypercube network. Each processor can
access all the distributed main memory through the
network. Then, the 02000 can be programmed as an
8 Gbyte shared memory machine. The input/output
devices have a capability of 1.2 Gbytes/s.

The parallelization mode selected for this problem
has been the use of compiler directives, following the
present OpenMP standard. This selection is justified
because: a) a shared memory computer is available
for running the program (necessary condition for using
compiler parallelization directives), b) the use of com-
piler directives grants clearness to a parallel code that
may be handled in the future, ¢) the OpenMP syn-
tax assures the portability of the parallel code to any
shared memory computer, and d), as we will see below,
the loop to be run in parallel is transformable into an
adequate form so that directives are efficient.



In the sequential program, the matrix generation
process is performed by means of a double loop that
couples every element with all the other ones (M (M +
1)/2 cycles). Into each cycle, the elemental matrix
corresponding to a pair of elements is calculated and
immediately assembled into the system matrix. If we
try to parallelize this double loop, we find that the
assembly of the elemental matrices causes a depen-
dency between the actions of the threads or processes.
This drawback can be avoided by taking the assem-
bly process out of that loop, which implies first the
computation and the storage of all the elemental ma-
trices and, after this step, the assembly in a sequen-
tial mode. This scheme requires approximately twice
memory space than the original one, but in any case
this memory space is not very large. If N' = O(10%)
then the matrix size is O(106) bytes.
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Figure 3. Barbera grounding system: Com-
parision between the speed-up obtained
with the parallelization of the outer loop
(in continuous line) and the inner loop (in
discontinuous line).

Then, our target code is the nesteed DO loops that
compute the elemental matrices, and we can parallelize
the outer loop or the inner one. This is the first choice
studied. Figure 3 shows the evolution of the speed-
up factor obtained with different number of processors
for both types of parallelization in the analysis of the
Barberd grounding system with a two-layer soil model
(the speed-up factor has been referenced to the sequen-
tial CPU time). These results have been obtained with

Table 2. Barberd Grounding System:
Speed-up factors for different schedules
and number of processors in the outer loop
parallelization

Schedule () Number of Processors
1 2 4 8
Static 1.01 | 1.32 | 2.32 | 4.38
Static,64 1.02 | 1.76 | 1.86 | 3.55
Static,16 1.02 | 1.94 | 359 | 6.23
Static, 4 1.01 | 2.01 | 3.96 | 7.36
Static, 1 1.02 | 2.03 | 4.03 | 7.99
Dynamic,64 | 1.02 | 2.02 | 3.56 | 3.55
Dynamic,16 | 1.02 | 2.02 | 4.08 | 7.87
Dynamic, 4 | 1.01 | 2.04 | 3.99 | 7.90
Dynamic, 1 | 1.02 | 2.03 | 4.09 | 8.05
Guided,64 1.02 | 1.97 | 3.56 | 3.56
Guided,16 1.02 | 1.99 | 3.96 | 8.03
Guided, 4 1.02 | 2.01 | 4.11 | 7.93
Guided, 1 1.02 | 2.07 | 3.95 | 8.38

the schedule option “Dynamic,1” (we will discuss the
schedule options below), and they correspond to the
minimum of 4 CPU time measures made for the same
option (the variance of the four ones is very small, any-
way), in order to approximate better the strict value.
In some cases, we have obtained speed-ups bigger than
the number of processors due to small errors in the
measurement of CPU time by the processors, and to
the additional optimization of the code that the paral-
lel compiler introduces.

Results are better when the outer loop is parallelized
because the granularity is bigger in that way, and so
the cost of managing the parallel execution is minor:
since the numerical approach leads to a symmetric for-
mulation, the coupling of every element of the grid with
each one of the others can be represented by a triangle
of M columns, of which the first one has M rows and
the last one has 1 row. Hence, if the outer loop is paral-
lelized, the columns of the triangle, that is, the cycles
of the outer loop, are distributed among the proces-
sors. Whereas, if the inner loop is parallelized, the
rows of one column are distributed among the proces-
sors. In this case, when computations on that column
are finished the program moves sequentially to the next
one, where another distribution of its rows among the
processors is performed. This effect of granularity is,
of course, more sensible when the number of processors
grows, as figure 3 shows.

As the parallelization of the outer loop is preferable,
and the cycles that it is necessary to distribute among
the processors have very different sizes, the way to do



this distribution becomes a decisive question. Table
2 summarizes the speed-up factors (referenced to the
sequential CPU time) obtained for the outer-loop par-
allelization with different number of processors by us-
ing different “schedule” OpenMP options. Since the
size of the cycles is linearly decreasing, “static” sched-
ules with a high “chunk” (i.e., the number of cycles in
a task) are the less profitable ones. When no chunk
value is specified, all the columns are uniformly dis-
tributed in the beginning. “Dynamic” schedules im-
prove this behaviour because as each processor finishes
a task, it dynamically takes the next one. Best results
are obtained for a dynamic schedule with a chunk pa-
rameter of 1 column. This is the most lively scheme,
since there are never waiting processors, although it
requires the biggest amount of parallelization manage-
ment. “Guided” schedules distribute initially all the
columns among all the processors into pieces with size
exponentially varying. In this case, results are very
similar to those obtained with the “dynamic” ones. In
general, for any schedule, we obtained worse results
when the chunk parameter and the number of proces-
sors are high because then some processors do not get
any work.

Therefore, as we can see, speed-up factors obtained
for the outer parallelization are very close to the num-
ber of processors for good schedules, that is, “dynamic”
or “guided” with low chunk parameters. This fact re-
veales that the parallelization of this loop is very prof-
itable: in the example, the Barbera grounding analysis
in a two layer soil model, 99.9% of the work of the
whole processing program is dealt with only 408 tasks.

6. Conclusions

Accurate analysis of grounding systems of electrical
instalations requires the use of multilayer soil models
when the soil is not essentially uniform in the surround-
ings of the earthing grid. At present, while uniform soil
models run in real-time in conventional computers, the
use of models with a small number of soil layers breaks
off the design process due to the important computing
time required in practical cases.

In last years, the authors have developed a BEM
numerical approach for the analysis of grounding sys-
tems embedded in stratified soils that has been im-
plemented in a high performance parallel computer.
This numerical approach accepts massive paralleliza-
tion since most of the computing time is required in
the computation of the elemental matrices correspond-
ing to the contribution of each electrode of the ground-
ing grid. Results obtained with different parallelization
options prove that the proposed multi-layer Boundary

Element formulation can be a real-time design tool, as
high-performance parallel computing becomes a wide-
spread available resource in engineering.
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